コード例 #1
0
void moglmalloc(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] ) {
  // Allocate a memory buffer of prhs[0] bytes size. ptr points to start of buffer:
  void* ptr = PsychMallocTemp((unsigned long) mxGetScalar(prhs[0]), 1);

  // Convert ptr into a double value and assign it as first return argument:
  plhs[0]=mxCreateDoubleMatrix(1,1,mxREAL);
  *((GLdouble*) mxGetPr(plhs[0])) = PsychPtrToDouble(ptr);
}
コード例 #2
0
void* mogl_enqueueVertex(mogl_tess_struct* mytess, mxArray* vdat)
{
    void* dst;
    double* newdestructBuffer;
	
    mytess->nrElements = mxGetNumberOfElements(vdat);
    
    if (mytess->destructCount >= mytess->destructSize) {
        // Keep track of biggest buffersize for this tesselator so far.
        // Init to biggest size so far at initial allocation. We want to
        // grow the buffer quickly to a sufficient capacity to reduce alloc
        // overhead and memory fragmentation:
        if (mytess->destructSize < mytess->maxdestructSize) {
            mytess->destructSize = mytess->maxdestructSize;
        }
        else {
            mytess->destructSize += (1000 * mytess->nrElements);
            mytess->maxdestructSize = mytess->destructSize;
        }
        
        // Alloc:
        // mexPrintf("REALLOC VBUFFER of size %i elements.\n", mytess->destructSize);
        newdestructBuffer = (double*) PsychMallocTemp(sizeof(double) * mytess->destructSize, 3);
        if (newdestructBuffer) {
            mytess->destructBuffer = newdestructBuffer;
            mytess->destructCount  = 0;
        }
        else {
            mytess->destructBuffer = NULL;
            mytess->destructSize  = 0;
            mytess->destructCount = 0;
            PsychFreeAllTempMemory(3);
            mexErrMsgTxt("MOGL-ERROR: Out of memory error while processing gluTessCallback() or gluTessVertex()! Aborting!");
        }
    }
    
    dst = (void*) &(mytess->destructBuffer[mytess->destructCount]);
    memcpy(dst, mxGetData(vdat), sizeof(double) * mytess->nrElements);
    mytess->destructCount += mytess->nrElements;
    
    return(dst);
}
コード例 #3
0
void APIENTRY PsychtcbCombine(GLdouble c[3], void *d[4], GLfloat w[4], void **out)
{
    GLdouble *nv;

    (void) d, (void) w;

    // Free slots available?
    if (combinerCacheSlot >= combinerCacheSize) {
	    // Nope. Need to alloc another cache for up to another 1000 elements:
	    combinerCacheSize = 1000;
	    combinerCacheSlot = 0;
	    combinerCache = (GLdouble *) PsychMallocTemp(sizeof(GLdouble) * 3 * combinerCacheSize);
	    if (NULL == combinerCache) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");
    }

    nv = (GLdouble *) &(combinerCache[combinerCacheSlot * 3]);
    nv[0] = c[0];
    nv[1] = c[1];
    nv[2] = c[2];
    *out = nv;

	combinerCacheSlot++;
}
コード例 #4
0
PsychError SCREENPreloadTextures(void)  
{	
	PsychWindowRecordType                   *windowRecord, *texwin;
	psych_bool                                 isArgThere;
        int                                     *texhandles;
        PsychWindowRecordType                   **windowRecordArray;        
        int                                     i, n, numWindows, myhandle; 
        double                                  *success;
        psych_bool*                                residency;
        GLuint*                                 texids;
        GLboolean*                              texresident;
        psych_bool                                 failed = false;
        GLclampf                                maxprio = 1.0f;
        GLenum                                  target;

	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(2));        //The maximum number of inputs
	PsychErrorExit(PsychRequireNumInputArgs(1));    //The minimum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(2));       //The maximum number of outputs
	
	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
		
	// Get optional texids vector:
	isArgThere = PsychIsArgPresent(PsychArgIn, 2);
        PsychAllocInIntegerListArg(2, FALSE, &n, &texhandles);
        if (n < 1) isArgThere=FALSE;
        
        // Enable this windowRecords framebuffer as current drawingtarget:
        PsychSetDrawingTarget(windowRecord);

		// Disable shader:
		PsychSetShader(windowRecord, 0);
	

        glDisable(GL_TEXTURE_2D);

	// Fetch global texturing mode:
	target=PsychGetTextureTarget(windowRecord);

        glEnable(target);
        glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
        glColor4f(0, 0, 0, 0);
	// Setup identity modelview matrix:
        glMatrixMode(GL_MODELVIEW);
        glPushMatrix();
        glLoadIdentity();

        PsychCreateVolatileWindowRecordPointerList(&numWindows, &windowRecordArray);            

        // Process vector of all texids for all requested textures:
        if (!isArgThere) {
            // No handles provided: In this case, we preload all textures:
            n=0;
            for(i=0; i<numWindows; i++) {                
                if (windowRecordArray[i]->windowType==kPsychTexture) {
                    n++;
                    // Prioritize this texture:
                    glPrioritizeTextures(1, (GLuint*) &(windowRecordArray[i]->textureNumber), &maxprio);
                    // Bind this texture:
                    glBindTexture(target, windowRecordArray[i]->textureNumber);
                    // Render a single textured point, thereby enforcing a texture upload:
                    glBegin(GL_QUADS);
                    glTexCoord2f(0,0); glVertex2i(10,10);
                    glTexCoord2f(0,1); glVertex2i(10,11);
                    glTexCoord2f(1,1); glVertex2i(11,11);
                    glTexCoord2f(1,0); glVertex2i(11,10);                    
                    glEnd();
                }
            }
            
            texids = (GLuint*) PsychMallocTemp(sizeof(GLuint) * n);
            texresident = (GLboolean*) PsychMallocTemp(sizeof(GLboolean) * n);

            n=0;
            for(i=0; i<numWindows; i++) {                
                if (windowRecordArray[i]->windowType==kPsychTexture) {
                    texids[n] = (GLuint) windowRecordArray[i]->textureNumber;
                    n++;
                }
            }
        }
        else {
            // Vector with texture handles provided: Just preload them.
            texids = (GLuint*) PsychMallocTemp(sizeof(GLuint) * n);
            texresident = (GLboolean*) PsychMallocTemp(sizeof(GLboolean) * n);
            myhandle=0;
            for (i=0; i<n; i++) {
                myhandle = texhandles[i];
                texwin = NULL;
                if (IsWindowIndex(myhandle)) FindWindowRecord(myhandle, &texwin);
                if (texwin && texwin->windowType==kPsychTexture) {
                    // Prioritize this texture:
                    glPrioritizeTextures(1, (GLuint*) &(texwin->textureNumber), &maxprio);
                    // Bind this texture:
                    glBindTexture(target, texwin->textureNumber);
                    // Render a single textured point, thereby enforcing a texture upload:
                    glBegin(GL_QUADS);
                    glTexCoord2f(0,0); glVertex2i(10,10);
                    glTexCoord2f(0,1); glVertex2i(10,11);
                    glTexCoord2f(1,1); glVertex2i(11,11);
                    glTexCoord2f(1,0); glVertex2i(11,10);                    
                    glEnd();
                    texids[i] = (GLuint) texwin->textureNumber;
                }
                else {
                    // This handle is invalid or at least no texture handle:
                    printf("PTB-ERROR! Screen('PreloadTextures'): Entry %i of texture handle vector (handle %i) is not a texture handle!\n",
                           i, myhandle);
                    failed = true;
                }
            }
        }
        
        // Restore old matrix from backup copy, undoing the global translation:
        glPopMatrix();
        // Disable texture engine:
        glDisable(GL_TEXTURE_2D);
        glDisable(target);

        // Wait for prefetch completion:
        glFinish();
        
        // We don't need these anymore:
        PsychDestroyVolatileWindowRecordPointerList(windowRecordArray);
        
        if (failed) {
            PsychErrorExitMsg(PsychError_user, "At least one texture handle in texids-vector was invalid! Aborted.");
        }
        
        // Query residency state of all preloaded textures:
        success = NULL;
        PsychAllocOutDoubleArg(1, FALSE, &success);
        *success = (double) glAreTexturesResident(n, texids, texresident);
        
        // Sync pipe again, just to be safe...
        glFinish();
        
        // Count them and copy them into output vector:
        PsychAllocOutBooleanMatArg(2, FALSE, n, 1, 1, &residency);
        
        for (i=0; i<n; i++) {
            residency[i] = (psych_bool) ((*success) ? TRUE : texresident[i]);
        }
        
        PsychTestForGLErrors();
        
 	// Done. Our PsychMallocTemp'ed arrays will be auto-released...
	return(PsychError_none);
}
コード例 #5
0
PsychError SCREENDrawLines(void)  
{
	PsychWindowRecordType		*windowRecord;
	int							m,n,p, smooth;
	int							nrsize, nrcolors, nrvertices, mc, nc, pc, i;
	boolean                     isArgThere, usecolorvector, isdoublecolors, isuint8colors;
	double						*xy, *size, *center, *dot_type, *colors;
	unsigned char               *bytecolors;
	float						linesizerange[2];
	double						convfactor;

	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString,seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//check for superfluous arguments
	PsychErrorExit(PsychCapNumInputArgs(6));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs
	
	//get the window record from the window record argument and get info from the window record
	PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
	
	// Query, allocate and copy in all vectors...
	nrvertices = 2;
	nrsize = 1;

	colors = NULL;
	bytecolors = NULL;

	PsychPrepareRenderBatch(windowRecord, 2, &nrvertices, &xy, 4, &nc, &mc, &colors, &bytecolors, 3, &nrsize, &size);
	isdoublecolors = (colors) ? TRUE:FALSE;
	isuint8colors  = (bytecolors) ? TRUE:FALSE;
	usecolorvector = (nc>1) ? TRUE:FALSE;

