/* Assemble the body code between the prologue & epilogue. */ static int bpf_jit_build_body(struct sk_filter *fp, u32 *image, struct codegen_context *ctx, unsigned int *addrs) { const struct sock_filter *filter = fp->insns; int flen = fp->len; u8 *func; unsigned int true_cond; int i; /* Start of epilogue code */ unsigned int exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { unsigned int K = filter[i].k; /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; switch (filter[i].code) { /*** ALU ops ***/ case BPF_S_ALU_ADD_X: /* A += X; */ ctx->seen |= SEEN_XREG; PPC_ADD(r_A, r_A, r_X); break; case BPF_S_ALU_ADD_K: /* A += K; */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(K)); break; case BPF_S_ALU_SUB_X: /* A -= X; */ ctx->seen |= SEEN_XREG; PPC_SUB(r_A, r_A, r_X); break; case BPF_S_ALU_SUB_K: /* A -= K */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(-K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(-K)); break; case BPF_S_ALU_MUL_X: /* A *= X; */ ctx->seen |= SEEN_XREG; PPC_MUL(r_A, r_A, r_X); break; case BPF_S_ALU_MUL_K: /* A *= K */ if (K < 32768) PPC_MULI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_MUL(r_A, r_A, r_scratch1); } break; case BPF_S_ALU_DIV_X: /* A /= X; */ ctx->seen |= SEEN_XREG; PPC_CMPWI(r_X, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { /* * Exit, returning 0; first pass hits here * (longer worst-case code size). */ PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } PPC_DIVWU(r_A, r_A, r_X); break; case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */ PPC_LI32(r_scratch1, K); /* Top 32 bits of 64bit result -> A */ PPC_MULHWU(r_A, r_A, r_scratch1); break; case BPF_S_ALU_AND_X: ctx->seen |= SEEN_XREG; PPC_AND(r_A, r_A, r_X); break; case BPF_S_ALU_AND_K: if (!IMM_H(K)) PPC_ANDI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND(r_A, r_A, r_scratch1); } break; case BPF_S_ALU_OR_X: ctx->seen |= SEEN_XREG; PPC_OR(r_A, r_A, r_X); break; case BPF_S_ALU_OR_K: if (IMM_L(K)) PPC_ORI(r_A, r_A, IMM_L(K)); if (K >= 65536) PPC_ORIS(r_A, r_A, IMM_H(K)); break; case BPF_S_ALU_LSH_X: /* A <<= X; */ ctx->seen |= SEEN_XREG; PPC_SLW(r_A, r_A, r_X); break; case BPF_S_ALU_LSH_K: if (K == 0) break; else PPC_SLWI(r_A, r_A, K); break; case BPF_S_ALU_RSH_X: /* A >>= X; */ ctx->seen |= SEEN_XREG; PPC_SRW(r_A, r_A, r_X); break; case BPF_S_ALU_RSH_K: /* A >>= K; */ if (K == 0) break; else PPC_SRWI(r_A, r_A, K); break; case BPF_S_ALU_NEG: PPC_NEG(r_A, r_A); break; case BPF_S_RET_K: PPC_LI32(r_ret, K); if (!K) { if (ctx->pc_ret0 == -1) ctx->pc_ret0 = i; } /* * If this isn't the very last instruction, branch to * the epilogue if we've stuff to clean up. Otherwise, * if there's nothing to tidy, just return. If we /are/ * the last instruction, we're about to fall through to * the epilogue to return. */ if (i != flen - 1) { /* * Note: 'seen' is properly valid only on pass * #2. Both parts of this conditional are the * same instruction size though, meaning the * first pass will still correctly determine the * code size/addresses. */ if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_S_RET_A: PPC_MR(r_ret, r_A); if (i != flen - 1) { if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_S_MISC_TAX: /* X = A */ PPC_MR(r_X, r_A); break; case BPF_S_MISC_TXA: /* A = X */ ctx->seen |= SEEN_XREG; PPC_MR(r_A, r_X); break; /*** Constant loads/M[] access ***/ case BPF_S_LD_IMM: /* A = K */ PPC_LI32(r_A, K); break; case BPF_S_LDX_IMM: /* X = K */ PPC_LI32(r_X, K); break; case BPF_S_LD_MEM: /* A = mem[K] */ PPC_MR(r_A, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_S_LDX_MEM: /* X = mem[K] */ PPC_MR(r_X, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_S_ST: /* mem[K] = A */ PPC_MR(r_M + (K & 0xf), r_A); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_S_STX: /* mem[K] = X */ PPC_MR(r_M + (K & 0xf), r_X); ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); break; case BPF_S_LD_W_LEN: /* A = skb->len; */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); break; case BPF_S_LDX_W_LEN: /* X = skb->len; */ PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); break; /*** Ancillary info loads ***/ /* None of the BPF_S_ANC* codes appear to be passed by * sk_chk_filter(). The interpreter