コード例 #1
0
void PlainResultant(ZZ_p& rres, const ZZ_pX& a, const ZZ_pX& b)
{
   ZZ_p res;
 
   if (IsZero(a) || IsZero(b))
      clear(res);
   else if (deg(a) == 0 && deg(b) == 0) 
      set(res);
   else {
      long d0, d1, d2;
      ZZ_p lc;
      set(res);

      long n = max(deg(a),deg(b)) + 1;
      ZZ_pX u(INIT_SIZE, n), v(INIT_SIZE, n);
      ZZVec tmp(n, ZZ_p::ExtendedModulusSize());

      u = a;
      v = b;

      for (;;) {
         d0 = deg(u);
         d1 = deg(v);
         lc = LeadCoeff(v);

         PlainRem(u, u, v, tmp);
         swap(u, v);

         d2 = deg(v);
         if (d2 >= 0) {
            power(lc, lc, d0-d2);
            mul(res, res, lc);
            if (d0 & d1 & 1) negate(res, res);
         }
         else {
            if (d1 == 0) {
               power(lc, lc, d0);
               mul(res, res, lc);
            }
            else
               clear(res);
        
            break;
         }
      }
   }

   rres = res;
}
コード例 #2
0
ファイル: PolyTimeTest.c プロジェクト: FredericJacobs/newNTL
int main()
{
   _newntl_gmp_hack = 0;


   long n, k;

   n = 200;
   k = 10*newNTL_ZZ_NBITS;

   ZZ p;

   RandomLen(p, k);


   ZZ_p::init(p);         // initialization

   ZZ_pX f, g, h, r1, r2, r3;

   random(g, n);    // g = random polynomial of degree < n
   random(h, n);    // h =             "   "
   random(f, n);    // f =             "   "

   SetCoeff(f, n);  // Sets coefficient of X^n to 1

   // For doing arithmetic mod f quickly, one must pre-compute
   // some information.

   ZZ_pXModulus F;
   build(F, f);

   PlainMul(r1, g, h);  // this uses classical arithmetic
   PlainRem(r1, r1, f);

   MulMod(r2, g, h, F);  // this uses the FFT

   MulMod(r3, g, h, f);  // uses FFT, but slower

   // compare the results...

   if (r1 != r2) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }
   else if (r1 != r3) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

   double t;
   long i;
   long iter;

   n = 1024;
   k = 1024;
   RandomLen(p, k);

   ZZ_p::init(p);

   ZZ_pX j1, j2, j3;

   random(j1, n);
   random(j2, n);

   mul(j3, j1, j2);

   iter = 1;

   do {
     t = GetTime();
     for (i = 0; i < iter; i++) {
        FFTMul(j3, j1, j2);
     }
     t = GetTime() - t;
     iter = 2*iter;
   } while(t < 1);

   iter = iter/2;

   iter = long((2/t)*iter) + 1;

   double tvec[5];
   long w;

   for (w = 0; w < 5; w++) {
     t = GetTime();
     for (i = 0; i < iter; i++) {
        FFTMul(j3, j1, j2);
     }
     t = GetTime() - t;
     tvec[w] = t;
   } 


   t = clean_data(tvec);

   t = floor((t/iter)*1e12);

   if (t < 0 || t >= 1e15)
      printf("999999999999999 ");
   else
      printf("%015.0f ", t);

   printf(" [%ld] ", iter);

   print_flag();

   return 0;
}
コード例 #3
0
ファイル: QuickTest.cpp プロジェクト: shayne-fletcher/cppf
int main()
{


   cerr << "This is NTL version " << NTL_VERSION << "\n"; 

   cerr << "Basic Configuration Options:\n";


#ifdef NTL_STD_CXX
   cerr << "NTL_STD_CXX\n";
#endif

#ifdef NTL_PSTD_NNS
   cerr << "NTL_PSTD_NNS\n";
#endif

#ifdef NTL_PSTD_NHF
   cerr << "NTL_PSTD_NHF\n";
#endif

#ifdef NTL_PSTD_NTN
   cerr << "NTL_PSTD_NTN\n";
#endif

#ifdef NTL_GMP_LIP
   cerr << "NTL_GMP_LIP\n";
#endif

#ifdef NTL_GMP_HACK
   cerr << "NTL_GMP_HACK\n";
#endif

#ifdef NTL_GF2X_LIB
   cerr << "NTL_GF2X_LIB\n";
#endif


#ifdef NTL_LONG_LONG_TYPE
   cerr << "NTL_LONG_LONG_TYPE: ";
   cerr << make_string(NTL_LONG_LONG_TYPE) << "\n";
#endif