	// Get center argument
	isArgThere = PsychIsArgPresent(PsychArgIn, 5);
	if(!isArgThere){
		center = (double *) PsychMallocTemp(2 * sizeof(double));
		center[0] = 0;
		center[1] = 0;
	} else {
		PsychAllocInDoubleMatArg(5, TRUE, &m, &n, &p, &center);
		if(p!=1 || n!=2 || m!=1) PsychErrorExitMsg(PsychError_user, "center must be a 1-by-2 vector");
	}
	
	// Get smooth argument
	isArgThere = PsychIsArgPresent(PsychArgIn, 6);
	if(!isArgThere){
		smooth = 0;
	} else {
		PsychAllocInDoubleMatArg(6, TRUE, &m, &n, &p, &dot_type);
		smooth = (int) dot_type[0];
		if(p!=1 || n!=1 || m!=1 || (smooth!=0 && smooth!=1)) PsychErrorExitMsg(PsychError_user, "smooth must be 0 or 1");
	}

	// Child-protection: Alpha blending needs to be enabled for smoothing to work:
	if (smooth>0 && windowRecord->actualEnableBlending!=TRUE) {
		PsychErrorExitMsg(PsychError_user, "Line smoothing doesn't work with alpha-blending disabled! See Screen('BlendFunction') on how to enable it.");
	}

	// turn on antialiasing to draw anti-aliased lines:
	if(smooth) glEnable(GL_LINE_SMOOTH);

	// Set global width of lines:
	glLineWidth(size[0]);

	// Setup modelview matrix to perform translation by 'center':
	glMatrixMode(GL_MODELVIEW);	
	
	// Make a backup copy of the matrix:
	glPushMatrix();
	
	// Apply a global translation of (center(x,y)) pixels to all following lines:
	glTranslated(center[0], center[1],0);
	
	// Render the array of 2D-Lines - Efficient version:
	// This command sequence allows fast processing of whole arrays
	// of vertices (or lines, in this case). It saves the call overhead
	// associated with the original implementation below and is potentially
	// optimized in specific OpenGL implementations.
	
	// Pass a pointer to the start of the arrays:
	glVertexPointer(2, GL_DOUBLE, 0, &xy[0]);
	
	if (usecolorvector) {
		if (isdoublecolors) glColorPointer(mc, GL_DOUBLE, 0, colors);
		if (isuint8colors)  glColorPointer(mc, GL_UNSIGNED_BYTE, 0, bytecolors);
		glEnableClientState(GL_COLOR_ARRAY);
	}

	// Enable fast rendering of arrays:
	glEnableClientState(GL_VERTEX_ARRAY);

	if (nrsize==1) {
		// Common line-width for all lines: Render all lines, starting at line 0:
		glDrawArrays(GL_LINES, 0, nrvertices);
	}
	else {
		// Different line-width per line: Need to manually loop through this mess:
		for (i=0; i < nrvertices/2; i++) {
	      glLineWidth(size[i]);

	      // Render line:
	      glDrawArrays(GL_LINES, i * 2, 2);
		}
	}
	
	// Disable fast rendering of arrays:
	glDisableClientState(GL_VERTEX_ARRAY);
	if (usecolorvector) glDisableClientState(GL_COLOR_ARRAY);
	
	// Restore old matrix from backup copy, undoing the global translation:
	glPopMatrix();
	
	// Turn off anti-aliasing:
	if(smooth) glDisable(GL_LINE_SMOOTH);
	
	// Reset line width to 1.0:
	glLineWidth(1);
	
	// Mark end of drawing op. This is needed for single buffered drawing:
	PsychFlushGL(windowRecord);
	
 	//All psychfunctions require this.
	return(PsychError_none);
}
コード例 #6
0
/* PsychPrepareRenderBatch()
 *
 * Perform setup for a batch of render requests for a specific primitive. Some 2D Screen
 * drawing commands allow to specify a list of primitives to draw instead of only a single
 * one. E.g. 'DrawDots' allows to draw thousands of dots with one single DrawDots command.
 * This helper routine is called by such batch-capable commands. It checks which input arguments
 * are provided and if its a single one or multiple ones. It sets up the rendering pipe accordingly,
 * performing required conversion steps. The actual drawing routine just needs to perform primitive
 * specific code.
 */
void PsychPrepareRenderBatch(PsychWindowRecordType *windowRecord, int coords_pos, int* coords_count, double** xy, int colors_pos, int* colors_count, int* colorcomponent_count, double** colors, unsigned char** bytecolors, int sizes_pos, int* sizes_count, double** size)
{
	PsychColorType							color;
	int                                     m,n,p,mc,nc,pc;
	int                                     i, nrpoints, nrsize;
	psych_bool                              isArgThere, isdoublecolors, isuint8colors, usecolorvector, needxy;
	double									*tmpcolors, *pcolors, *tcolors;
	double									convfactor, whiteValue;

	needxy = (coords_pos > 0) ? TRUE: FALSE;
	coords_pos = abs(coords_pos);
	colors_pos = abs(colors_pos);
	sizes_pos = abs(sizes_pos);
	
	// Get mandatory or optional xy coordinates argument
	isArgThere = PsychIsArgPresent(PsychArgIn, coords_pos);
	if(!isArgThere && needxy) {
		PsychErrorExitMsg(PsychError_user, "No position argument supplied");
	}
	
	if (isArgThere) {
		PsychAllocInDoubleMatArg(coords_pos, TRUE, &m, &n, &p, xy);
		if(p!=1 || (m!=*coords_count && (m*n)!=*coords_count)) {
			printf("PTB-ERROR: Coordinates must be a %i tuple or a %i rows vector.\n", *coords_count, *coords_count);
			PsychErrorExitMsg(PsychError_user, "Invalid format for coordinate specification.");
		}
		
		if (m!=1) {
			nrpoints=n;
			*coords_count = n;
		}
		else {
			// Special case: 1 row vector provided for single argument.
			nrpoints=1;
			*coords_count = 1;
		}
	}
	else {
		nrpoints = 0;
		*coords_count = 0;
	}
	
	if (size) {
		// Get optional size argument
		isArgThere = PsychIsArgPresent(PsychArgIn, sizes_pos);
		if(!isArgThere){
			// No size provided: Use a default size of 1.0:
			*size = (double *) PsychMallocTemp(sizeof(double));
			*size[0] = 1;
			nrsize=1;
		} else {
			PsychAllocInDoubleMatArg(sizes_pos, TRUE, &m, &n, &p, size);
			if(p!=1) PsychErrorExitMsg(PsychError_user, "Size must be a scalar or a vector with one column or row");
			nrsize=m*n;
			if (nrsize!=nrpoints && nrsize!=1 && *sizes_count!=1) PsychErrorExitMsg(PsychError_user, "Size vector must contain one size value per item.");
		}
		
		*sizes_count = nrsize;
	}	

	// Check if color argument is provided:
	isArgThere = PsychIsArgPresent(PsychArgIn, colors_pos);        
	if(!isArgThere) {
		// No color argument provided - Use defaults:
		whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
		PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
		usecolorvector=false;
	}
	else {
		// Some color argument provided. Check first, if it's a valid color vector:
		isdoublecolors = PsychAllocInDoubleMatArg(colors_pos, kPsychArgAnything, &mc, &nc, &pc, colors);
		isuint8colors  = PsychAllocInUnsignedByteMatArg(colors_pos, kPsychArgAnything, &mc, &nc, &pc, bytecolors);
		
		// Do we have a color vector, aka one element per vertex?
		if((isdoublecolors || isuint8colors) && pc==1 && mc!=1 && nc==nrpoints && nrpoints>1) {
			// Looks like we might have a color vector... ... Double-check it:
			if (mc!=3 && mc!=4) PsychErrorExitMsg(PsychError_user, "Color vector must be a 3 or 4 row vector");
			// Yes. colors is a valid pointer to it.
			usecolorvector=true;
			
			if (isdoublecolors) {
				if (fabs(windowRecord->colorRange)!=1) {
					// We have to loop through the vector and divide all values by windowRecord->colorRange, so the input values
					// 0-colorRange get mapped to the range 0.0-1.0, as OpenGL expects values in range 0-1 when
					// a color vector is passed in Double- or Float format.
					// This is inefficient, as it burns some cpu-cycles, but necessary to keep color
					// specifications consistent in the PTB - API.
					convfactor = 1.0 / fabs(windowRecord->colorRange);
					tmpcolors=PsychMallocTemp(sizeof(double) * nc * mc);
					pcolors = *colors;
					tcolors = tmpcolors;
					for (i=0; i<(nc*mc); i++) {
						*(tcolors++)=(*pcolors++) * convfactor;
					}
				}
				else {
					// colorRange is == 1 --> No remapping needed as colors are already in proper range!
					// Just setup pointer to our unaltered input color vector:
					tmpcolors=*colors;
				}
				
				*colors = tmpcolors;
			}
			else {
				// Color vector in uint8 format. Nothing to do.
			}
		}
		else {
			// No color vector provided: Check for a single valid color triplet or quadruple:
			usecolorvector=false;
			isArgThere=PsychCopyInColorArg(colors_pos, TRUE, &color);                
		}
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Setup default drawshader:
	PsychSetShader(windowRecord, -1);
	
