int pmatsetup(void *MM, int m){ plapackM* ctx=(plapackM*)MM; MPI_Comm rowcomm,colcomm; int itmp,nprocs,info; DSDPFunctionBegin; ctx->global_size=m; info = MPI_Comm_size(ctx->mpi_comm,&nprocs); DSDPCHKERR(info); itmp=(m-nprocs+1)/nprocs; itmp=DSDPMax(2,itmp); ctx->nb_distr=DSDPMin(ctx->nb_distr,itmp); info = PLA_Comm_1D_to_2D_ratio(ctx->mpi_comm,ctx->ratio,&ctx->plapack_comm); DSDPCHKERR(info); info = PLA_Init(ctx->plapack_comm); DSDPCHKERR(info); info = PLA_Temp_create(ctx->nb_distr, 0, &ctx->templ); DSDPCHKERR(info); info=PLA_Matrix_create(MPI_DOUBLE, m, m, ctx->templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &ctx->AMat);DSDPCHKERR(info); info=PLA_Mvector_create(MPI_DOUBLE, m, 1, ctx->templ, PLA_ALIGN_FIRST, &ctx->vVec);DSDPCHKERR(info); info=PLA_Mvector_create(MPI_DOUBLE, m, 1, ctx->templ, PLA_ALIGN_FIRST, &ctx->wVec);DSDPCHKERR(info); info=PLA_Mscalar_create( MPI_DOUBLE, PLA_ALL_ROWS, PLA_ALL_COLS, 1, 1, ctx->templ, &ctx->dxerror );DSDPCHKERR(info); info=PLA_Mscalar_create( MPI_DOUBLE, PLA_ALL_ROWS, PLA_ALL_COLS, 1, 1, ctx->templ, &ctx->one );DSDPCHKERR(info); info=PLA_Mscalar_create( MPI_DOUBLE, PLA_ALL_ROWS, PLA_ALL_COLS, 1, 1, ctx->templ, &ctx->zero );DSDPCHKERR(info); info=PLA_Obj_set_to_one(ctx->one);DSDPCHKERR(info); info=PLA_Obj_set_to_zero(ctx->zero);DSDPCHKERR(info); info = MPI_Comm_rank(ctx->plapack_comm,&ctx->rank); DSDPCHKERR(info); info = MPI_Comm_size(ctx->plapack_comm,&ctx->nprocs); DSDPCHKERR(info); info = PLA_Temp_comm_col_info(ctx->templ, &rowcomm, &ctx->rowrank, &ctx->numrownodes); DSDPCHKERR(info); info = PLA_Temp_comm_row_info(ctx->templ, &colcomm, &ctx->colrank, &ctx->numcolnodes); DSDPCHKERR(info); ctx->t0=0;ctx->t1=0;ctx->t2=0; ctx->thessian=0;ctx->tsolve=0; wallclock(&ctx->t0); DSDPFunctionReturn(0); }
int main(int argc, char *argv[]) { MPI_Comm comm = MPI_COMM_NULL; MPI_Datatype datatype; PLA_Template templ = NULL; PLA_Obj A_orig = NULL, A = NULL, Q = NULL, diag = NULL, B = NULL, minus_one = NULL, zero = NULL, one = NULL; int n, nb_distr, nb_alg, error, parameters, sequential, me, nprocs, nprows, npcols, itype; double time, flops, d_abs_max, PLA_Local_abs_max(); MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &me); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); if (me==0) { printf("enter mesh size:\n"); scanf("%d%d", &nprows, &npcols ); printf("mesh size = %d x %d \n", nprows, npcols ); printf("enter distr. block size:\n"); scanf("%d", &nb_distr ); printf("nb_distr = %d\n", nb_distr ); printf("enter alg. block size:\n"); scanf("%d", &nb_alg ); printf("nb_alg = %d\n", nb_alg ); printf("turn on error checking? (0 = NO, 1 = YES):\n"); scanf("%d", &error ); printf("error checking = %d\n", error ); printf("turn on parameter checking? (0 = NO, 1 = YES):\n"); scanf("%d", ¶meters ); printf("parameter checking = %d\n", parameters ); printf("turn on sequential checking? (0 = NO, 1 = YES):\n"); scanf("%d", &sequential ); printf("sequential checking = %d\n", sequential ); } MPI_Bcast(&nprows, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&npcols, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_distr, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_alg, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&error, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(¶meters, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&sequential, 1, MPI_INT, 0, MPI_COMM_WORLD); pla_Environ_set_nb_alg( PLA_OP_ALL_ALG, nb_alg ); PLA_Set_error_checking( error, parameters, sequential, FALSE ); /* PLA_Comm_1D_to_2D_ratio(MPI_COMM_WORLD, 1.0, &comm); */ PLA_Comm_1D_to_2D(MPI_COMM_WORLD, nprows, npcols, &comm); PLA_Init(comm); PLA_Temp_create( nb_distr, 0, &templ ); while ( TRUE ){ if (me==0) { printf("enter datatype:\n"); printf("-1 = quit\n"); printf(" 0 = float\n"); printf(" 1 = double\n"); printf(" 2 = complex\n"); printf(" 3 = double complex\n"); scanf("%d", &itype ); printf("itype = %d\n", itype ); } MPI_Bcast(&itype, 1, MPI_INT, 0, MPI_COMM_WORLD); if ( itype == -1 ) break; switch( itype ){ case 0: datatype = MPI_FLOAT; break; case 1: datatype = MPI_DOUBLE; break; case 2: datatype = MPI_COMPLEX; break; case 3: datatype = MPI_DOUBLE_COMPLEX; break; default: PLA_Abort( "unknown datatype", __LINE__, __FILE__ ); } if (me==0) { printf("enter n:\n"); scanf("%d", &n ); printf("n = %d\n", n ); } MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); PLA_Matrix_create( datatype, n, n, templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A_orig ); PLA_Matrix_create_conf_to( A_orig, &Q ); PLA_Matrix_create_conf_to( A_orig, &A ); PLA_Mvector_create( datatype, n, 1, templ, PLA_ALIGN_FIRST, &diag ); PLA_Create_constants_conf_to( A, &minus_one, &zero, &one ); create_diag( diag ); PLA_Create_sym_eigenproblem( PLA_LOWER_TRIANGULAR, 3, diag, A_orig, Q ); PLA_Copy( A_orig, A ); MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime (); PLA_Spectral_decomp( PLA_LOWER_TRIANGULAR, A, Q, diag ); MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime () - time; /******* Check answer *******/ /* Make A_orig symmetric */ PLA_Symmetrize( PLA_LOWER_TRIANGULAR, A_orig ); PLA_Matrix_create_conf_to( A_orig, &B ); PLA_Obj_set_to_zero( A ); PLA_Obj_set_diagonal( A, diag ); /* A_orig = A_orig - Q diag Q^T */ PLA_Gemm( PLA_NO_TRANSPOSE, PLA_NO_TRANSPOSE, one, Q, A, zero, B ); PLA_Gemm( PLA_NO_TRANSPOSE, PLA_TRANSPOSE, minus_one, B, Q, one, A_orig ); /* Extract absolute value of entry with largest absolute value in A_orig */ d_abs_max = PLA_Local_abs_max( A_orig ); if ( d_abs_max > 0.000000001 ) printf( "large error detected: %le\n", d_abs_max ); flops = 4.0/3.0 * n * n * n; if ( me == 0 ) printf("%d time = %f, MFLOPS/node = %10.4lf \n", n, time, flops / time * 1.0e-6 / nprocs ); PLA_Obj_free( &A_orig ); PLA_Obj_free( &A ); PLA_Obj_free( &Q ); PLA_Obj_free( &diag ); PLA_Obj_free( &B ); PLA_Obj_free( &minus_one ); PLA_Obj_free( &zero ); PLA_Obj_free( &one ); } PLA_Temp_free(&templ); PLA_Finalize( ); MPI_Finalize( ); }
int main(int argc, char *argv[]) { MPI_Comm comm = MPI_COMM_NULL; MPI_Datatype datatype; PLA_Template templ = NULL; PLA_Obj A = NULL, pivots = NULL, zero = NULL, one = NULL; int n, nb_distr, nb_alg, error, parameters, sequential, me, nprocs, nprows, npcols, itype; double time, flops; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &me); MPI_Comm_size(MPI_COMM_WORLD, &nprocs); if (me==0) { printf("enter mesh size:\n"); scanf("%d%d", &nprows, &npcols ); printf("mesh size = %d x %d \n", nprows, npcols ); printf("enter distr. block size:\n"); scanf("%d", &nb_distr ); printf("nb_distr = %d\n", nb_distr ); printf("enter alg. block size:\n"); scanf("%d", &nb_alg ); printf("nb_alg = %d\n", nb_alg ); printf("turn on error checking? (0 = NO, 1 = YES):\n"); scanf("%d", &error ); printf("error checking = %d\n", error ); printf("turn on parameter checking? (0 = NO, 1 = YES):\n"); scanf("%d", ¶meters ); printf("parameter checking = %d\n", parameters ); printf("turn on sequential checking? (0 = NO, 1 = YES):\n"); scanf("%d", &sequential ); printf("sequential checking = %d\n", sequential ); } MPI_Bcast(&nprows, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&npcols, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_distr, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_alg, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&error, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(¶meters, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&sequential, 1, MPI_INT, 0, MPI_COMM_WORLD); pla_Environ_set_nb_alg( PLA_OP_ALL_ALG, nb_alg ); PLA_Set_error_checking( error, parameters, sequential, FALSE ); /* PLA_Comm_1D_to_2D_ratio(MPI_COMM_WORLD, 1.0, &comm); */ PLA_Comm_1D_to_2D(MPI_COMM_WORLD, nprows, npcols, &comm); PLA_Init(comm); PLA_Temp_create( nb_distr, 0, &templ ); while ( TRUE ){ if (me==0) { printf("enter datatype:\n"); printf("-1 = quit\n"); printf(" 0 = float\n"); printf(" 1 = double\n"); printf(" 2 = complex\n"); printf(" 3 = double complex\n"); scanf("%d", &itype ); printf("itype = %d\n", itype ); } MPI_Bcast(&itype, 1, MPI_INT, 0, MPI_COMM_WORLD); if ( itype == -1 ) break; switch( itype ){ case 0: datatype = MPI_FLOAT; break; case 1: datatype = MPI_DOUBLE; break; case 2: datatype = MPI_COMPLEX; break; case 3: datatype = MPI_DOUBLE_COMPLEX; break; default: PLA_Abort( "unknown datatype", __LINE__, __FILE__ ); } if (me==0) { printf("enter n:\n"); scanf("%d", &n ); printf("n = %d\n", n ); } MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); PLA_Matrix_create( datatype, n, n, templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A ); PLA_Mvector_create( MPI_INT, n, 1, templ, PLA_ALIGN_FIRST, &pivots ); create_problem( A ); MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime (); PLA_LU( A, pivots ); MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime () - time; flops = 2.0/3.0 * n * n * n; if ( me == 0 ) printf("%d time = %f, MFLOPS/node = %10.4lf \n", n, time, flops / time * 1.0e-6 / nprocs ); } PLA_Obj_free( &A ); PLA_Obj_free( &pivots ); PLA_Obj_free( &zero ); PLA_Obj_free( &one ); PLA_Temp_free(&templ); PLA_Finalize( ); MPI_Finalize( ); }
int main(int argc, char *argv[]) { /* Declarations */ MPI_Comm comm; PLA_Template templ = NULL; PLA_Obj A = NULL, rhs = NULL, A_append = NULL, pivots = NULL, x = NULL, b = NULL, b_norm = NULL, index = NULL, minus_one = NULL; double operation_count, b_norm_value, time; int size, nb_distr, nb_alg, me, nprocs, nprows, npcols, dummy, ierror, info = 0; MPI_Datatype datatype; /* Initialize MPI */ MPI_Init(&argc, &argv); #if MANUFACTURE == CRAY set_d_stream( 1 ); #endif /* Get problem size and distribution block size and broadcast */ MPI_Comm_rank(MPI_COMM_WORLD, &me); if (0 == me) { printf("enter processor mesh dimension ( rows cols ):\n"); scanf("%d %d", &nprows, &npcols ); printf("enter matrix size, distr. block size:\n"); scanf("%d %d", &size, &nb_distr ); printf("enter algorithmic blocksize:\n"); scanf("%d", &nb_alg ); printf("Turn on error checking? (1 = YES, 0 = NO):\n"); scanf("%d", &ierror ); } MPI_Bcast(&nprows, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&npcols, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&size, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_distr, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&nb_alg, 1, MPI_INT, 0, MPI_COMM_WORLD); MPI_Bcast(&ierror, 1, MPI_INT, 0, MPI_COMM_WORLD); if ( ierror ) PLA_Set_error_checking( ierror, TRUE, TRUE, FALSE ); else PLA_Set_error_checking( ierror, FALSE, FALSE, FALSE ); pla_Environ_set_nb_alg (PLA_OP_ALL_ALG, nb_alg); /* Create a 2D communicator */ PLA_Comm_1D_to_2D(MPI_COMM_WORLD, nprows, npcols, &comm); /* Initialize PLAPACK */ PLA_Init(comm); /* Create object