#ifdef NTL_UNSIGNED_LONG_LONG_TYPE
   cerr << "NTL_UNSIGNED_LONG_LONG_TYPE: ";
   cerr << make_string(NTL_UNSIGNED_LONG_LONG_TYPE) << "\n";
#endif

#ifdef NTL_CXX_ONLY
   cerr << "NTL_CXX_ONLY\n";
#endif


#ifdef NTL_X86_FIX
   cerr << "NTL_X86_FIX\n";
#endif

#ifdef NTL_NO_X86_FIX
   cerr << "NTL_NO_X86_FIX\n";
#endif

#ifdef NTL_NO_INIT_TRANS
   cerr << "NTL_NO_INIT_TRANS\n";
#endif

#ifdef NTL_CLEAN_INT
   cerr << "NTL_CLEAN_INT\n";
#endif

#ifdef NTL_CLEAN_PTR
   cerr << "NTL_CLEAN_PTR\n";
#endif

#ifdef NTL_RANGE_CHECK
   cerr << "NTL_RANGE_CHECK\n";
#endif


cerr << "\n";
cerr << "Resolution of double-word types:\n";
cerr << make_string(NTL_LL_TYPE) << "\n";
cerr << make_string(NTL_ULL_TYPE) << "\n";


cerr << "\n";
cerr << "Performance Options:\n";

#ifdef NTL_LONG_LONG
   cerr << "NTL_LONG_LONG\n";
#endif

#ifdef NTL_AVOID_FLOAT
   cerr << "NTL_AVOID_FLOAT\n";
#endif

#ifdef NTL_SPMM_UL
   cerr << "NTL_SPMM_UL\n";
#endif


#ifdef NTL_SPMM_ULL
   cerr << "NTL_SPMM_ULL\n";
#endif


#ifdef NTL_SPMM_ASM
   cerr << "NTL_SPMM_ASM\n";
#endif




#ifdef NTL_AVOID_BRANCHING
   cerr << "NTL_AVOID_BRANCHING\n";
#endif



#ifdef NTL_TBL_REM
   cerr << "NTL_TBL_REM\n";
#endif


#ifdef NTL_GF2X_ALTCODE
   cerr << "NTL_GF2X_ALTCODE\n";
#endif

#ifdef NTL_GF2X_ALTCODE1
   cerr << "NTL_GF2X_ALTCODE1\n";
#endif


#ifdef NTL_GF2X_NOINLINE
   cerr << "NTL_GF2X_NOINLINE\n";
#endif

   cerr << "\n\n";

   if (_ntl_gmp_hack)
      cerr << "using GMP hack\n\n";

   cerr << "running tests...";

   long n, k;

   n = 200;
   k = 10*NTL_ZZ_NBITS;

   ZZ p;

   GenPrime(p, k);


   ZZ_p::init(p);         // initialization

   ZZ_pX f, g, h, r1, r2, r3;

   random(g, n);    // g = random polynomial of degree < n
   random(h, n);    // h =             "   "
   random(f, n);    // f =             "   "

   // SetCoeff(f, n);  // Sets coefficient of X^n to 1
   
   ZZ_p lc;

   do {
      random(lc);
   } while (IsZero(lc));

   SetCoeff(f, n, lc);


   // For doing arithmetic mod f quickly, one must pre-compute
   // some information.

   ZZ_pXModulus F;
   build(F, f);

   PlainMul(r1, g, h);  // this uses classical arithmetic
   PlainRem(r1, r1, f);

   MulMod(r2, g, h, F);  // this uses the FFT

   MulMod(r3, g, h, f);  // uses FFT, but slower

   // compare the results...

   if (r1 != r2) {
      cerr << "r1 != r2!!\n";
      return 1;
   }
   else if (r1 != r3) {
      cerr << "r1 != r3!!\n";
      return 1;
   }


   // small prime tests...I've made some changes in v5.3
   // that should be checked on various platforms, so 
   // we might as well check them here.

   if (SmallModulusTest(17, 1000)) {
      cerr << "first SmallModulusTest failed!!\n";
      return 1;
   }

   if (SmallModulusTest((1L << (NTL_SP_NBITS))-1, 1000)) {
      cerr << "second SmallModulusTest failed!!\n";
      return 1;
   }

   // Test gf2x code....

   if (GF2X_test()) {
      cerr << "GF2X test failed!\n";
      return 1;
   }
   

   cerr << "OK\n";

   ZZ x1, x2, x3, x4;
   double t;
   long i;