	// Setup alpha blending properly:
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	
 	// Setup common color for all objects if no color vector has been provided:
	if (!usecolorvector) {
		PsychCoerceColorMode(&color);
		PsychSetGLColor(&color, windowRecord);
		*colors_count = 1;
	}
	else {
		*colors_count = nc;
	}
	*colorcomponent_count = mc;
		
	return;
}
コード例 #7
0
PsychError SCREENGetImage(void) 
{
	PsychRectType   windowRect,sampleRect;
	int 			nrchannels, ix, iy, sampleRectWidth, sampleRectHeight, invertedY, redReturnIndex, greenReturnIndex, blueReturnIndex, alphaReturnIndex, planeSize;
	int				viewid;
	ubyte 			*returnArrayBase, *redPlane, *greenPlane, *bluePlane, *alphaPlane;
	float 			*dredPlane, *dgreenPlane, *dbluePlane, *dalphaPlane;
	double 			*returnArrayBaseDouble;
	PsychWindowRecordType	*windowRecord;
	GLboolean		isDoubleBuffer, isStereo;
	char*           buffername = NULL;
	boolean			floatprecision = FALSE;
	GLenum			whichBuffer = 0; 
	
	//all sub functions should have these two lines
	PsychPushHelp(useString, synopsisString, seeAlsoString);
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//cap the numbers of inputs and outputs
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(1));  //The maximum number of outputs
	
	// Get windowRecord for this window:
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);
	
	// Set window as drawingtarget: Even important if this binding is changed later on!
	// We need to make sure all needed transitions are done - esp. in non-imaging mode,
	// so backbuffer is in a useable state:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable shaders:
	PsychSetShader(windowRecord, 0);

	// Soft-Reset drawingtarget. This is important to make sure no FBO's are bound,
	// otherwise the following glGets for GL_DOUBLEBUFFER and GL_STEREO will retrieve
	// wrong results, leading to totally wrong read buffer assignments down the road!!
	PsychSetDrawingTarget(0x1);

	glGetBooleanv(GL_DOUBLEBUFFER, &isDoubleBuffer);
	glGetBooleanv(GL_STEREO, &isStereo);
	
	// Retrieve optional read rectangle:
	PsychGetRectFromWindowRecord(windowRect, windowRecord);
	if(!PsychCopyInRectArg(2, FALSE, sampleRect)) memcpy(sampleRect, windowRect, sizeof(PsychRectType));
	if (IsPsychRectEmpty(sampleRect)) return(PsychError_none);
	
	// Assign read buffer:
	if(PsychIsOnscreenWindow(windowRecord)) {
		// Onscreen window: We read from the front- or front-left buffer by default.
		// This works on single-buffered and double buffered contexts in a consistent fashion:
		
		// Copy in optional override buffer name:
		PsychAllocInCharArg(3, FALSE, &buffername);
		
		// Override buffer name provided?
		if (buffername) {
			// Which one is it?
			
			// "frontBuffer" is always a valid choice:
			if (PsychMatch(buffername, "frontBuffer")) whichBuffer = GL_FRONT;
			// Allow selection of left- or right front stereo buffer in stereo mode:
			if (PsychMatch(buffername, "frontLeftBuffer") && isStereo) whichBuffer = GL_FRONT_LEFT;
			if (PsychMatch(buffername, "frontRightBuffer") && isStereo) whichBuffer = GL_FRONT_RIGHT;
			// Allow selection of backbuffer in double-buffered mode:
			if (PsychMatch(buffername, "backBuffer") && isDoubleBuffer) whichBuffer = GL_BACK;
			// Allow selection of left- or right back stereo buffer in stereo mode:
			if (PsychMatch(buffername, "backLeftBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_LEFT;
			if (PsychMatch(buffername, "backRightBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_RIGHT;
			// Allow AUX buffer access for debug purposes:
			if (PsychMatch(buffername, "aux0Buffer")) whichBuffer = GL_AUX0;
			if (PsychMatch(buffername, "aux1Buffer")) whichBuffer = GL_AUX1;
			if (PsychMatch(buffername, "aux2Buffer")) whichBuffer = GL_AUX2;
			if (PsychMatch(buffername, "aux3Buffer")) whichBuffer = GL_AUX3;			
		}
		else {
			// Default is frontbuffer:
			whichBuffer=GL_FRONT;
		}
	}
	else {
		// Offscreen window or texture: They only have one buffer, which is the
		// backbuffer in double-buffered mode and the frontbuffer in single buffered mode:
		whichBuffer=(isDoubleBuffer) ? GL_BACK : GL_FRONT;
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget. This should
	// also allow us to "GetImage" from Offscreen windows:
	if ((windowRecord->imagingMode & kPsychNeedFastBackingStore) || (windowRecord->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Special case: Imaging pipeline active - We need to activate system framebuffer
		// so we really read the content of the framebuffer and not of some FBO:
		if (PsychIsOnscreenWindow(windowRecord)) {
			// It's an onscreen window:
			if (buffername && (PsychMatch(buffername, "drawBuffer")) && (windowRecord->imagingMode & kPsychNeedFastBackingStore)) {
				// Activate drawBufferFBO:
				PsychSetDrawingTarget(windowRecord);
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
				
				// Is the drawBufferFBO multisampled?
				viewid = (((windowRecord->stereomode > 0) && (windowRecord->stereodrawbuffer == 1)) ? 1 : 0);
				if (windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->multisample > 0) {
					// It is! We can't read from a multisampled FBO. Need to perform a multisample resolve operation and read
					// from the resolved unisample buffer instead. This is only safe if the unisample buffer is either a dedicated
					// FBO, or - in case its the final system backbuffer etc. - if preflip operations haven't been performed yet.
					// If non dedicated buffer (aka finalizedFBO) and preflip ops have already happened, then the backbuffer contains
					// final content for an upcoming Screen('Flip') and we can't use (and therefore taint) that buffer.
					if ((windowRecord->inputBufferFBO[viewid] == windowRecord->finalizedFBO[viewid]) && (windowRecord->backBufferBackupDone)) {
						// Target for resolve is finalized FBO (probably system backbuffer) and preflip ops have run already. We
						// can't do the resolve op, as this would screw up the backbuffer with the final stimulus:
						printf("PTB-ERROR: Tried to 'GetImage' from a multisampled 'drawBuffer', but can't perform anti-aliasing pass due to\n");
						printf("PTB-ERROR: lack of a dedicated resolve buffer.\n");
						printf("PTB-ERROR: You can get what you wanted by either one of two options:\n");
						printf("PTB-ERROR: Either enable a processing stage in the imaging pipeline, even if you don't need it, e.g., by setting\n");
						printf("PTB-ERROR: the imagingmode argument in the 'OpenWindow' call to kPsychNeedImageProcessing, this will create a\n");
						printf("PTB-ERROR: suitable resolve buffer. Or place the 'GetImage' call before any Screen('DrawingFinished') call, then\n");
						printf("PTB-ERROR: i can (ab-)use the system backbuffer as a temporary resolve buffer.\n\n");
						PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled 'drawBuffer'. Unsupported operation under given conditions.");						
					}
					else {
						// Ok, the inputBufferFBO is a suitable temporary resolve buffer. Perform a multisample resolve blit to it:
						// A simple glBlitFramebufferEXT() call will do the copy & downsample operation:
						glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->fboid);
						glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						glBlitFramebufferEXT(0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 GL_COLOR_BUFFER_BIT, GL_NEAREST);

						// Bind inputBuffer as framebuffer:
						glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						viewid = -1;
					}
				}
			}
			else {
				// Activate system framebuffer:
				PsychSetDrawingTarget(NULL);
			}
		}
		else {
			// Offscreen window or texture: Select drawing target as usual,
			// but set color attachment as read buffer:
			PsychSetDrawingTarget(windowRecord);
			whichBuffer = GL_COLOR_ATTACHMENT0_EXT;

			// We do not support multisampled readout:
			if (windowRecord->fboTable[windowRecord->drawBufferFBO[0]]->multisample > 0) {
				printf("PTB-ERROR: You tried to Screen('GetImage', ...); from an offscreen window or texture which has multisample anti-aliasing enabled.\n");
				printf("PTB-ERROR: This operation is not supported. You must first use Screen('CopyWindow') to create a non-multisampled copy of the\n");
				printf("PTB-ERROR: texture or offscreen window, then use 'GetImage' on that copy. The copy will be anti-aliased, so you'll get what you\n");
				printf("PTB-ERROR: wanted with a bit more effort. Sorry for the inconvenience, but this is mostly a hardware limitation.\n\n");
				
				PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled texture or offscreen window. Unsupported operation.");
			}
		}
	}
	else {
		// Normal case: No FBO based imaging - Select drawing target as usual:
		PsychSetDrawingTarget(windowRecord);
	}
	
	// Select requested read buffer, after some double-check:
	if (whichBuffer == 0) PsychErrorExitMsg(PsychError_user, "Invalid or unknown 'bufferName' argument provided.");
	glReadBuffer(whichBuffer);
	
	if (PsychPrefStateGet_Verbosity() > 5) printf("PTB-DEBUG: In Screen('GetImage'): GL-Readbuffer whichBuffer = %i\n", whichBuffer);

	// Get optional floatprecision flag: We return data with float-precision if
	// this flag is set. By default we return uint8 data:
	PsychCopyInFlagArg(4, FALSE, &floatprecision);
	
	// Get the optional number of channels flag: By default we return 3 channels,
	// the Red, Green, and blue color channel:
	nrchannels = 3;
	PsychCopyInIntegerArg(5, FALSE, &nrchannels);
	if (nrchannels < 1 || nrchannels > 4) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' must be between 1 and 4!");
	
	sampleRectWidth=PsychGetWidthFromRect(sampleRect);
	sampleRectHeight=PsychGetHeightFromRect(sampleRect);
	
	if (!floatprecision) {
		// Readback of standard 8bpc uint8 pixels:  
		PsychAllocOutUnsignedByteMatArg(1, TRUE, sampleRectHeight, sampleRectWidth, nrchannels, &returnArrayBase);
		redPlane= PsychMallocTemp(nrchannels * sizeof(GL_UNSIGNED_BYTE) * sampleRectWidth * sampleRectHeight);
		planeSize=sampleRectWidth * sampleRectHeight;
		greenPlane= redPlane + planeSize;
		bluePlane= redPlane + 2 * planeSize;
		alphaPlane= redPlane + 3 * planeSize; 
		glPixelStorei(GL_PACK_ALIGNMENT,1);
		invertedY=windowRect[kPsychBottom]-sampleRect[kPsychBottom];
		glReadPixels(sampleRect[kPsychLeft],invertedY, 	sampleRectWidth, sampleRectHeight, GL_RED, GL_UNSIGNED_BYTE, redPlane); 
		if (nrchannels>1) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_GREEN, GL_UNSIGNED_BYTE, greenPlane);
		if (nrchannels>2) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_BLUE, GL_UNSIGNED_BYTE, bluePlane);
		if (nrchannels>3) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_ALPHA, GL_UNSIGNED_BYTE, alphaPlane);
		