distribution template */ PLA_Temp_create( nb_distr, 0, &templ ); /* Set the datatype */ datatype = MPI_DOUBLE; /* Create objects for problem to be solved */ /* Matrix A is big enough to hold the right-hand-side appended */ PLA_Matrix_create( datatype, size, size+1, templ, PLA_ALIGN_FIRST, PLA_ALIGN_FIRST, &A_append ); PLA_Mvector_create( datatype, size, 1, templ, PLA_ALIGN_FIRST, &x ); PLA_Mvector_create( datatype, size, 1, templ, PLA_ALIGN_FIRST, &b ); PLA_Mvector_create( MPI_INT, size, 1, templ, PLA_ALIGN_FIRST, &pivots ); /* Create 1x1 multiscalars to hold largest (in abs. value) element of b - x and index of largest value */ PLA_Mscalar_create( MPI_DOUBLE, PLA_ALL_ROWS, PLA_ALL_COLS, 1, 1, templ, &b_norm ); /* Create duplicated scalar constants with same datatype and template as A */ PLA_Create_constants_conf_to( A_append, &minus_one, NULL, NULL ); /* View the appended system as the matrix and the right-hand-side */ PLA_Obj_vert_split_2( A_append, -1, &A, &rhs ); /* Create a problem to be solved: A x = b */ create_problem( A, x, b ); /* Copy b to the appended column */ PLA_Copy( b, rhs ); /* Start timing */ MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime( ); /* Factor P A_append -> L U overwriting lower triangular portion of A with L, upper, U */ info = PLA_LU( A_append, pivots); if ( info != 0 ) { printf("Zero pivot encountered at row %d.\n", info); } else { /* Apply the permutations to the right hand sides */ /* Not necessery since system was appended */ /* PLA_Apply_pivots_to_rows ( b, pivots); */ /* Solve L y = b, overwriting b with y */ /* Not necessary since the system was appended */ /* PLA_Trsv( PLA_LOWER_TRIANGULAR, PLA_NO_TRANSPOSE, PLA_UNIT_DIAG, A, b ); */ PLA_Copy( rhs, b ); /* Solve U x = y (=b), overwriting b with x */ PLA_Trsv( PLA_UPPER_TRIANGULAR, PLA_NO_TRANSPOSE, PLA_NONUNIT_DIAG, A, b ); /* Stop timing */ MPI_Barrier( MPI_COMM_WORLD ); time = MPI_Wtime() - time; /* Report performance */ if ( me == 0 ) { MPI_Comm_size(MPI_COMM_WORLD, &nprocs); operation_count = 2.0/3.0 * size * size * size; printf("n = %d, time = %lf, MFLOPS/node = %lf\n", size, time, operation_count / time * 1.0e-6 / nprocs ); } /* Process the answer. As an example, this routine brings result x (stored in b) to processor 0 and prints first and last entry */ Process_answer( b ); /* Check answer by overwriting b <- b - x (where b holds computed approximation to x) */ PLA_Axpy( minus_one, x, b ); PLA_Nrm2( b, b_norm); /* Report norm of b - x */ if ( me == 0 ) { PLA_Obj_get_local_contents( b_norm, PLA_NO_TRANS, &dummy, &dummy, &b_norm_value, 1, 1 ); printf( "Norm2 of x - computed x : %le\n", b_norm_value ); } } printf("****************************************************************\n"); printf("* NOTE: while this driver times all operations performed by *\n"); printf("* a LINPACK benchmark, it does not use the ScaLAPACK random *\n"); printf("* matrix generator and thus according to the rules of the *\n"); printf("* LINPACK benchmark is not an official implementation. *\n"); printf("* Contact [email protected] if you are interested in creating *\n"); printf("* a version that does meet the rules. *\n"); printf("****************************************************************\n"); /* Free the linear algebra objects */ PLA_Obj_free(&A); PLA_Obj_free(&x); PLA_Obj_free(&b); PLA_Obj_free(&minus_one); PLA_Obj_free(&b_norm); PLA_Obj_free(&pivots); PLA_Obj_free(&A_append); PLA_Obj_free(&rhs); /* Free the template */ PLA_Temp_free(&templ); /* Finalize PLAPACK and MPI */ PLA_Finalize( ); MPI_Finalize( ); }