   RandomLen(x1, 1024);
   RandomBnd(x2, x1);
   RandomBnd(x3, x1);

   mul(x4, x2, x3);

   t = GetTime();
   for (i = 0; i < 100000; i++)
      mul(x4, x2, x3);
   t = GetTime()-t;

   cerr << "time for 1024-bit mul: " << t*10 << "us";

   if (_ntl_gmp_hack) {
      _ntl_gmp_hack = 0;
      mul(x4, x2, x3);

      t = GetTime();
      for (i = 0; i < 100000; i++)
         mul(x4, x2, x3);
      t = GetTime()-t;

      cerr << " (" << (t*10) << "us without GMP)"; 

      _ntl_gmp_hack = 1;
   }

   cerr << "\n";

   rem(x2, x4, x1);

   t = GetTime();
   for (i = 0; i < 100000; i++)
      rem(x2, x4, x1);
   t = GetTime()-t;

   cerr << "time for 2048/1024-bit rem: " << t*10 << "us";

   if (_ntl_gmp_hack) {
      _ntl_gmp_hack = 0;
      rem(x2, x4, x1);
   
      t = GetTime();
      for (i = 0; i < 100000; i++)
         rem(x2, x4, x1);
      t = GetTime()-t;
      cerr << " (" << (t*10) << "us without GMP)"; 

      _ntl_gmp_hack = 1;
   }

   cerr << "\n";
   

   GenPrime(p, 1024);
   RandomBnd(x1, p);
   if (IsZero(x1)) set(x1);

   InvMod(x2, x1, p);

   t = GetTime();
   for (i = 0; i < 1000; i++)
      InvMod(x2, x1, p);
   t = GetTime()-t;

   cerr << "time for 1024-bit modular inverse: " << t*1000 << "us";

   if (_ntl_gmp_hack) {
      _ntl_gmp_hack = 0;
      InvMod(x2, x1, p);
   
      t = GetTime();
      for (i = 0; i < 1000; i++)
         InvMod(x2, x1, p);
      t = GetTime()-t;
         cerr << " (" << (t*1000) << "us without GMP)"; 

      _ntl_gmp_hack = 1;
   }

   cerr << "\n";



   // test modulus switching
   
   n = 1024;
   k = 1024;
   RandomLen(p, k);

   ZZ_p::init(p);
   ZZ_pInfo->check();

   ZZ_pX j1, j2, j3;

   random(j1, n);
   random(j2, n);

   t = GetTime();
   for (i = 0; i < 20; i++) mul(j3, j1, j2);
   t = GetTime()-t;

   cerr << "time to multiply degree 1023 polynomials\n   modulo a 1024-bit number: ";
   cerr << (t/20) << "s";

   if (_ntl_gmp_hack) {
      _ntl_gmp_hack = 0;

      ZZ_p::init(p);
      ZZ_pInfo->check();

      t = GetTime();
      for (i = 0; i < 20; i++) mul(j3, j1, j2);
      t = GetTime()-t;

      cerr << " (" << (t/20) << "s without GMP)";
      _ntl_gmp_hack = 1;
   }

   cerr << "\n";

   GF2X_time();

   return 0;
}
コード例 #4
0
ファイル: Poly1TimeTest.c プロジェクト: brown722/FHE-BGV
int main()
{

#ifdef NTL_SPMM_ULL

   if (sizeof(NTL_ULL_TYPE) < 2*sizeof(long)) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

#endif


   long n, k;

   n = 200;
   k = 10*NTL_ZZ_NBITS;

   ZZ p;

   RandomLen(p, k);


   ZZ_p::init(p);         // initialization

   ZZ_pX f, g, h, r1, r2, r3;

   random(g, n);    // g = random polynomial of degree < n
   random(h, n);    // h =             "   "
   random(f, n);    // f =             "   "

   SetCoeff(f, n);  // Sets coefficient of X^n to 1
   

   // For doing arithmetic mod f quickly, one must pre-compute
   // some information.

   ZZ_pXModulus F;
   build(F, f);

   PlainMul(r1, g, h);  // this uses classical arithmetic
   PlainRem(r1, r1, f);

   MulMod(r2, g, h, F);  // this uses the FFT

   MulMod(r3, g, h, f);  // uses FFT, but slower

   // compare the results...

   if (r1 != r2) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }
   else if (r1 != r3) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

   double t;
   long i, j;
   long iter;

   const int nprimes = 30;
   const long L = 12; 
   const long N = 1L << L;
   long r;
   

   for (r = 0; r < nprimes; r++) UseFFTPrime(r);

   vec_long aa[nprimes], AA[nprimes];

   for (r = 0; r < nprimes; r++) {
      aa[r].SetLength(N);
      AA[r].SetLength(N);

      for (i = 0; i < N; i++)
         aa[r][i] = RandomBnd(GetFFTPrime(r));