		//in one pass transpose and flip what we read with glReadPixels before returning.  
		//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
		//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
		for(ix=0;ix<sampleRectWidth;ix++){
			for(iy=0;iy<sampleRectHeight;iy++){
				// Compute write-indices for returned data:
				redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
				greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
				blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
				alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
				
				// Always return RED/LUMINANCE channel:
				returnArrayBase[redReturnIndex]=redPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];  
				// Other channels on demand:
				if (nrchannels>1) returnArrayBase[greenReturnIndex]=greenPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
				if (nrchannels>2) returnArrayBase[blueReturnIndex]=bluePlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
				if (nrchannels>3) returnArrayBase[alphaReturnIndex]=alphaPlane[ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth];
			}
		}		
	}
	else {
		// Readback of standard 32bpc float pixels into a double matrix:  
		PsychAllocOutDoubleMatArg(1, TRUE, sampleRectHeight, sampleRectWidth, nrchannels, &returnArrayBaseDouble);
		dredPlane= PsychMallocTemp(nrchannels * sizeof(GL_FLOAT) * sampleRectWidth * sampleRectHeight);
		planeSize=sampleRectWidth * sampleRectHeight * sizeof(GL_FLOAT);
		dgreenPlane= redPlane + planeSize;
		dbluePlane= redPlane + 2 * planeSize;
		dalphaPlane= redPlane + 3 * planeSize; 
		glPixelStorei(GL_PACK_ALIGNMENT, 1);
		invertedY=windowRect[kPsychBottom]-sampleRect[kPsychBottom];
		if (nrchannels==1) glReadPixels(sampleRect[kPsychLeft],invertedY, 	sampleRectWidth, sampleRectHeight, GL_RED, GL_FLOAT, dredPlane); 
		if (nrchannels==2) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_LUMINANCE_ALPHA, GL_FLOAT, dredPlane);
		if (nrchannels==3) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_RGB, GL_FLOAT, dredPlane);
		if (nrchannels==4) glReadPixels(sampleRect[kPsychLeft],invertedY,	sampleRectWidth, sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
		
		//in one pass transpose and flip what we read with glReadPixels before returning.  
		//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
		//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
		for(ix=0;ix<sampleRectWidth;ix++){
			for(iy=0;iy<sampleRectHeight;iy++){
				// Compute write-indices for returned data:
				redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
				greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
				blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
				alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
				
				// Always return RED/LUMINANCE channel:
				returnArrayBaseDouble[redReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 0];  
				// Other channels on demand:
				if (nrchannels>1) returnArrayBaseDouble[greenReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 1];
				if (nrchannels>2) returnArrayBaseDouble[blueReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 2];
				if (nrchannels>3) returnArrayBaseDouble[alphaReturnIndex]=dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * nrchannels + 3];
			}
		}		
	}
	
	if (viewid == -1) {
		// Need to reset framebuffer binding to get rid of the inputBufferFBO which is bound due to
		// multisample resolve ops --> Activate system framebuffer:
		PsychSetDrawingTarget(NULL);		
	}

	return(PsychError_none);
}
コード例 #8
0
PsychError SCREENPutImage(void) 
{
	PsychRectType			windowRect, positionRect;
	int						ix, iy;
	size_t					matrixRedIndex, matrixGreenIndex, matrixBlueIndex, matrixAlphaIndex, matrixGrayIndex;
	int						inputM, inputN, inputP, positionRectWidth, positionRectHeight;
	size_t					pixelIndex = 0;
	PsychWindowRecordType	*windowRecord;
	unsigned char			*inputMatrixByte;
	double					*inputMatrixDouble;
	GLfloat					*pixelData;
	GLfloat					matrixGrayValue, matrixRedValue, matrixGreenValue, matrixBlueValue, matrixAlphaValue;
	PsychArgFormatType		inputMatrixType;
	GLfloat					xZoom = 1, yZoom = -1;
        
	// All sub functions should have these two lines.
	PsychPushHelp(useString, synopsisString, seeAlsoString);
	if (PsychIsGiveHelp()) {
		PsychGiveHelp();
		return PsychError_none;
	};

	// Cap the number of inputs.
	PsychErrorExit(PsychCapNumInputArgs(4));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs
        
	// Get the image matrix.
	inputMatrixType = PsychGetArgType(2);
	switch (inputMatrixType) {
		case PsychArgType_none:
		case PsychArgType_default:
			PsychErrorExitMsg(PsychError_user, "imageArray argument required");
			break;
		case PsychArgType_uint8:
			PsychAllocInUnsignedByteMatArg(2, TRUE, &inputM, &inputN, &inputP, &inputMatrixByte);
			break;
		case PsychArgType_double:
			PsychAllocInDoubleMatArg(2, TRUE, &inputM, &inputN, &inputP, &inputMatrixDouble);
			break;
		default:
			PsychErrorExitMsg(PsychError_user, "imageArray must be uint8 or double type");
			break;
	}

    if (inputP != 1 && inputP != 3 && inputP != 4) {
        PsychErrorExitMsg(PsychError_user, "Third dimension of image matrix must be 1, 3, or 4");
    }
        
	// Get the window and get the rect and stuff.
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);

    // A no-go on OES:
    if (PsychIsGLES(windowRecord)) {
        PsychErrorExitMsg(PsychError_unimplemented, "Sorry, Screen('PutImage') is not supported on OpenGL-ES embedded graphics hardware. Use 'MakeTexture' and 'DrawTexture' instead.");
    }

	PsychGetRectFromWindowRecord(windowRect, windowRecord);
	if (PsychCopyInRectArg(3, FALSE, positionRect)) {
		if (IsPsychRectEmpty(positionRect)) {
			return PsychError_none;
		}
		positionRectWidth  = (int) PsychGetWidthFromRect(positionRect);
		positionRectHeight = (int) PsychGetHeightFromRect(positionRect);
		if (positionRectWidth != inputN  || positionRectHeight != inputM) {
			// Calculate the zoom factor.
			xZoom = (GLfloat)   positionRectWidth  / (GLfloat) inputN;
			yZoom = -((GLfloat) positionRectHeight / (GLfloat) inputM);
		}
	}
	else {
	   positionRect[kPsychLeft] = 0;
	   positionRect[kPsychTop] = 0;
	   positionRect[kPsychRight] = inputN;
	   positionRect[kPsychBottom] = inputM;
	   PsychCenterRect(positionRect, windowRect, positionRect);
	}
        
	// Allocate memory to hold the pixel data that we'll later pass to OpenGL.
	pixelData = (GLfloat*) PsychMallocTemp(sizeof(GLfloat) * (size_t) inputN * (size_t) inputM * 4);
	
	// Loop through all rows and columns of the pixel data passed from Matlab, extract it,
	// and stick it into 'pixelData'.
	for (iy = 0; iy < inputM; iy++) {
		for (ix = 0; ix < inputN; ix++) {
			if (inputP == 1) { // Grayscale
							   // Extract the grayscale value.
				matrixGrayIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 1, (size_t) iy, (size_t) ix, 0);
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixGrayValue = (GLfloat)inputMatrixByte[matrixGrayIndex];
					if (windowRecord->colorRange > 255) {
						matrixGrayValue /= (GLfloat)255;
					}
					else {
						matrixGrayValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixGrayValue = (GLfloat)(inputMatrixDouble[matrixGrayIndex] / windowRecord->colorRange);
				}
				
				// RGB will all be the same for grayscale.  We'll go ahead and fix alpha to the max value.
				pixelData[pixelIndex++] = matrixGrayValue; // R
				pixelData[pixelIndex++] = matrixGrayValue; // G
				pixelData[pixelIndex++] = matrixGrayValue; // B
				pixelData[pixelIndex++] = (GLfloat) 1.0; // A
			}
			else if (inputP == 3) { // RGB
				matrixRedIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 0);
				matrixGreenIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 1);
				matrixBlueIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 3, (size_t) iy, (size_t) ix, 2);
				
