void PlainResultant(ZZ_p& rres, const ZZ_pX& a, const ZZ_pX& b) { ZZ_p res; if (IsZero(a) || IsZero(b)) clear(res); else if (deg(a) == 0 && deg(b) == 0) set(res); else { long d0, d1, d2; ZZ_p lc; set(res); long n = max(deg(a),deg(b)) + 1; ZZ_pX u(INIT_SIZE, n), v(INIT_SIZE, n); ZZVec tmp(n, ZZ_p::ExtendedModulusSize()); u = a; v = b; for (;;) { d0 = deg(u); d1 = deg(v); lc = LeadCoeff(v); PlainRem(u, u, v, tmp); swap(u, v); d2 = deg(v); if (d2 >= 0) { power(lc, lc, d0-d2); mul(res, res, lc); if (d0 & d1 & 1) negate(res, res); } else { if (d1 == 0) { power(lc, lc, d0); mul(res, res, lc); } else clear(res); break; } } } rres = res; }
int main() { _newntl_gmp_hack = 0; long n, k; n = 200; k = 10*newNTL_ZZ_NBITS; ZZ p; RandomLen(p, k); ZZ_p::init(p); // initialization ZZ_pX f, g, h, r1, r2, r3; random(g, n); // g = random polynomial of degree < n random(h, n); // h = " " random(f, n); // f = " " SetCoeff(f, n); // Sets coefficient of X^n to 1 // For doing arithmetic mod f quickly, one must pre-compute // some information. ZZ_pXModulus F; build(F, f); PlainMul(r1, g, h); // this uses classical arithmetic PlainRem(r1, r1, f); MulMod(r2, g, h, F); // this uses the FFT MulMod(r3, g, h, f); // uses FFT, but slower // compare the results... if (r1 != r2) { printf("999999999999999 "); print_flag(); return 0; } else if (r1 != r3) { printf("999999999999999 "); print_flag(); return 0; } double t; long i; long iter; n = 1024; k = 1024; RandomLen(p, k); ZZ_p::init(p); ZZ_pX j1, j2, j3; random(j1, n); random(j2, n); mul(j3, j1, j2); iter = 1; do { t = GetTime(); for (i = 0; i < iter; i++) { FFTMul(j3, j1, j2); } t = GetTime() - t; iter = 2*iter; } while(t < 1); iter = iter/2; iter = long((2/t)*iter) + 1; double tvec[5]; long w; for (w = 0; w < 5; w++) { t = GetTime(); for (i = 0; i < iter; i++) { FFTMul(j3, j1, j2); } t = GetTime() - t; tvec[w] = t; } t = clean_data(tvec); t = floor((t/iter)*1e12); if (t < 0 || t >= 1e15) printf("999999999999999 "); else printf("%015.0f ", t); printf(" [%ld] ", iter); print_flag(); return 0; }
int main() { cerr << "This is NTL version " << NTL_VERSION << "\n"; cerr << "Basic Configuration Options:\n"; #ifdef NTL_STD_CXX cerr << "NTL_STD_CXX\n"; #endif #ifdef NTL_PSTD_NNS cerr << "NTL_PSTD_NNS\n"; #endif #ifdef NTL_PSTD_NHF cerr << "NTL_PSTD_NHF\n"; #endif #ifdef NTL_PSTD_NTN cerr << "NTL_PSTD_NTN\n"; #endif #ifdef NTL_GMP_LIP cerr << "NTL_GMP_LIP\n"; #endif #ifdef NTL_GMP_HACK cerr << "NTL_GMP_HACK\n"; #endif #ifdef NTL_GF2X_LIB cerr << "NTL_GF2X_LIB\n"; #endif #ifdef NTL_LONG_LONG_TYPE cerr << "NTL_LONG_LONG_TYPE: "; cerr << make_string(NTL_LONG_LONG_TYPE) << "\n"; #endif #ifdef NTL_UNSIGNED_LONG_LONG_TYPE cerr << "NTL_UNSIGNED_LONG_LONG_TYPE: "; cerr << make_string(NTL_UNSIGNED_LONG_LONG_TYPE) << "\n"; #endif #ifdef NTL_CXX_ONLY cerr << "NTL_CXX_ONLY\n"; #endif #ifdef NTL_X86_FIX cerr << "NTL_X86_FIX\n"; #endif #ifdef NTL_NO_X86_FIX cerr << "NTL_NO_X86_FIX\n"; #endif #ifdef NTL_NO_INIT_TRANS cerr << "NTL_NO_INIT_TRANS\n"; #endif #ifdef NTL_CLEAN_INT cerr << "NTL_CLEAN_INT\n"; #endif #ifdef NTL_CLEAN_PTR cerr << "NTL_CLEAN_PTR\n"; #endif #ifdef NTL_RANGE_CHECK cerr << "NTL_RANGE_CHECK\n"; #endif cerr << "\n"; cerr << "Resolution of double-word types:\n"; cerr << make_string(NTL_LL_TYPE) << "\n"; cerr << make_string(NTL_ULL_TYPE) << "\n"; cerr << "\n"; cerr << "Performance Options:\n"; #ifdef NTL_LONG_LONG cerr << "NTL_LONG_LONG\n"; #endif #ifdef NTL_AVOID_FLOAT cerr << "NTL_AVOID_FLOAT\n"; #endif #ifdef NTL_SPMM_UL cerr << "NTL_SPMM_UL\n"; #endif #ifdef NTL_SPMM_ULL cerr << "NTL_SPMM_ULL\n"; #endif #ifdef NTL_SPMM_ASM cerr << "NTL_SPMM_ASM\n"; #endif #ifdef NTL_AVOID_BRANCHING cerr << "NTL_AVOID_BRANCHING\n"; #endif #ifdef NTL_TBL_REM cerr << "NTL_TBL_REM\n"; #endif #ifdef NTL_GF2X_ALTCODE cerr << "NTL_GF2X_ALTCODE\n"; #endif #ifdef NTL_GF2X_ALTCODE1 cerr << "NTL_GF2X_ALTCODE1\n"; #endif #ifdef NTL_GF2X_NOINLINE cerr << "NTL_GF2X_NOINLINE\n"; #endif cerr << "\n\n"; if (_ntl_gmp_hack) cerr << "using GMP hack\n\n"; cerr << "running tests..."; long n, k; n = 200; k = 10*NTL_ZZ_NBITS; ZZ p; GenPrime(p, k); ZZ_p::init(p); // initialization ZZ_pX f, g, h, r1, r2, r3; random(g, n); // g = random polynomial of degree < n random(h, n); // h = " " random(f, n); // f = " " // SetCoeff(f, n); // Sets coefficient of X^n to 1 ZZ_p lc; do { random(lc); } while (IsZero(lc)); SetCoeff(f, n, lc); // For doing arithmetic mod f quickly, one must pre-compute // some information. ZZ_pXModulus F; build(F, f); PlainMul(r1, g, h); // this uses classical arithmetic PlainRem(r1, r1, f); MulMod(r2, g, h, F); // this uses the FFT MulMod(r3, g, h, f); // uses FFT, but slower // compare the results... if (r1 != r2) { cerr << "r1 != r2!!\n"; return 1; } else if (r1 != r3) { cerr << "r1 != r3!!\n"; return 1; } // small prime tests...I've made some changes in v5.3 // that should be checked on various platforms, so // we might as well check them here. if (SmallModulusTest(17, 1000)) { cerr << "first SmallModulusTest failed!!\n"; return 1; } if (SmallModulusTest((1L << (NTL_SP_NBITS))-1, 1000)) { cerr << "second SmallModulusTest failed!!\n"; return 1; } // Test gf2x code.... if (GF2X_test()) { cerr << "GF2X test failed!\n"; return 1; } cerr << "OK\n"; ZZ x1, x2, x3, x4; double t; long i; RandomLen(x1, 1024); RandomBnd(x2, x1); RandomBnd(x3, x1); mul(x4, x2, x3); t = GetTime(); for (i = 0; i < 100000; i++) mul(x4, x2, x3); t = GetTime()-t; cerr << "time for 1024-bit mul: " << t*10 << "us"; if (_ntl_gmp_hack) { _ntl_gmp_hack = 0; mul(x4, x2, x3); t = GetTime(); for (i = 0; i < 100000; i++) mul(x4, x2, x3); t = GetTime()-t; cerr << " (" << (t*10) << "us