and the x86 BPF * compiler implement them so we do too -- they may be * planted in future. */ case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, protocol)); /* ntohs is a NOP with BE loads. */ break; case BPF_S_ANC_IFINDEX: PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, dev)); PPC_CMPDI(r_scratch1, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { /* Exit, returning 0; first pass hits here. */ PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); PPC_LWZ_OFFS(r_A, r_scratch1, offsetof(struct net_device, ifindex)); break; case BPF_S_ANC_MARK: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, mark)); break; case BPF_S_ANC_RXHASH: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, rxhash)); break; case BPF_S_ANC_QUEUE: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, queue_mapping)); break; case BPF_S_ANC_CPU: #ifdef CONFIG_SMP /* * PACA ptr is r13: * raw_smp_processor_id() = local_paca->paca_index */ BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct, paca_index) != 2); PPC_LHZ_OFFS(r_A, 13, offsetof(struct paca_struct, paca_index)); #else PPC_LI(r_A, 0); #endif break; /*** Absolute loads from packet header/data ***/ case BPF_S_LD_W_ABS: func = sk_load_word; goto common_load; case BPF_S_LD_H_ABS: func = sk_load_half; goto common_load; case BPF_S_LD_B_ABS: func = sk_load_byte; common_load: /* * Load from [K]. Reference with the (negative) * SKF_NET_OFF/SKF_LL_OFF offsets is unsupported. */ ctx->seen |= SEEN_DATAREF; if ((int)K < 0) return -ENOTSUPP; PPC_LI64(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_LI32(r_addr, K); PPC_BLRL(); /* * Helper returns 'lt' condition on error, and an * appropriate return value in r3 */ PPC_BCC(COND_LT, exit_addr); break; /*** Indirect loads from packet header/data ***/ case BPF_S_LD_W_IND: func = sk_load_word; goto common_load_ind; case BPF_S_LD_H_IND: func = sk_load_half; goto common_load_ind; case BPF_S_LD_B_IND: func = sk_load_byte; common_load_ind: /* * Load from [X + K]. Negative offsets are tested for * in the helper functions, and result in a 'ret 0'. */ ctx->seen |= SEEN_DATAREF | SEEN_XREG; PPC_LI64(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_ADDI(r_addr, r_X, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); PPC_BLRL(); /* If error, cr0.LT set */ PPC_BCC(COND_LT, exit_addr); break; case BPF_S_LDX_B_MSH: /* * x86 version drops packet (RET 0) when K<0, whereas * interpreter does allow K<0 (__load_pointer, special * ancillary data). common_load returns ENOTSUPP if K<0, * so we fall back to interpreter & filter works. */ func = sk_load_byte_msh; goto common_load; break; /*** Jump and branches ***/ case BPF_S_JMP_JA: if (K != 0) PPC_JMP(addrs[i + 1 + K]); break; case BPF_S_JMP_JGT_K: case BPF_S_JMP_JGT_X: true_cond = COND_GT; goto cond_branch; case BPF_S_JMP_JGE_K: case BPF_S_JMP_JGE_X: true_cond = COND_GE; goto cond_branch; case BPF_S_JMP_JEQ_K: case BPF_S_JMP_JEQ_X: true_cond = COND_EQ; goto cond_branch; case BPF_S_JMP_JSET_K: case BPF_S_JMP_JSET_X: true_cond = COND_NE; /* Fall through */ cond_branch: /* same targets, can avoid doing the test :) */ if (filter[i].jt == filter[i].jf) { if (filter[i].jt > 0) PPC_JMP(addrs[i + 1 + filter[i].jt]); break; } switch (filter[i].code) { case BPF_S_JMP_JGT_X: case BPF_S_JMP_JGE_X: case BPF_S_JMP_JEQ_X: ctx->seen |= SEEN_XREG; PPC_CMPLW(r_A, r_X); break; case BPF_S_JMP_JSET_X: ctx->seen |= SEEN_XREG; PPC_AND_DOT(r_scratch1, r_A, r_X); break; case BPF_S_JMP_JEQ_K: case BPF_S_JMP_JGT_K: case BPF_S_JMP_JGE_K: if (K < 32768) PPC_CMPLWI(r_A, K); else { PPC_LI32(r_scratch1, K); PPC_CMPLW(r_A, r_scratch1); } break; case BPF_S_JMP_JSET_K: if (K < 32768) /* PPC_ANDI is /only/ dot-form */ PPC_ANDI(r_scratch1, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND_DOT(r_scratch1, r_A, r_scratch1); } break; } /* Sometimes branches are constructed "backward", with * the false path being the branch and true path being * a fallthrough to the next instruction. */ if (filter[i].jt == 0) /* Swap the sense of the branch */ PPC_BCC(true_cond ^ COND_CMP_TRUE, addrs[i + 1 + filter[i].jf]); else { PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); if (filter[i].jf != 0) PPC_JMP(addrs[i + 1 + filter[i].jf]); } break; default: /* The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ if (printk_ratelimit()) pr_err("BPF filter opcode %04x (@%d) unsupported\n", filter[i].code, i); return -ENOTSUPP; } } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; }