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixRedValue = (GLfloat)inputMatrixByte[matrixRedIndex];
					matrixGreenValue = (GLfloat)inputMatrixByte[matrixGreenIndex];
					matrixBlueValue = (GLfloat)inputMatrixByte[matrixBlueIndex];
					if (windowRecord->colorRange > 255) {
						matrixRedValue /= (GLfloat)255;
						matrixGreenValue /= (GLfloat)255;
						matrixBlueValue /= (GLfloat)255;
					}
					else {
						matrixRedValue /= (GLfloat)windowRecord->colorRange;
						matrixGreenValue /= (GLfloat)windowRecord->colorRange;
						matrixBlueValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixRedValue = (GLfloat)(inputMatrixDouble[matrixRedIndex] / windowRecord->colorRange);
					matrixGreenValue = (GLfloat)(inputMatrixDouble[matrixGreenIndex] / windowRecord->colorRange);
					matrixBlueValue = (GLfloat)(inputMatrixDouble[matrixBlueIndex] / windowRecord->colorRange);
				}
				
				pixelData[pixelIndex++] = matrixRedValue;
				pixelData[pixelIndex++] = matrixGreenValue;
				pixelData[pixelIndex++] = matrixBlueValue;
				pixelData[pixelIndex++] = (GLfloat)1.0;
			}
			else if (inputP == 4) { // RGBA
				matrixRedIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 0);
				matrixGreenIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 1);
				matrixBlueIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 2);
				matrixAlphaIndex = PSYCHINDEXELEMENTFROM3DARRAY((size_t) inputM, (size_t) inputN, 4, (size_t) iy, (size_t) ix, 3);
				
				if (inputMatrixType == PsychArgType_uint8) {
					// If the color range is > 255, then force it to 255 for 8-bit values.
					matrixRedValue = (GLfloat)inputMatrixByte[matrixRedIndex];
					matrixGreenValue = (GLfloat)inputMatrixByte[matrixGreenIndex];
					matrixBlueValue = (GLfloat)inputMatrixByte[matrixBlueIndex];
					matrixAlphaValue = (GLfloat)inputMatrixByte[matrixAlphaIndex];
					if (windowRecord->colorRange > 255) {
						matrixRedValue /= (GLfloat)255;
						matrixGreenValue /= (GLfloat)255;
						matrixBlueValue /= (GLfloat)255;
						matrixAlphaValue /= (GLfloat)255;
					}
					else {
						matrixRedValue /= (GLfloat)windowRecord->colorRange;
						matrixGreenValue /= (GLfloat)windowRecord->colorRange;
						matrixBlueValue /= (GLfloat)windowRecord->colorRange;
						matrixAlphaValue /= (GLfloat)windowRecord->colorRange;
					}
				}
				else {
					matrixRedValue = (GLfloat)(inputMatrixDouble[matrixRedIndex] / windowRecord->colorRange);
					matrixGreenValue = (GLfloat)(inputMatrixDouble[matrixGreenIndex] / (GLfloat)windowRecord->colorRange);
					matrixBlueValue = (GLfloat)(inputMatrixDouble[matrixBlueIndex] / (GLfloat)windowRecord->colorRange);
					matrixAlphaValue = (GLfloat)(inputMatrixDouble[matrixAlphaIndex] / (GLfloat)windowRecord->colorRange);
				}
				
				pixelData[pixelIndex++] = matrixRedValue;
				pixelData[pixelIndex++] = matrixGreenValue;
				pixelData[pixelIndex++] = matrixBlueValue;
				pixelData[pixelIndex++] = matrixAlphaValue;
			}
		} // for (iy = 0; iy < inputM; iy++)
	} // for (ix = 0; ix < inputN; ix++)
	
	// Enable this windowRecords framebuffer as current drawingtarget:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable draw shader:
	PsychSetShader(windowRecord, 0);
	
	PsychUpdateAlphaBlendingFactorLazily(windowRecord);
	
	// Set the raster position so that we can draw starting at this location.
	glRasterPos2f((GLfloat)(positionRect[kPsychLeft]), (GLfloat)(positionRect[kPsychTop]));
	
	// Tell glDrawPixels to unpack the pixel array along GLfloat boundaries.
	glPixelStorei(GL_UNPACK_ALIGNMENT, (GLint)sizeof(GLfloat));
	
	// Dump the pixels onto the screen.
	glPixelZoom(xZoom, yZoom);
	glDrawPixels(inputN, inputM, GL_RGBA, GL_FLOAT, pixelData);
	glPixelZoom(1,1);
	
	PsychFlushGL(windowRecord);  // This does nothing if we are multi buffered, otherwise it glFlushes
	PsychTestForGLErrors();
	
	return PsychError_none;
}
コード例 #9
0
PsychError SCREENDrawDots(void)
{
    PsychWindowRecordType                   *windowRecord, *parentWindowRecord;
    int                                     m,n,p,mc,nc,idot_type;
    int                                     i, nrpoints, nrsize;
    psych_bool                              isArgThere, usecolorvector, isdoublecolors, isuint8colors;
    double                                  *xy, *size, *center, *dot_type, *colors;
    float                                   *sizef;
    unsigned char                           *bytecolors;
    GLfloat                                 pointsizerange[2];
    psych_bool                              lenient = FALSE;
    psych_bool                              usePointSizeArray = FALSE;
    static psych_bool                       nocando = FALSE;
    int                                     oldverbosity;

    // All sub functions should have these two lines
    PsychPushHelp(useString, synopsisString,seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    // Check for superfluous arguments
    PsychErrorExit(PsychCapNumInputArgs(7));   //The maximum number of inputs
    PsychErrorExit(PsychCapNumOutputArgs(4));  //The maximum number of outputs

    // Get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);

    // Get dot_type argument, if any, as it is already needed for a pure point size range query below:
    isArgThere = PsychIsArgPresent(PsychArgIn, 6);
    if(!isArgThere){
        idot_type = 0;
    } else {
        PsychAllocInDoubleMatArg(6, TRUE, &m, &n, &p, &dot_type);
        if(p != 1 || n != 1 || m != 1 || (dot_type[0] < 0 || dot_type[0] > 4))
            PsychErrorExitMsg(PsychError_user, "dot_type must be 0, 1, 2, 3 or 4");
        idot_type = (int) dot_type[0];
    }

    // Query for supported point size range?
    if (PsychGetNumOutputArgs() > 0) {
        PsychSetDrawingTarget(windowRecord);

        // Always query and return aliased range:
        glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
        PsychCopyOutDoubleArg(3, FALSE, (double) pointsizerange[0]);
        PsychCopyOutDoubleArg(4, FALSE, (double) pointsizerange[1]);

        // If driver supports smooth points and usercode doesn't specify a dot type (idot_type 0)
        // or does not request shader + point-sprite based drawing then return smooth point
        // size range as "smooth point size range" - query and assign it. Otherwise, ie., code
        // explicitely wants to use a shader (idot_type >= 3) or has to use one, we will use
        // point-sprites and that means the GL_ALIASED_POINT_SIZE_RANGE limits apply also to
        // our shader based smooth dots, so return those:
        if ((windowRecord->gfxcaps & kPsychGfxCapSmoothPrimitives) && (idot_type < 3))
            glGetFloatv(GL_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);

        // Whatever the final choice for smooth dots is, return its limits:
        PsychCopyOutDoubleArg(1, FALSE, (double) pointsizerange[0]);
        PsychCopyOutDoubleArg(2, FALSE, (double) pointsizerange[1]);

        // If this was only a query then we are done:
        if (PsychGetNumInputArgs() < 2)
            return(PsychError_none);
    }

    // Query, allocate and copy in all vectors...
    nrpoints = 2;
    nrsize = 0;
    colors = NULL;
    bytecolors = NULL;

    PsychPrepareRenderBatch(windowRecord, 2, &nrpoints, &xy, 4, &nc, &mc, &colors, &bytecolors, 3, &nrsize, &size, (GL_FLOAT == PsychGLFloatType(windowRecord)));
    isdoublecolors = (colors) ? TRUE:FALSE;
    isuint8colors  = (bytecolors) ? TRUE:FALSE;
    usecolorvector = (nc>1) ? TRUE:FALSE;

    // Assign sizef as float-type array of sizes, if float mode active, NULL otherwise:
    sizef = (GL_FLOAT == PsychGLFloatType(windowRecord)) ? (float*) size : NULL;

    // Get center argument
    isArgThere = PsychIsArgPresent(PsychArgIn, 5);
    if(!isArgThere){
        center = (double *) PsychMallocTemp(2 * sizeof(double));
        center[0] = 0;
        center[1] = 0;
    } else {
        PsychAllocInDoubleMatArg(5, TRUE, &m, &n, &p, &center);
        if(p!=1 || n!=2 || m!=1) PsychErrorExitMsg(PsychError_user, "center must be a 1-by-2 vector");
    }

    // Turn on antialiasing to draw circles? Or idot_type 4 for shader based square dots?
    if (idot_type) {
        // Smooth point rendering supported by gfx-driver and hardware? And user does not request our own stuff?
        if ((idot_type == 3) || (idot_type == 4) || !(windowRecord->gfxcaps & kPsychGfxCapSmoothPrimitives)) {
            // No. Need to roll our own shader + point sprite solution.
            if (!windowRecord->smoothPointShader && !nocando) {
                parentWindowRecord = PsychGetParentWindow(windowRecord);
                if (!parentWindowRecord->smoothPointShader) {
                    // Build and assign shader to parent window, but allow this to silently fail:
                    oldverbosity = PsychPrefStateGet_Verbosity();
                    PsychPrefStateSet_Verbosity(0);
                    parentWindowRecord->smoothPointShader = PsychCreateGLSLProgram(PointSmoothFragmentShaderSrc, PointSmoothVertexShaderSrc, NULL);
                    PsychPrefStateSet_Verbosity(oldverbosity);
                }

                if (parentWindowRecord->smoothPointShader) {
                    // Got one compiled - assign it for use:
                    windowRecord->smoothPointShader = parentWindowRecord->smoothPointShader;
                }
                else {
                    // Failed. Record this failure so we can avoid retrying at next DrawDots invocation:
                    nocando = TRUE;
                }
            }

            if (windowRecord->smoothPointShader) {
                // Activate point smooth shader, and point sprite operation on texunit 1 for coordinates on set 1:
                PsychSetShader(windowRecord, windowRecord->smoothPointShader);
                glActiveTexture(GL_TEXTURE1);
                glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE);
                glActiveTexture(GL_TEXTURE0);
                glEnable(GL_POINT_SPRITE);

                // Tell shader from where to get its color information: Unclamped high precision colors from texture coordinate set 0, or regular colors from vertex color attribute?
                glUniform1i(glGetUniformLocation(windowRecord->smoothPointShader, "useUnclampedFragColor"), (windowRecord->defaultDrawShader) ? 1 : 0);