without GMP)"; _ntl_gmp_hack = 1; } cerr << "\n"; rem(x2, x4, x1); t = GetTime(); for (i = 0; i < 100000; i++) rem(x2, x4, x1); t = GetTime()-t; cerr << "time for 2048/1024-bit rem: " << t*10 << "us"; if (_ntl_gmp_hack) { _ntl_gmp_hack = 0; rem(x2, x4, x1); t = GetTime(); for (i = 0; i < 100000; i++) rem(x2, x4, x1); t = GetTime()-t; cerr << " (" << (t*10) << "us without GMP)"; _ntl_gmp_hack = 1; } cerr << "\n"; GenPrime(p, 1024); RandomBnd(x1, p); if (IsZero(x1)) set(x1); InvMod(x2, x1, p); t = GetTime(); for (i = 0; i < 1000; i++) InvMod(x2, x1, p); t = GetTime()-t; cerr << "time for 1024-bit modular inverse: " << t*1000 << "us"; if (_ntl_gmp_hack) { _ntl_gmp_hack = 0; InvMod(x2, x1, p); t = GetTime(); for (i = 0; i < 1000; i++) InvMod(x2, x1, p); t = GetTime()-t; cerr << " (" << (t*1000) << "us without GMP)"; _ntl_gmp_hack = 1; } cerr << "\n"; // test modulus switching n = 1024; k = 1024; RandomLen(p, k); ZZ_p::init(p); ZZ_pInfo->check(); ZZ_pX j1, j2, j3; random(j1, n); random(j2, n); t = GetTime(); for (i = 0; i < 20; i++) mul(j3, j1, j2); t = GetTime()-t; cerr << "time to multiply degree 1023 polynomials\n modulo a 1024-bit number: "; cerr << (t/20) << "s"; if (_ntl_gmp_hack) { _ntl_gmp_hack = 0; ZZ_p::init(p); ZZ_pInfo->check(); t = GetTime(); for (i = 0; i < 20; i++) mul(j3, j1, j2); t = GetTime()-t; cerr << " (" << (t/20) << "s without GMP)"; _ntl_gmp_hack = 1; } cerr << "\n"; GF2X_time(); return 0; }
int main() { #ifdef NTL_SPMM_ULL if (sizeof(NTL_ULL_TYPE) < 2*sizeof(long)) { printf("999999999999999 "); print_flag(); return 0; } #endif long n, k; n = 200; k = 10*NTL_ZZ_NBITS; ZZ p; RandomLen(p, k); ZZ_p::init(p); // initialization ZZ_pX f, g, h, r1, r2, r3; random(g, n); // g = random polynomial of degree < n random(h, n); // h = " " random(f, n); // f = " " SetCoeff(f, n); // Sets coefficient of X^n to 1 // For doing arithmetic mod f quickly, one must pre-compute // some information. ZZ_pXModulus F; build(F, f); PlainMul(r1, g, h); // this uses classical arithmetic PlainRem(r1, r1, f); MulMod(r2, g, h, F); // this uses the FFT MulMod(r3, g, h, f); // uses FFT, but slower // compare the results... if (r1 != r2) { printf("999999999999999 "); print_flag(); return 0; } else if (r1 != r3) { printf("999999999999999 "); print_flag(); return 0; } double t; long i, j; long iter; const int nprimes = 30; const long L = 12; const long N = 1L << L; long r; for (r = 0; r < nprimes; r++) UseFFTPrime(r); vec_long aa[nprimes], AA[nprimes]; for (r = 0; r < nprimes; r++) { aa[r].SetLength(N); AA[r].SetLength(N); for (i = 0; i < N; i++) aa[r][i] = RandomBnd(GetFFTPrime(r)); FFTFwd(AA[r].elts(), aa[r].elts(), L, r); FFTRev1(AA[r].elts(), AA[r].elts(), L, r); } iter = 1; do { t = GetTime(); for (j = 0; j < iter; j++) { for (r = 0; r < nprimes; r++) { long *AAp = AA[r].elts(); long *aap = aa[r].elts(); long q = GetFFTPrime(r); mulmod_t qinv = GetFFTPrimeInv(r); FFTFwd(AAp, aap, L, r); FFTRev1(AAp, aap, L, r); for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv); } } t = GetTime() - t; iter = 2*iter; } while(t < 1); iter = iter/2; iter = long((1.5/t)*iter) + 1; double tvec[5]; long w; for (w = 0; w < 5; w++) { t = GetTime(); for (j = 0; j < iter; j++) { for (r = 0; r < nprimes; r++) { long *AAp = AA[r].elts(); long *aap = aa[r].elts(); long q = GetFFTPrime(r); mulmod_t qinv = GetFFTPrimeInv(r); FFTFwd(AAp, aap, L, r); FFTRev1(AAp, aap, L, r); for (i = 0; i < N; i++) AAp[i] = NormalizedMulMod(AAp[i], aap[i], q, qinv); } } t = GetTime() - t; tvec[w] = t; } t = clean_data(tvec); t = floor((t/iter)*1e13); if (t < 0 || t >= 1e15) printf("999999999999999 "); else printf("%015.0f ", t); printf(" [%ld] ", iter); print_flag(); return 0; }
int main() { #if (defined(NTL_CRT_ALTCODE) && !(defined(NTL_HAVE_LL_TYPE) && NTL_ZZ_NBITS == NTL_BITS_PER_LONG)) { printf("999999999999999 "); print_flag(); return 0; } #endif SetSeed(ZZ(0)); long n, k; n = 1024; k = 30*NTL_SP_NBITS; ZZ p; RandomLen(p, k); if (!IsOdd(p)) p++; ZZ_p::init(p); // initialization ZZ_pX f, g, h, r1, r2, r3; random(g, n); // g = random polynomial of degree < n random(h, n); // h = " " random(f, n); // f = " " SetCoeff(f, n); // Sets coefficient of X^n to 1 // For doing arithmetic mod f quickly, one must pre-compute // some information. ZZ_pXModulus F; build(F, f); PlainMul(r1, g, h); // this uses classical arithmetic PlainRem(r1, r1, f); MulMod(r2, g, h, F); // this uses the FFT MulMod(r3, g, h, f); // uses FFT, but slower // compare the results... if (r1 != r2) { printf("999999999999999 "); print_flag(); return 0; } else if (r1 != r3) { printf("999999999999999 "); print_flag(); return 0; } double t; long i; long iter; ZZ_pX a, b, c; random(a, n); random(b, n); long da = deg(a); long db = deg(b); long dc = da + db; long l = NextPowerOfTwo(dc+1); FFTRep arep, brep, crep; ToFFTRep(arep, a, l, 0, da); ToFFTRep(brep, b, l, 0, db); mul(crep, arep, brep); ZZ_pXModRep modrep; FromFFTRep(modrep, crep); FromZZ_pXModRep(c, modrep, 0, dc); iter = 1; do { t = GetTime(); for (i = 0; i < iter; i++) { FromZZ_pXModRep(c, modrep, 0, dc); } t = GetTime() - t; iter = 2*iter; } while(t < 1); iter = iter/2; iter = long((3/t)*iter) + 1; double tvec[5]; long w; for (w = 0; w < 5; w++) { t = GetTime(); for (i = 0; i < iter; i++) { FromZZ_pXModRep(c, modrep, 0, dc); } t = GetTime() - t; tvec[w] = t; } t = clean_data(tvec); t = floor((t/iter)*1e12); // The following is just to test some tuning Wizard logic -- // be sure to get rid of this!! #if (defined(NTL_CRT_ALTCODE)) // t *= 1.12; #endif if (t < 0 || t >= 1e15) printf("999999999999999 "); else printf("%015.0f ", t); printf(" [%ld] ", iter); print_flag(); return 0; }