コード例 #1
0
static
//Formula buildBDD(const Linear& c, int size, int lower_limit, int upper_limit, int material_left, Map<Pair<int,Int>,Formula>& memo, int max_cost)
Formula buildBDD(const Linear& c, int size, Int sum, Int material_left, Map<Pair<int,Int>,Formula>& memo, int max_cost)
{
    Int lower_limit = (c.lo == Int_MIN) ? Int_MIN : c.lo - sum;
    Int upper_limit = (c.hi == Int_MAX) ? Int_MAX : c.hi - sum;

    if (lower_limit <= 0 && upper_limit >= material_left)
        return _1_;
    else if (lower_limit > material_left || upper_limit < 0)
        return _0_;
    else if (FEnv::topSize() > max_cost)
        return _undef_;     // (mycket elegant!)

    Pair<int,Int>   key = Pair_new(size, lower_limit);
    Formula         ret;

    if (!memo.peek(key, ret)){
        assert(size != 0);
        size--;
        material_left -= c(size);
        Int hi_sum = sign(c[size]) ? sum : sum + c(size);
        Int lo_sum = sign(c[size]) ? sum + c(size) : sum;
        Formula hi = buildBDD(c, size, hi_sum, material_left, memo, max_cost);
        if (hi == _undef_) return _undef_;
        Formula lo = buildBDD(c, size, lo_sum, material_left, memo, max_cost);
        if (lo == _undef_) return _undef_;
        ret = ITE(var(var(c[size])), hi, lo);
        memo.set(key, ret);
    }
    return ret;
}
コード例 #2
0
ファイル: map.c プロジェクト: andersandersson/smug
void Map_set(Map* map, void* key, void* value)
{
    Pair* pair = Pair_new();

    pair->left = key;
    pair->right = value;

    BinarySearchTree_insert((BinarySearchTree*) map, pair);
}
コード例 #3
0
// Normalize a PB constraint to only positive constants. Depends on:
//
//   bool    ok            -- Will be set to FALSE if constraint is unsatisfiable.
//   lbool   value(Lit)    -- Returns the value of a literal (however, it is sound to always return 'l_Undef', but produces less efficient results)
//   bool    addUnit(Lit)  -- Enqueue unit fact for propagation (returns FALSE if conflict detected).
//
// The two vectors 'ps' and 'Cs' (which are modififed by this method) should be interpreted as:
//
//   'p[0]*C[0] + p[1]*C[1] + ... + p[N-1]*C[N-1] >= C[N]'
//
// The method returns TRUE if constraint was normalized, FALSE if the constraint was already
// satisfied or determined contradictory. The vectors 'ps' and 'Cs' should ONLY be used if
// TRUE is returned.
//
bool PbSolver::normalizePb(vec<Lit>& ps, vec<Int>& Cs, Int& C)
{
    assert(ps.size() == Cs.size());
    if (!ok) return false;

    // Remove assigned literals and literals with zero coefficients:
    int new_sz = 0;
    for (int i = 0; i < ps.size(); i++){
        if (value(ps[i]) != l_Undef){
            if (value(ps[i]) == l_True)
                C -= Cs[i];
        }else if (Cs[i] != 0){
            ps[new_sz] = ps[i];
            Cs[new_sz] = Cs[i];
            new_sz++;
        }
    }
    ps.shrink(ps.size() - new_sz);
    Cs.shrink(Cs.size() - new_sz);
    //**/reportf("No zero, no assigned :"); for (int i = 0; i < ps.size(); i++) reportf(" %d*%sx%d", Cs[i], sign(ps[i])?"~":"", var(ps[i])); reportf(" >= %d\n", C);

    // Group all x/~x pairs
    //
    Map<Var, Pair<Int,Int> >    var2consts(Pair_new(0,0));     // Variable -> negative/positive polarity constant
    for (int i = 0; i < ps.size(); i++){
        Var             x      = var(ps[i]);
        Pair<Int,Int>   consts = var2consts.at(x);
        if (sign(ps[i]))
            consts.fst += Cs[i];
        else
            consts.snd += Cs[i];
        var2consts.set(x, consts);
    }

    // Normalize constants to positive values only:
    //
    vec<Pair<Var, Pair<Int,Int> > > all;
    var2consts.pairs(all);
    vec<Pair<Int,Lit> > Csps(all.size());
    for (int i = 0; i < all.size(); i++){
        if (all[i].snd.fst < all[i].snd.snd){
            // Negative polarity will vanish
            C -= all[i].snd.fst;
            Csps[i] = Pair_new(all[i].snd.snd - all[i].snd.fst, Lit(all[i].fst));
        }else{
            // Positive polarity will vanish
            C -= all[i].snd.snd;
            Csps[i] = Pair_new(all[i].snd.fst - all[i].snd.snd, ~Lit(all[i].fst));
        }
    }

    // Sort literals on growing constant values:
    //
    sort(Csps);     // (use lexicographical order of 'Pair's here)
    Int     sum = 0;
    for (int i = 0; i < Csps.size(); i++){
        Cs[i] = Csps[i].fst, ps[i] = Csps[i].snd, sum += Cs[i];
        if (sum < 0) fprintf(stderr, "ERROR! Too large constants encountered in constraint.\n"), exit(1);
    }
    ps.shrink(ps.size() - Csps.size());
    Cs.shrink(Cs.size() - Csps.size());

    // Propagate already present consequences:
    //
    bool changed;
    do{
        changed = false;
        while (ps.size() > 0 && sum-Cs.last() < C){
            changed = true;
            if (!addUnit(ps.last())){
                ok = false;
                return false; }
            sum -= Cs.last();
            C   -= Cs.last();
            ps.pop(); Cs.pop();
        }

        // Trivially true or false?
        if (C <= 0)
            return false;
        if (sum < C){
            ok = false;
            return false; }
        assert(sum - Cs[ps.size()-1] >= C);

        // GCD:
        assert(Cs.size() > 0);
        Int     div = Cs[0];
        for (int i = 1; i < Cs.size(); i++)
            div = gcd(div, Cs[i]);
        for (int i = 0; i < Cs.size(); i++)
            Cs[i] /= div;
        C = (C + div-1) / div;
        if (div != 1)
            changed = true;

        // Trim constants:
        for (int i = 0; i < Cs.size(); i++)
            if (Cs[i] > C)
                changed = true,
                Cs[i] = C;
    }while (changed);

    //**/reportf("Normalized constraint:"); for (int i = 0; i < ps.size(); i++) reportf(" %d*%sx%d", Cs[i], sign(ps[i])?"~":"", var(ps[i])); reportf(" >= %d\n", C);

    return true;
}