                // Tell shader if it should shade smooth round dots, or square dots:
                glUniform1i(glGetUniformLocation(windowRecord->smoothPointShader, "drawRoundDots"), (idot_type != 4) ? 1 : 0);

                // Tell shader about current point size in pointSize uniform:
                glEnable(GL_PROGRAM_POINT_SIZE);
                usePointSizeArray = TRUE;
            }
            else if (idot_type != 4) {
                // Game over for round dot drawing:
                PsychErrorExitMsg(PsychError_user, "Point smoothing unsupported on your system and our shader based implementation failed as well in Screen('DrawDots').");
            }
            else {
                // Type 4 requested but unsupported. Fallback to type 0, which is the same, just slower:
                idot_type = 0;
            }

            // Request square dots, without anti-aliasing: Better compatibility with
            // shader + point sprite operation, and needed for idot_type 0 fallback.
            glDisable(GL_POINT_SMOOTH);
            glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
        }
        else {
            // User wants hw anti-aliased round smooth dots (idot_type = 1 or 2) and
            // hardware + driver support this. Request smooth points from hardware:
            glEnable(GL_POINT_SMOOTH);
            glGetFloatv(GL_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);

            // A dot type of 2 requests highest quality point smoothing:
            glHint(GL_POINT_SMOOTH_HINT, (idot_type > 1) ? GL_NICEST : GL_DONT_CARE);
        }
    }
    else {
        glDisable(GL_POINT_SMOOTH);
        glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
    }

    // Does ES-GPU only support a fixed point diameter of 1 pixel?
    if ((pointsizerange[1] <= 1) && PsychIsGLES(windowRecord)) {
        // Yes. Not much point bailing on this, as it should be easily visible
        // during testing of a studies code on a OpenGL-ES device.
        lenient = TRUE;
    }

    // Accept optional 'lenient' flag, if provided:
    PsychCopyInFlagArg(7, FALSE, &lenient);

    // Set size of a single dot:
    if (!lenient && ((sizef && (sizef[0] > pointsizerange[1] || sizef[0] < pointsizerange[0])) ||
        (!sizef && (size[0] > pointsizerange[1] || size[0] < pointsizerange[0])))) {
        printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                (sizef) ? sizef[0] : size[0], pointsizerange[0], pointsizerange[1]);
        PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
    }

    // Setup initial common point size for all points:
    if (!usePointSizeArray) glPointSize((sizef) ? sizef[0] : (float) size[0]);
    if (usePointSizeArray) glMultiTexCoord1f(GL_TEXTURE2, (sizef) ? sizef[0] : (float) size[0]);

    // Setup modelview matrix to perform translation by 'center':
    glMatrixMode(GL_MODELVIEW);

    // Make a backup copy of the matrix:
    glPushMatrix();

    // Apply a global translation of (center(x,y)) pixels to all following points:
    glTranslatef((float) center[0], (float) center[1], 0);

    // Render the array of 2D-Points - Efficient version:
    // This command sequence allows fast processing of whole arrays
    // of vertices (or points, in this case). It saves the call overhead
    // associated with the original implementation below and is potentially
    // optimized in specific OpenGL implementations.

    // Pass a pointer to the start of the point-coordinate array:
    glVertexPointer(2, PSYCHGLFLOAT, 0, &xy[0]);

    // Enable fast rendering of arrays:
    glEnableClientState(GL_VERTEX_ARRAY);

    if (usecolorvector) {
        PsychSetupVertexColorArrays(windowRecord, TRUE, mc, colors, bytecolors);
    }

    // Render all n points, starting at point 0, render them as POINTS:
    if ((nrsize == 1) || usePointSizeArray) {
        // Only one common size provided, or efficient shader based
        // path in use. We can use the fast path of only submitting
        // one glDrawArrays call to draw all GL_POINTS. For a single
        // common size, no further setup is needed.
        if (nrsize > 1) {
            // Individual size for each dot provided. Setup texture unit 2
            // with a 1D texcoord array that stores per point size info in
            // texture coordinate set 2. But first validate point sizes:
            for (i = 0; i < nrpoints; i++) {
                if (!lenient && ((sizef && (sizef[i] > pointsizerange[1] || sizef[i] < pointsizerange[0])) ||
                    (!sizef && (size[i] > pointsizerange[1] || size[i] < pointsizerange[0])))) {
                    printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                           (sizef) ? sizef[i] : size[i], pointsizerange[0], pointsizerange[1]);
                    PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
                }
            }

            // Sizes are fine, setup texunit 2:
            glClientActiveTexture(GL_TEXTURE2);
            glEnableClientState(GL_TEXTURE_COORD_ARRAY);
            glTexCoordPointer(1, (sizef) ? GL_FLOAT : GL_DOUBLE, 0, (sizef) ? (const GLvoid*) sizef : (const GLvoid*) size);
        }

        // Draw all points:
        glDrawArrays(GL_POINTS, 0, nrpoints);

        if (nrsize > 1) {
            // Individual size for each dot provided. Reset texture unit 2:
            glTexCoordPointer(1, (sizef) ? GL_FLOAT : GL_DOUBLE, 0, (const GLvoid*) NULL);
            glDisableClientState(GL_TEXTURE_COORD_ARRAY);

            // Back to default texunit 0:
            glClientActiveTexture(GL_TEXTURE0);
        }
    }
    else {
        // Different size for each dot provided and we can't use our shader based implementation:
        // We have to do One GL - call per dot:
        for (i=0; i<nrpoints; i++) {
            if (!lenient && ((sizef && (sizef[i] > pointsizerange[1] || sizef[i] < pointsizerange[0])) ||
                (!sizef && (size[i] > pointsizerange[1] || size[i] < pointsizerange[0])))) {
                printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                        (sizef) ? sizef[i] : size[i], pointsizerange[0], pointsizerange[1]);
                PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
            }

            // Setup point size for this point:
            if (!usePointSizeArray) glPointSize((sizef) ? sizef[i] : (float) size[i]);

            // Render point:
            glDrawArrays(GL_POINTS, i, 1);
        }
    }

    // Disable fast rendering of arrays:
    glDisableClientState(GL_VERTEX_ARRAY);
    glVertexPointer(2, PSYCHGLFLOAT, 0, NULL);

    if (usecolorvector) PsychSetupVertexColorArrays(windowRecord, FALSE, 0, NULL, NULL);

    // Restore old matrix from backup copy, undoing the global translation:
    glPopMatrix();

    // turn off antialiasing again
    if (idot_type) {
        glDisable(GL_POINT_SMOOTH);

        if (windowRecord->smoothPointShader) {
            // Deactivate point smooth shader and point sprite operation on texunit 1:
            PsychSetShader(windowRecord, 0);
            glActiveTexture(GL_TEXTURE1);
            glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_FALSE);
            glActiveTexture(GL_TEXTURE0);
            glDisable(GL_POINT_SPRITE);
            glDisable(GL_PROGRAM_POINT_SIZE);
        }
    }

    // Reset pointsize to 1.0
    glPointSize(1);

    // Mark end of drawing op. This is needed for single buffered drawing:
    PsychFlushGL(windowRecord);

    //All psychfunctions require this.
    return(PsychError_none);
}
コード例 #10
0
PsychError SCREENLoadCLUT(void) 
{
    int		i, screenNumber, numEntries, inM, inN, inP, start, bits;
    float 	*outRedTable, *outGreenTable, *outBlueTable, *inRedTable, *inGreenTable, *inBlueTable;
    double	 *inTable, *outTable, maxval;	
    psych_bool     isclutprovided;

    start = 0;
    bits = 8;

    //all subfunctions should have these two lines
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    PsychErrorExit(PsychCapNumOutputArgs(1));
    PsychErrorExit(PsychCapNumInputArgs(4));

    // Read in the screen number:
    PsychCopyInScreenNumberArg(1, TRUE, &screenNumber);
    
    // Read in optional start index:
    PsychCopyInIntegerArg(3, FALSE, &start);
    if (start<0 || start>255) {
      PsychErrorExitMsg(PsychError_user, "Argument startEntry must be between zero and 255.");
    }

    // Read in optional bits argument:
    PsychCopyInIntegerArg(4, FALSE, &bits);
    if (bits<1 || bits>16) {
      PsychErrorExitMsg(PsychError_user, "Argument 'bits' must be between 1 and 16.");
    }

    // Compute allowable maxval:
    maxval=(double) ((1 << bits) - 1);

    // First read the existing gamma table so we can return it.  
    PsychReadNormalizedGammaTable(screenNumber, &numEntries, &outRedTable, &outGreenTable, &outBlueTable);

    // Load and sanity check the input matrix, and convert from float to doubles:
    isclutprovided = PsychAllocInDoubleMatArg(2, FALSE, &inM,  &inN, &inP, &inTable);

    if (isclutprovided) {
      if((inM > 256 - start) || (inM < 1) || (inN != 3) || (inP != 1))
        PsychErrorExitMsg(PsychError_user, "The provided CLUT table must have a size between 1 and (256 - startEntry) rows and 3 columns.");
      
      inRedTable=PsychMallocTemp(sizeof(float) * 256);
      inGreenTable=PsychMallocTemp(sizeof(float) * 256);
      inBlueTable=PsychMallocTemp(sizeof(float) * 256);

      // Copy the table into the new inTable array:
      for(i=0; i<numEntries; i++) {
	inRedTable[i] = outRedTable[i];
	inGreenTable[i] = outGreenTable[i];
	inBlueTable[i] = outBlueTable[i];
      }
    }

    // Allocate output array:
    PsychAllocOutDoubleMatArg(1, FALSE, numEntries, 3, 0, &outTable);