/* Assemble the body code between the prologue & epilogue. */ static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, struct codegen_context *ctx, unsigned int *addrs) { const struct sock_filter *filter = fp->insns; int flen = fp->len; u8 *func; unsigned int true_cond; int i; /* Start of epilogue code */ unsigned int exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { unsigned int K = filter[i].k; u16 code = bpf_anc_helper(&filter[i]); /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; switch (code) { /*** ALU ops ***/ case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */ ctx->seen |= SEEN_XREG; PPC_ADD(r_A, r_A, r_X); break; case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(K)); break; case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */ ctx->seen |= SEEN_XREG; PPC_SUB(r_A, r_A, r_X); break; case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */ if (!K) break; PPC_ADDI(r_A, r_A, IMM_L(-K)); if (K >= 32768) PPC_ADDIS(r_A, r_A, IMM_HA(-K)); break; case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */ ctx->seen |= SEEN_XREG; PPC_MUL(r_A, r_A, r_X); break; case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */ if (K < 32768) PPC_MULI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_MUL(r_A, r_A, r_scratch1); } break; case BPF_ALU | BPF_MOD | BPF_X: /* A %= X; */ ctx->seen |= SEEN_XREG; PPC_CMPWI(r_X, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } PPC_DIVWU(r_scratch1, r_A, r_X); PPC_MUL(r_scratch1, r_X, r_scratch1); PPC_SUB(r_A, r_A, r_scratch1); break; case BPF_ALU | BPF_MOD | BPF_K: /* A %= K; */ PPC_LI32(r_scratch2, K); PPC_DIVWU(r_scratch1, r_A, r_scratch2); PPC_MUL(r_scratch1, r_scratch2, r_scratch1); PPC_SUB(r_A, r_A, r_scratch1); break; case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */ ctx->seen |= SEEN_XREG; PPC_CMPWI(r_X, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { /* * Exit, returning 0; first pass hits here * (longer worst-case code size). */ PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } PPC_DIVWU(r_A, r_A, r_X); break; case BPF_ALU | BPF_DIV | BPF_K: /* A /= K */ if (K == 1) break; PPC_LI32(r_scratch1, K); PPC_DIVWU(r_A, r_A, r_scratch1); break; case BPF_ALU | BPF_AND | BPF_X: ctx->seen |= SEEN_XREG; PPC_AND(r_A, r_A, r_X); break; case BPF_ALU | BPF_AND | BPF_K: if (!IMM_H(K)) PPC_ANDI(r_A, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND(r_A, r_A, r_scratch1); } break; case BPF_ALU | BPF_OR | BPF_X: ctx->seen |= SEEN_XREG; PPC_OR(r_A, r_A, r_X); break; case BPF_ALU | BPF_OR | BPF_K: if (IMM_L(K)) PPC_ORI(r_A, r_A, IMM_L(K)); if (K >= 65536) PPC_ORIS(r_A, r_A, IMM_H(K)); break; case BPF_ANC | SKF_AD_ALU_XOR_X: case BPF_ALU | BPF_XOR | BPF_X: /* A ^= X */ ctx->seen |= SEEN_XREG; PPC_XOR(r_A, r_A, r_X); break; case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */ if (IMM_L(K)) PPC_XORI(r_A, r_A, IMM_L(K)); if (K >= 65536) PPC_XORIS(r_A, r_A, IMM_H(K)); break; case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X; */ ctx->seen |= SEEN_XREG; PPC_SLW(r_A, r_A, r_X); break; case BPF_ALU | BPF_LSH | BPF_K: if (K == 0) break; else PPC_SLWI(r_A, r_A, K); break; case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X; */ ctx->seen |= SEEN_XREG; PPC_SRW(r_A, r_A, r_X); break; case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K; */ if (K == 0) break; else PPC_SRWI(r_A, r_A, K); break; case BPF_ALU | BPF_NEG: PPC_NEG(r_A, r_A); break; case BPF_RET | BPF_K: PPC_LI32(r_ret, K); if (!K) { if (ctx->pc_ret0 == -1) ctx->pc_ret0 = i; } /* * If this isn't the very last instruction, branch to * the epilogue if we've stuff to clean up. Otherwise, * if there's nothing to tidy, just return. If we /are/ * the last instruction, we're about to fall through to * the epilogue to return. */ if (i != flen - 1) { /* * Note: 'seen' is properly valid only on pass * #2. Both parts of this conditional are the * same instruction size though, meaning the * first pass will still correctly determine the * code size/addresses. */ if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_RET | BPF_A: PPC_MR(r_ret, r_A); if (i != flen - 1) { if (ctx->seen) PPC_JMP(exit_addr); else PPC_BLR(); } break; case BPF_MISC | BPF_TAX: /* X = A */ PPC_MR(r_X, r_A); break; case BPF_MISC | BPF_TXA: /* A = X */ ctx->seen |= SEEN_XREG; PPC_MR(r_A, r_X); break; /*** Constant loads/M[] access ***/ case BPF_LD | BPF_IMM: /* A = K */ PPC_LI32(r_A, K); break; case BPF_LDX | BPF_IMM: /* X = K */ PPC_LI32(r_X, K); break; case BPF_LD | BPF_MEM: /* A = mem[K] */ PPC_MR(r_A, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_LDX | BPF_MEM: /* X = mem[K] */ PPC_MR(r_X, r_M + (K & 0xf)); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_ST: /* mem[K] = A */ PPC_MR(r_M + (K & 0xf), r_A); ctx->seen |= SEEN_MEM | (1<<(K & 0xf)); break; case BPF_STX: /* mem[K] = X */ PPC_MR(r_M + (K & 0xf), r_X); ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf)); break; case BPF_LD | BPF_W | BPF_LEN: /* A = skb->len; */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len)); break; case BPF_LDX | BPF_W | BPF_LEN: /* X = skb->len; */ PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len)); break; /*** Ancillary info loads ***/ case BPF_ANC | SKF_AD_PROTOCOL: /* A = ntohs(skb->protocol); */ BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); PPC_NTOHS_OFFS(r_A, r_skb, offsetof(struct sk_buff, protocol)); break; case BPF_ANC | SKF_AD_IFINDEX: PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff, dev)); PPC_CMPDI(r_scratch1, 0); if (ctx->pc_ret0 != -1) { PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]); } else { /* Exit, returning 0; first pass hits here. */ PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12); PPC_LI(r_ret, 0); PPC_JMP(exit_addr); } BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); PPC_LWZ_OFFS(r_A, r_scratch1, offsetof(struct net_device, ifindex)); break; case BPF_ANC | SKF_AD_MARK: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, mark)); break; case BPF_ANC | SKF_AD_RXHASH: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, hash)); break; case BPF_ANC | SKF_AD_VLAN_TAG: case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, vlan_tci)); if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) { PPC_ANDI(r_A, r_A, ~VLAN_TAG_PRESENT); } else { PPC_ANDI(r_A, r_A, VLAN_TAG_PRESENT); PPC_SRWI(r_A, r_A, 12); } break; case BPF_ANC | SKF_AD_QUEUE: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, queue_mapping)); break; case BPF_ANC | SKF_AD_CPU: #ifdef CONFIG_SMP /* * PACA ptr is r13: * raw_smp_processor_id() = local_paca->paca_index */ BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct, paca_index) != 2); PPC_LHZ_OFFS(r_A, 13, offsetof(struct paca_struct, paca_index)); #else PPC_LI(r_A, 0); #endif break; /*** Absolute loads from packet header/data ***/ case BPF_LD | BPF_W | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_word); goto common_load; case BPF_LD | BPF_H | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_half); goto common_load; case BPF_LD | BPF_B | BPF_ABS: func = CHOOSE_LOAD_FUNC(K, sk_load_byte); common_load: /* Load from [K]. */ ctx->seen |= SEEN_DATAREF; PPC_LI64(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_LI32(r_addr, K); PPC_BLRL(); /* * Helper returns 'lt' condition on error, and an * appropriate return value in r3 */ PPC_BCC(COND_LT, exit_addr); break; /*** Indirect loads from packet header/data ***/ case BPF_LD | BPF_W | BPF_IND: func = sk_load_word; goto common_load_ind; case BPF_LD | BPF_H | BPF_IND: func = sk_load_half; goto common_load_ind; case BPF_LD | BPF_B | BPF_IND: func = sk_load_byte; common_load_ind: /* * Load from [X + K]. Negative offsets are tested for * in the helper functions. */ ctx->seen |= SEEN_DATAREF | SEEN_XREG; PPC_LI64(r_scratch1, func); PPC_MTLR(r_scratch1); PPC_ADDI(r_addr, r_X, IMM_L(K)); if (K >= 32768) PPC_ADDIS(r_addr, r_addr, IMM_HA(K)); PPC_BLRL(); /* If error, cr0.LT set */ PPC_BCC(COND_LT, exit_addr); break; case BPF_LDX | BPF_B | BPF_MSH: func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh); goto common_load; break; /*** Jump and branches ***/ case BPF_JMP | BPF_JA: if (K != 0) PPC_JMP(addrs[i + 1 + K]); break; case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: true_cond = COND_GT; goto cond_branch; case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: true_cond = COND_GE; goto cond_branch; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: true_cond = COND_EQ; goto cond_branch; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: true_cond = COND_NE; /* Fall through */ cond_branch: /* same targets, can avoid doing the test :) */ if (filter[i].jt == filter[i].jf) { if (filter[i].jt > 0) PPC_JMP(addrs[i + 1 + filter[i].jt]); break; } switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: ctx->seen |= SEEN_XREG; PPC_CMPLW(r_A, r_X); break; case BPF_JMP | BPF_JSET | BPF_X: ctx->seen |= SEEN_XREG; PPC_AND_DOT(r_scratch1, r_A, r_X); break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: if (K < 32768) PPC_CMPLWI(r_A, K); else { PPC_LI32(r_scratch1, K); PPC_CMPLW(r_A, r_scratch1); } break; case BPF_JMP | BPF_JSET | BPF_K: if (K < 32768) /* PPC_ANDI is /only/ dot-form */ PPC_ANDI(r_scratch1, r_A, K); else { PPC_LI32(r_scratch1, K); PPC_AND_DOT(r_scratch1, r_A, r_scratch1); } break; } /* Sometimes branches are constructed "backward", with * the false path being the branch and true path being * a fallthrough to the next instruction. */ if (filter[i].jt == 0) /* Swap the sense of the branch */ PPC_BCC(true_cond ^ COND_CMP_TRUE, addrs[i + 1 + filter[i].jf]); else { PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]); if (filter[i].jf != 0) PPC_JMP(addrs[i + 1 + filter[i].jf]); } break; default: /* The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ if (printk_ratelimit()) pr_err("BPF filter opcode %04x (@%d) unsupported\n", filter[i].code, i); return -ENOTSUPP; } } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; }
/* Assemble the body code between the prologue & epilogue */ static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, struct codegen_context *ctx, u32 *addrs, bool extra_pass) { const struct bpf_insn *insn = fp->insnsi; int flen = fp->len; int i, ret; /* Start of epilogue code - will only be valid 2nd pass onwards */ u32 exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { u32 code = insn[i].code; u32 dst_reg = b2p[insn[i].dst_reg]; u32 src_reg = b2p[insn[i].src_reg]; s16 off = insn[i].off; s32 imm = insn[i].imm; bool func_addr_fixed; u64 func_addr; u64 imm64; u32 true_cond; u32 tmp_idx; /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; /* * As an optimization, we note down which non-volatile registers * are used so that we can only save/restore those in our * prologue and epilogue. We do this here regardless of whether * the actual BPF instruction uses src/dst registers or not * (for instance, BPF_CALL does not use them). The expectation * is that those instructions will have src_reg/dst_reg set to * 0. Even otherwise, we just lose some prologue/epilogue * optimization but everything else should work without * any issues. */ if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32) bpf_set_seen_register(ctx, insn[i].dst_reg); if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32) bpf_set_seen_register(ctx, insn[i].src_reg); switch (code) { /* * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG */ case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */ case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */ PPC_ADD(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */ case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */ PPC_SUB(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */ case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */ case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */ case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */ if (BPF_OP(code) == BPF_SUB) imm = -imm; if (imm) { if (imm >= -32768 && imm < 32768) PPC_ADDI(dst_reg, dst_reg, IMM_L(imm)); else { PPC_LI32(b2p[TMP_REG_1], imm); PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]); } } goto bpf_alu32_trunc; case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */ case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */ if (BPF_CLASS(code) == BPF_ALU) PPC_MULW(dst_reg, dst_reg, src_reg); else PPC_MULD(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */ case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */ if (imm >= -32768 && imm < 32768) PPC_MULI(dst_reg, dst_reg, IMM_L(imm)); else { PPC_LI32(b2p[TMP_REG_1], imm); if (BPF_CLASS(code) == BPF_ALU) PPC_MULW(dst_reg, dst_reg, b2p[TMP_REG_1]); else PPC_MULD(dst_reg, dst_reg, b2p[TMP_REG_1]); } goto bpf_alu32_trunc; case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */ case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */ if (BPF_OP(code) == BPF_MOD) { PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg); PPC_MULW(b2p[TMP_REG_1], src_reg, b2p[TMP_REG_1]); PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); } else PPC_DIVWU(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */ case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */ if (BPF_OP(code) == BPF_MOD) { PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg); PPC_MULD(b2p[TMP_REG_1], src_reg, b2p[TMP_REG_1]); PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); } else PPC_DIVD(dst_reg, dst_reg, src_reg); break; case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */ case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */ case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */ case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */ if (imm == 0) return -EINVAL; else if (imm == 1) goto bpf_alu32_trunc; PPC_LI32(b2p[TMP_REG_1], imm); switch (BPF_CLASS(code)) { case BPF_ALU: if (BPF_OP(code) == BPF_MOD) { PPC_DIVWU(b2p[TMP_REG_2], dst_reg, b2p[TMP_REG_1]); PPC_MULW(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p[TMP_REG_2]); PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); } else PPC_DIVWU(dst_reg, dst_reg, b2p[TMP_REG_1]); break; case BPF_ALU64: if (BPF_OP(code) == BPF_MOD) { PPC_DIVD(b2p[TMP_REG_2], dst_reg, b2p[TMP_REG_1]); PPC_MULD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p[TMP_REG_2]); PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]); } else PPC_DIVD(dst_reg, dst_reg, b2p[TMP_REG_1]); break; } goto bpf_alu32_trunc; case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */ case BPF_ALU64 | BPF_NEG: /* dst = -dst */ PPC_NEG(dst_reg, dst_reg); goto bpf_alu32_trunc; /* * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH */ case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */ case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */ PPC_AND(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */ case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */ if (!IMM_H(imm)) PPC_ANDI(dst_reg, dst_reg, IMM_L(imm)); else { /* Sign-extended */ PPC_LI32(b2p[TMP_REG_1], imm); PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]); } goto bpf_alu32_trunc; case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */ case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */ PPC_OR(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */ case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */ if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { /* Sign-extended */ PPC_LI32(b2p[TMP_REG_1], imm); PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]); } else { if (IMM_L(imm)) PPC_ORI(dst_reg, dst_reg, IMM_L(imm)); if (IMM_H(imm)) PPC_ORIS(dst_reg, dst_reg, IMM_H(imm)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */ case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */ PPC_XOR(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */ case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */ if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) { /* Sign-extended */ PPC_LI32(b2p[TMP_REG_1], imm); PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]); } else { if (IMM_L(imm)) PPC_XORI(dst_reg, dst_reg, IMM_L(imm)); if (IMM_H(imm)) PPC_XORIS(dst_reg, dst_reg, IMM_H(imm)); } goto bpf_alu32_trunc; case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */ /* slw clears top 32 bits */ PPC_SLW(dst_reg, dst_reg, src_reg); break; case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */ PPC_SLD(dst_reg, dst_reg, src_reg); break; case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */ /* with imm 0, we still need to clear top 32 bits */ PPC_SLWI(dst_reg, dst_reg, imm); break; case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */ if (imm != 0) PPC_SLDI(dst_reg, dst_reg, imm); break; case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */ PPC_SRW(dst_reg, dst_reg, src_reg); break; case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */ PPC_SRD(dst_reg, dst_reg, src_reg); break; case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */ PPC_SRWI(dst_reg, dst_reg, imm); break; case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */ if (imm != 0) PPC_SRDI(dst_reg, dst_reg, imm); break; case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */ PPC_SRAW(dst_reg, dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */ PPC_SRAD(dst_reg, dst_reg, src_reg); break; case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */ PPC_SRAWI(dst_reg, dst_reg, imm); goto bpf_alu32_trunc; case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */ if (imm != 0) PPC_SRADI(dst_reg, dst_reg, imm); break; /* * MOV */ case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */ case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */ PPC_MR(dst_reg, src_reg); goto bpf_alu32_trunc; case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */ case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */ PPC_LI32(dst_reg, imm); if (imm < 0) goto bpf_alu32_trunc; break; bpf_alu32_trunc: /* Truncate to 32-bits */ if (BPF_CLASS(code) == BPF_ALU) PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31); break; /* * BPF_FROM_BE/LE */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: #ifdef __BIG_ENDIAN__ if (BPF_SRC(code) == BPF_FROM_BE) goto emit_clear; #else /* !__BIG_ENDIAN__ */ if (BPF_SRC(code) == BPF_FROM_LE) goto emit_clear; #endif switch (imm) { case 16: /* Rotate 8 bits left & mask with 0x0000ff00 */ PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23); /* Rotate 8 bits right & insert LSB to reg */ PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31); /* Move result back to dst_reg */ PPC_MR(dst_reg, b2p[TMP_REG_1]); break; case 32: /* * Rotate word left by 8 bits: * 2 bytes are already in their final position * -- byte 2 and 4 (of bytes 1, 2, 3 and 4) */ PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31); /* Rotate 24 bits and insert byte 1 */ PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7); /* Rotate 24 bits and insert byte 3 */ PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23); PPC_MR(dst_reg, b2p[TMP_REG_1]); break; case 64: /* * Way easier and faster(?) to store the value * into stack and then use ldbrx * * ctx->seen will be reliable in pass2, but * the instructions generated will remain the * same across all passes */ PPC_STD(dst_reg, 1, bpf_jit_stack_local(ctx)); PPC_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx)); PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]); break; } break; emit_clear: switch (imm) { case 16: /* zero-extend 16 bits into 64 bits */ PPC_RLDICL(dst_reg, dst_reg, 0, 48); break; case 32: /* zero-extend 32 bits into 64 bits */ PPC_RLDICL(dst_reg, dst_reg, 0, 32); break; case 64: /* nop */ break; } break; /* * BPF_ST(X) */ case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI(b2p[TMP_REG_1], imm); src_reg = b2p[TMP_REG_1]; } PPC_STB(src_reg, dst_reg, off); break; case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI(b2p[TMP_REG_1], imm); src_reg = b2p[TMP_REG_1]; } PPC_STH(src_reg, dst_reg, off); break; case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI32(b2p[TMP_REG_1], imm); src_reg = b2p[TMP_REG_1]; } PPC_STW(src_reg, dst_reg, off); break; case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */ case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */ if (BPF_CLASS(code) == BPF_ST) { PPC_LI32(b2p[TMP_REG_1], imm); src_reg = b2p[TMP_REG_1]; } PPC_STD(src_reg, dst_reg, off); break; /* * BPF_STX XADD (atomic_add) */ /* *(u32 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_W: /* Get EA into TMP_REG_1 */ PPC_ADDI(b2p[TMP_REG_1], dst_reg, off); tmp_idx = ctx->idx * 4; /* load value from memory into TMP_REG_2 */ PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); /* add value from src_reg into this */ PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); /* store result back */ PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); /* we're done if this succeeded */ PPC_BCC_SHORT(COND_NE, tmp_idx); break; /* *(u64 *)(dst + off) += src */ case BPF_STX | BPF_XADD | BPF_DW: PPC_ADDI(b2p[TMP_REG_1], dst_reg, off); tmp_idx = ctx->idx * 4; PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0); PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg); PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]); PPC_BCC_SHORT(COND_NE, tmp_idx); break; /* * BPF_LDX */ /* dst = *(u8 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_B: PPC_LBZ(dst_reg, src_reg, off); break; /* dst = *(u16 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_H: PPC_LHZ(dst_reg, src_reg, off); break; /* dst = *(u32 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_W: PPC_LWZ(dst_reg, src_reg, off); break; /* dst = *(u64 *)(ul) (src + off) */ case BPF_LDX | BPF_MEM | BPF_DW: PPC_LD(dst_reg, src_reg, off); break; /* * Doubleword load * 16 byte instruction that uses two 'struct bpf_insn' */ case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */ imm64 = ((u64)(u32) insn[i].imm) | (((u64)(u32) insn[i+1].imm) << 32); /* Adjust for two bpf instructions */ addrs[++i] = ctx->idx * 4; PPC_LI64(dst_reg, imm64); break; /* * Return/Exit */ case BPF_JMP | BPF_EXIT: /* * If this isn't the very last instruction, branch to * the epilogue. If we _are_ the last instruction, * we'll just fall through to the epilogue. */ if (i != flen - 1) PPC_JMP(exit_addr); /* else fall through to the epilogue */ break; /* * Call kernel helper or bpf function */ case BPF_JMP | BPF_CALL: ctx->seen |= SEEN_FUNC; ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass, &func_addr, &func_addr_fixed); if (ret < 0) return ret; if (func_addr_fixed) bpf_jit_emit_func_call_hlp(image, ctx, func_addr); else bpf_jit_emit_func_call_rel(image, ctx, func_addr); /* move return value from r3 to BPF_REG_0 */ PPC_MR(b2p[BPF_REG_0], 3); break; /* * Jumps and branches */ case BPF_JMP | BPF_JA: PPC_JMP(addrs[i + 1 + off]); break; case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGT | BPF_X: true_cond = COND_GT; goto cond_branch; case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_X: true_cond = COND_LT; goto cond_branch; case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGE | BPF_X: true_cond = COND_GE; goto cond_branch; case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_X: true_cond = COND_LE; goto cond_branch; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: true_cond = COND_EQ; goto cond_branch; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JNE | BPF_X: true_cond = COND_NE; goto cond_branch; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: true_cond = COND_NE; /* Fall through */ cond_branch: switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: /* unsigned comparison */ PPC_CMPLD(dst_reg, src_reg); break; case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: /* signed comparison */ PPC_CMPD(dst_reg, src_reg); break; case BPF_JMP | BPF_JSET | BPF_X: PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg); break; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: /* * Need sign-extended load, so only positive * values can be used as imm in cmpldi */ if (imm >= 0 && imm < 32768) PPC_CMPLDI(dst_reg, imm); else { /* sign-extending load */ PPC_LI32(b2p[TMP_REG_1], imm); /* ... but unsigned comparison */ PPC_CMPLD(dst_reg, b2p[TMP_REG_1]); } break; case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: /* * signed comparison, so any 16-bit value * can be used in cmpdi */ if (imm >= -32768 && imm < 32768) PPC_CMPDI(dst_reg, imm); else { PPC_LI32(b2p[TMP_REG_1], imm); PPC_CMPD(dst_reg, b2p[TMP_REG_1]); } break; case BPF_JMP | BPF_JSET | BPF_K: /* andi does not sign-extend the immediate */ if (imm >= 0 && imm < 32768) /* PPC_ANDI is _only/always_ dot-form */ PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm); else { PPC_LI32(b2p[TMP_REG_1], imm); PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, b2p[TMP_REG_1]); } break; } PPC_BCC(true_cond, addrs[i + 1 + off]); break; /* * Tail call */ case BPF_JMP | BPF_TAIL_CALL: ctx->seen |= SEEN_TAILCALL; bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]); break; default: /* * The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n", code, i); return -ENOTSUPP; } } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; }