      FFTFwd(AA[r].elts(), aa[r].elts(), L, r);
      FFTRev1(AA[r].elts(), AA[r].elts(), L, r);
   }

   iter = 1;

   do {
     t = GetTime();
     for (j = 0; j < iter; j++) {
        for (r = 0; r < nprimes; r++) {
           long *AAp = AA[r].elts();
           long *aap = aa[r].elts();
           long q = GetFFTPrime(r);
           mulmod_t qinv = GetFFTPrimeInv(r);

           FFTFwd(AAp, aap, L, r);
           FFTRev1(AAp, aap, L, r);
           for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv);
        }
     }
     t = GetTime() - t;
     iter = 2*iter;
   } while(t < 1);

   iter = iter/2;

   iter = long((1.5/t)*iter) + 1;


   double tvec[5];
   long w;

   for (w = 0; w < 5; w++) {
     t = GetTime();
     for (j = 0; j < iter; j++) {
        for (r = 0; r < nprimes; r++) {
           long *AAp = AA[r].elts();
           long *aap = aa[r].elts();
           long q = GetFFTPrime(r);
           mulmod_t qinv = GetFFTPrimeInv(r);

           FFTFwd(AAp, aap, L, r);
           FFTRev1(AAp, aap, L, r);
           for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv);
        }
     }
     t = GetTime() - t;
     tvec[w] = t;
   }

   t = clean_data(tvec);

   t = floor((t/iter)*1e13);

   if (t < 0 || t >= 1e15)
      printf("999999999999999 ");
   else
      printf("%015.0f ", t);

   printf(" [%ld] ", iter);

   print_flag();

   return 0;
}
コード例 #5
0
ファイル: Poly3TimeTest.c プロジェクト: textbrowser/mcnoodle
int main()
{

#if (defined(NTL_CRT_ALTCODE) && !(defined(NTL_HAVE_LL_TYPE) && NTL_ZZ_NBITS == NTL_BITS_PER_LONG))

   {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }


#endif

   SetSeed(ZZ(0));

   long n, k;

   n = 1024;
   k = 30*NTL_SP_NBITS; 

   ZZ p;

   RandomLen(p, k);
   if (!IsOdd(p)) p++;


   ZZ_p::init(p);         // initialization

   ZZ_pX f, g, h, r1, r2, r3;

   random(g, n);    // g = random polynomial of degree < n
   random(h, n);    // h =             "   "
   random(f, n);    // f =             "   "

   SetCoeff(f, n);  // Sets coefficient of X^n to 1

   // For doing arithmetic mod f quickly, one must pre-compute
   // some information.

   ZZ_pXModulus F;
   build(F, f);

   PlainMul(r1, g, h);  // this uses classical arithmetic
   PlainRem(r1, r1, f);

   MulMod(r2, g, h, F);  // this uses the FFT

   MulMod(r3, g, h, f);  // uses FFT, but slower

   // compare the results...

   if (r1 != r2) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }
   else if (r1 != r3) {
      printf("999999999999999 ");
      print_flag();
      return 0;
   }

   double t;
   long i;
   long iter;

   ZZ_pX a, b, c;
   random(a, n);
   random(b, n);
   long da = deg(a);
   long db = deg(b);
   long dc = da + db;
   long l = NextPowerOfTwo(dc+1);

   FFTRep arep, brep, crep;
   ToFFTRep(arep, a, l, 0, da);
   ToFFTRep(brep, b, l, 0, db);

   mul(crep, arep, brep);

   ZZ_pXModRep modrep;
   FromFFTRep(modrep, crep);

   FromZZ_pXModRep(c, modrep, 0, dc);

   iter = 1;

   do {
     t = GetTime();
     for (i = 0; i < iter; i++) {
        FromZZ_pXModRep(c, modrep, 0, dc);
     }
     t = GetTime() - t;
     iter = 2*iter;
   } while(t < 1);

   iter = iter/2;

   iter = long((3/t)*iter) + 1;

   double tvec[5];
   long w;

   for (w = 0; w < 5; w++) {
     t = GetTime();
     for (i = 0; i < iter; i++) {
        FromZZ_pXModRep(c, modrep, 0, dc);
     }
     t = GetTime() - t;
     tvec[w] = t;
   } 


   t = clean_data(tvec);

   t = floor((t/iter)*1e12);

   // The following is just to test some tuning Wizard logic --
   // be sure to get rid of this!!
#if (defined(NTL_CRT_ALTCODE))
   // t *= 1.12;
#endif

   if (t < 0 || t >= 1e15)
      printf("999999999999999 ");
   else
      printf("%015.0f ", t);

   printf(" [%ld] ", iter);

   print_flag();

   return 0;
}