    // Copy read table into output array, scale it by maxval to map range 0.0-1.0 to 0-maxval:
    for(i=0;i<numEntries;i++){
      outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 0, 0)]=(double) outRedTable[i] * maxval;
      outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 1, 0)]=(double) outGreenTable[i] * maxval;
      outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 2, 0)]=(double) outBlueTable[i] * maxval;
    }

    if (isclutprovided) {
      // Now we can overwrite entries 'start' to start+inM of inTable with the user provided table values. We
      // need to scale the users values down from 0-maxval to 0.0-1.0:
      for(i=start; (i<256) && (i-start < inM); i++){
	inRedTable[i]   = (float) (inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i-start, 0, 0)] / maxval);
	inGreenTable[i] = (float) (inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i-start, 1, 0)] / maxval);
	inBlueTable[i]  = (float) (inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i-start, 2, 0)] / maxval);
	
	// Range check:
	if(inRedTable[i]>1 || inRedTable[i]< 0 || inGreenTable[i] > 1 || inGreenTable[i] < 0 || inBlueTable[i] >1 || inBlueTable[i] < 0) {
	  printf("PTB-ERROR: At least one of the CLUT values in row %i is outside the valid range of 0 to %i!\n", i-start+1, ((1 << bits) - 1));
	  PsychErrorExitMsg(PsychError_user, "Tried to set a CLUT with invalid entries.");
	}
      }
      
      // Now set the new gamma table
      PsychLoadNormalizedGammaTable(screenNumber, numEntries, inRedTable, inGreenTable, inBlueTable);
    }

    return(PsychError_none);
}
コード例 #11
0
// This also works as 'AddFrameToMovie', as almost all code is shared with 'GetImage'.
// Only difference is where the fetched pixeldata is sent: To the movie encoder or to
// a matlab/octave matrix.
PsychError SCREENGetImage(void) 
{
	PsychRectType   windowRect, sampleRect;
	int 			nrchannels, invertedY, stride;
	size_t			ix, iy, sampleRectWidth, sampleRectHeight, redReturnIndex, greenReturnIndex, blueReturnIndex, alphaReturnIndex, planeSize;
	int				viewid = 0;
	psych_uint8 	*returnArrayBase, *redPlane;
	float 			*dredPlane;
	double 			*returnArrayBaseDouble;
	PsychWindowRecordType	*windowRecord;
	GLboolean		isDoubleBuffer, isStereo;
	char*           buffername = NULL;
	psych_bool		floatprecision = FALSE;
	GLenum			whichBuffer = 0; 
	int				frameduration = 1;
	int				moviehandle = 0;
	unsigned int	twidth, theight, numChannels, bitdepth;
	unsigned char*	framepixels;
	psych_bool      isOES;

	// Called as 2nd personality "AddFrameToMovie" ?
	psych_bool isAddMovieFrame = PsychMatch(PsychGetFunctionName(), "AddFrameToMovie");

	// All sub functions should have these two lines
	if (isAddMovieFrame) {
		PsychPushHelp(useString2, synopsisString2, seeAlsoString);
	}
	else {
		PsychPushHelp(useString, synopsisString, seeAlsoString);
	}
	if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
	
	//cap the numbers of inputs and outputs
	PsychErrorExit(PsychCapNumInputArgs(5));   //The maximum number of inputs
	PsychErrorExit(PsychCapNumOutputArgs(1));  //The maximum number of outputs
	
	// Get windowRecord for this window:
	PsychAllocInWindowRecordArg(kPsychUseDefaultArgPosition, TRUE, &windowRecord);

    // Embedded subset has very limited support for readback formats :
    isOES = PsychIsGLES(windowRecord);

	// Make sure we don't execute on an onscreen window with pending async flip, as this would interfere
	// by touching the system backbuffer -> Impaired timing of the flip thread and undefined readback
	// of image data due to racing with the ops of the flipperthread on the same drawable.
	//
	// Note: It would be possible to allow drawBuffer readback if the drawBuffer is not multi-sampled
	// or if we can safely multisample-resolve without touching the backbuffer, but checking for all
	// special cases adds ugly complexity and is not really worth the effort, so we don't allow this.
	//
	// If this passes then PsychSetDrawingTarget() below will trigger additional validations to check
	// if execution of 'GetImage' is allowed under the current conditions for offscreen windows and
	// textures:
	if (PsychIsOnscreenWindow(windowRecord) && (windowRecord->flipInfo->asyncstate > 0)) {
		PsychErrorExitMsg(PsychError_user, "Calling this function on an onscreen window with a pending asynchronous flip is not allowed!");
	}

	// Set window as drawingtarget: Even important if this binding is changed later on!
	// We need to make sure all needed transitions are done - esp. in non-imaging mode,
	// so backbuffer is in a useable state:
	PsychSetDrawingTarget(windowRecord);
	
	// Disable shaders:
	PsychSetShader(windowRecord, 0);

	// Soft-Reset drawingtarget. This is important to make sure no FBO's are bound,
	// otherwise the following glGets for GL_DOUBLEBUFFER and GL_STEREO will retrieve
	// wrong results, leading to totally wrong read buffer assignments down the road!!
	PsychSetDrawingTarget((PsychWindowRecordType*) 0x1);

    // Queries only available on desktop OpenGL:
    if (!isOES) {
        glGetBooleanv(GL_DOUBLEBUFFER, &isDoubleBuffer);
        glGetBooleanv(GL_STEREO, &isStereo);
    }
    else {
        // Make something reasonable up:
        isStereo = FALSE;
        isDoubleBuffer = TRUE;
    }

    // Force "quad-buffered" stereo mode if our own homegrown implementation is active:
    if (windowRecord->stereomode == kPsychFrameSequentialStereo) isStereo = TRUE;
    
	// Assign read buffer:
	if(PsychIsOnscreenWindow(windowRecord)) {
		// Onscreen window: We read from the front- or front-left buffer by default.
		// This works on single-buffered and double buffered contexts in a consistent fashion:
		
		// Copy in optional override buffer name:
		PsychAllocInCharArg(3, FALSE, &buffername);
		
		// Override buffer name provided?
		if (buffername) {
			// Which one is it?
			
			// "frontBuffer" is always a valid choice:
			if (PsychMatch(buffername, "frontBuffer")) whichBuffer = GL_FRONT;
			// Allow selection of left- or right front stereo buffer in stereo mode:
			if (PsychMatch(buffername, "frontLeftBuffer") && isStereo) whichBuffer = GL_FRONT_LEFT;
			if (PsychMatch(buffername, "frontRightBuffer") && isStereo) whichBuffer = GL_FRONT_RIGHT;
			// Allow selection of backbuffer in double-buffered mode:
			if (PsychMatch(buffername, "backBuffer") && isDoubleBuffer) whichBuffer = GL_BACK;
			// Allow selection of left- or right back stereo buffer in stereo mode:
			if (PsychMatch(buffername, "backLeftBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_LEFT;
			if (PsychMatch(buffername, "backRightBuffer") && isStereo && isDoubleBuffer) whichBuffer = GL_BACK_RIGHT;
			// Allow AUX buffer access for debug purposes:
			if (PsychMatch(buffername, "aux0Buffer")) whichBuffer = GL_AUX0;
			if (PsychMatch(buffername, "aux1Buffer")) whichBuffer = GL_AUX1;
			if (PsychMatch(buffername, "aux2Buffer")) whichBuffer = GL_AUX2;
			if (PsychMatch(buffername, "aux3Buffer")) whichBuffer = GL_AUX3;

            // If 'drawBuffer' is requested, but imaging pipeline inactive, ie., there is no real 'drawBuffer', then we
            // map this to the backbuffer, as on a non-imaging configuration, the backbuffer is pretty much exactly the
            // equivalent of the 'drawBuffer':
            if (PsychMatch(buffername, "drawBuffer") && !(windowRecord->imagingMode & kPsychNeedFastBackingStore)) whichBuffer = GL_BACK;
		}
		else {
			// Default is frontbuffer:
			whichBuffer = GL_FRONT;
		}
	}
	else {
		// Offscreen window or texture: They only have one buffer, which is the
		// backbuffer in double-buffered mode and the frontbuffer in single buffered mode:
		whichBuffer=(isDoubleBuffer) ? GL_BACK : GL_FRONT;
	}
	
	// Enable this windowRecords framebuffer as current drawingtarget. This should
	// also allow us to "GetImage" from Offscreen windows:
	if ((windowRecord->imagingMode & kPsychNeedFastBackingStore) || (windowRecord->imagingMode & kPsychNeedFastOffscreenWindows)) {
		// Special case: Imaging pipeline active - We need to activate system framebuffer
		// so we really read the content of the framebuffer and not of some FBO:
		if (PsychIsOnscreenWindow(windowRecord)) {
			// It's an onscreen window:
            
            // Homegrown frame-sequential stereo active? Need to remap some stuff:
            if (windowRecord->stereomode == kPsychFrameSequentialStereo) {
                // Back/Front buffers map to backleft/frontleft buffers:
                if (whichBuffer == GL_BACK) whichBuffer = GL_BACK_LEFT;
                if (whichBuffer == GL_FRONT) whichBuffer = GL_FRONT_LEFT;
                
                // Special case: Want to read from stereo front buffer?
                if ((whichBuffer == GL_FRONT_LEFT) || (whichBuffer == GL_FRONT_RIGHT)) {
                    // These don't really exist in our homegrown implementation. Their equivalents are the
                    // regular system front/backbuffers. Due to the bufferswaps happening every video
                    // refresh cycle and the complex logic on when and how to blit finalizedFBOs into
                    // the system buffers and the asynchronous execution of the parallel flipper thread,
                    // we don't know which buffer (GL_BACK or GL_FRONT) corresponds to the leftFront or
                    // rightFront buffer. Let's be stupid and just return the current front buffer for
                    // FRONT_LEFT and the current back buffer for FRONT_RIGHT, but warn user about the
                    // ambiguity:
                    whichBuffer = (whichBuffer == GL_FRONT_LEFT) ? GL_FRONT : GL_BACK;
                    
                    if (PsychPrefStateGet_Verbosity() > 2) {
                        printf("PTB-WARNING: In Screen('GetImage'): You selected retrieval of one of the stereo front buffers, while our homegrown frame-sequential\n");
                        printf("PTB-WARNING: In Screen('GetImage'): stereo display mode is active. This will impair presentation timing and may cause flicker. The\n");
                        printf("PTB-WARNING: In Screen('GetImage'): mapping of 'frontLeftBuffer' and 'frontRightBuffer' to actual stimulus content is very ambiguous\n");
                        printf("PTB-WARNING: In Screen('GetImage'): in this mode. You may therefore end up with the content of the wrong buffer returned! Check results\n");
                        printf("PTB-WARNING: In Screen('GetImage'): carefully! Better read from 'backLeftBuffer' or 'backRightBuffer' for well defined results.\n\n");
                    }
                }
            }
            
            // Homegrown frame-sequential stereo active and backleft or backright buffer requested?
            if (((whichBuffer == GL_BACK_LEFT) || (whichBuffer == GL_BACK_RIGHT)) && (windowRecord->stereomode == kPsychFrameSequentialStereo)) {
                // We can get the equivalent of the backLeft/RightBuffer from the finalizedFBO's in this mode. Get their content:                
				viewid = (whichBuffer == GL_BACK_RIGHT) ? 1 : 0;
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
                
                // Bind finalizedFBO as framebuffer to read from:
                glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->finalizedFBO[viewid]]->fboid);
                
                // Make sure binding gets released at end of routine:
                viewid = -1;
                
            } // No frame-sequential stereo: Full imaging pipeline active and one of the drawBuffer's requested?
            else if (buffername && (PsychMatch(buffername, "drawBuffer")) && (windowRecord->imagingMode & kPsychNeedFastBackingStore)) {
				// Activate drawBufferFBO:
				PsychSetDrawingTarget(windowRecord);
				whichBuffer = GL_COLOR_ATTACHMENT0_EXT;
				
				// Is the drawBufferFBO multisampled?
				viewid = (((windowRecord->stereomode > 0) && (windowRecord->stereodrawbuffer == 1)) ? 1 : 0);
				if (windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->multisample > 0) {
					// It is! We can't read from a multisampled FBO. Need to perform a multisample resolve operation and read
					// from the resolved unisample buffer instead. This is only safe if the unisample buffer is either a dedicated
					// FBO, or - in case its the final system backbuffer etc. - if preflip operations haven't been performed yet.
					// If non dedicated buffer (aka finalizedFBO) and preflip ops have already happened, then the backbuffer contains
					// final content for an upcoming Screen('Flip') and we can't use (and therefore taint) that buffer.
					if ((windowRecord->inputBufferFBO[viewid] == windowRecord->finalizedFBO[viewid]) && (windowRecord->backBufferBackupDone)) {
						// Target for resolve is finalized FBO (probably system backbuffer) and preflip ops have run already. We
						// can't do the resolve op, as this would screw up the backbuffer with the final stimulus:
						printf("PTB-ERROR: Tried to 'GetImage' from a multisampled 'drawBuffer', but can't perform anti-aliasing pass due to\n");
						printf("PTB-ERROR: lack of a dedicated resolve buffer.\n");
						printf("PTB-ERROR: You can get what you wanted by either one of two options:\n");
						printf("PTB-ERROR: Either enable a processing stage in the imaging pipeline, even if you don't need it, e.g., by setting\n");
						printf("PTB-ERROR: the imagingmode argument in the 'OpenWindow' call to kPsychNeedImageProcessing. This will create a\n");
						printf("PTB-ERROR: suitable resolve buffer. Or place the 'GetImage' call before any Screen('DrawingFinished') call, then\n");
						printf("PTB-ERROR: i can (ab-)use the system backbuffer as a temporary resolve buffer.\n\n");
						PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled 'drawBuffer'. Unsupported operation under given conditions.");						
					}
					else {
						// Ok, the inputBufferFBO is a suitable temporary resolve buffer. Perform a multisample resolve blit to it:
						// A simple glBlitFramebufferEXT() call will do the copy & downsample operation:
						glBindFramebufferEXT(GL_READ_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->drawBufferFBO[viewid]]->fboid);
						glBindFramebufferEXT(GL_DRAW_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						glBlitFramebufferEXT(0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 0, 0, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->width, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->height,
											 GL_COLOR_BUFFER_BIT, GL_NEAREST);

						// Bind inputBuffer as framebuffer:
						glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, windowRecord->fboTable[windowRecord->inputBufferFBO[viewid]]->fboid);
						viewid = -1;
					}
				}
			}
			else {
				// No: Activate system framebuffer:
				PsychSetDrawingTarget(NULL);
			}
		}
		else {
			// Offscreen window or texture: Select drawing target as usual,
			// but set color attachment as read buffer:
			PsychSetDrawingTarget(windowRecord);
			whichBuffer = GL_COLOR_ATTACHMENT0_EXT;

			// We do not support multisampled readout:
			if (windowRecord->fboTable[windowRecord->drawBufferFBO[0]]->multisample > 0) {
				printf("PTB-ERROR: You tried to Screen('GetImage', ...); from an offscreen window or texture which has multisample anti-aliasing enabled.\n");
				printf("PTB-ERROR: This operation is not supported. You must first use Screen('CopyWindow') to create a non-multisampled copy of the\n");
				printf("PTB-ERROR: texture or offscreen window, then use 'GetImage' on that copy. The copy will be anti-aliased, so you'll get what you\n");
				printf("PTB-ERROR: wanted with a bit more effort. Sorry for the inconvenience, but this is mostly a hardware limitation.\n\n");
				
				PsychErrorExitMsg(PsychError_user, "Tried to 'GetImage' from a multi-sampled texture or offscreen window. Unsupported operation.");
			}
		}
	}
	else {
		// Normal case: No FBO based imaging - Select drawing target as usual:
		PsychSetDrawingTarget(windowRecord);
	}
	
    if (!isOES) {
        // Select requested read buffer, after some double-check:
        if (whichBuffer == 0) PsychErrorExitMsg(PsychError_user, "Invalid or unknown 'bufferName' argument provided.");
        glReadBuffer(whichBuffer);

        if (PsychPrefStateGet_Verbosity() > 5) printf("PTB-DEBUG: In Screen('GetImage'): GL-Readbuffer whichBuffer = %i\n", whichBuffer);
    }
    else {
        // OES: No way to select readbuffer, it is "hard-coded" by system spec, depending
        // on framebuffer. For bound FBO, always color attachment zero, for system framebuffer,
        // always front buffer on single-buffered setup, back buffer on double-buffered setup:
        if (buffername && PsychIsOnscreenWindow(windowRecord) && (whichBuffer != GL_COLOR_ATTACHMENT0_EXT)) {
            // Some part of the real system framebuffer of an onscreen window explicitely requested.
            if ((windowRecord->windowType == kPsychSingleBufferOnscreen) && (whichBuffer != GL_FRONT) && (PsychPrefStateGet_Verbosity() > 1)) {
                printf("PTB-WARNING: Tried to Screen('GetImage') single-buffered framebuffer '%s', but only 'frontBuffer' supported on OpenGL-ES. Returning that instead.\n", buffername);
            }
            
            if ((windowRecord->windowType == kPsychDoubleBufferOnscreen) && (whichBuffer != GL_BACK) && (PsychPrefStateGet_Verbosity() > 1)) {
                printf("PTB-WARNING: Tried to Screen('GetImage') double-buffered framebuffer '%s', but only 'backBuffer' supported on OpenGL-ES. Returning that instead.\n", buffername);
            }
        }
    }

    if (whichBuffer == GL_COLOR_ATTACHMENT0_EXT) {
        // FBO of texture / offscreen window / onscreen drawBuffer/inputBuffer
        // has size of clientrect -- potentially larger or smaller than backbuffer:
        PsychCopyRect(windowRect, windowRecord->clientrect);
    }
    else {
        // Non-FBO backed texture / offscreen window / onscreen window has size
        // of raw rect (==clientrect for non-onscreen, == backbuffer size for onscreen):
        PsychCopyRect(windowRect, windowRecord->rect);
    }

	// Retrieve optional read rectangle:    
	if(!PsychCopyInRectArg(2, FALSE, sampleRect)) PsychCopyRect(sampleRect, windowRect);
    
	if (IsPsychRectEmpty(sampleRect)) return(PsychError_none);

	// Compute sampling rectangle:
	if ((PsychGetWidthFromRect(sampleRect) >= INT_MAX) || (PsychGetHeightFromRect(sampleRect) >= INT_MAX)) {
		PsychErrorExitMsg(PsychError_user, "Too big 'rect' argument provided. Both width and height of the rect must not exceed 2^31 pixels!");
	}

	sampleRectWidth = (size_t) PsychGetWidthFromRect(sampleRect);
	sampleRectHeight= (size_t) PsychGetHeightFromRect(sampleRect);

	// Regular image fetch to runtime, or adding to a movie?
	if (!isAddMovieFrame) {
		// Regular fetch:

		// Get optional floatprecision flag: We return data with float-precision if
		// this flag is set. By default we return uint8 data:
		PsychCopyInFlagArg(4, FALSE, &floatprecision);
		
		// Get the optional number of channels flag: By default we return 3 channels,
		// the Red, Green, and blue color channel:
		nrchannels = 3;
		PsychCopyInIntegerArg(5, FALSE, &nrchannels);
		if (nrchannels < 1 || nrchannels > 4) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' must be between 1 and 4!");
		
		if (!floatprecision) {
			// Readback of standard 8bpc uint8 pixels:  

            // No Luminance + Alpha on OES:
            if (isOES && (nrchannels == 2)) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' == 2 not supported on OpenGL-ES!");

			PsychAllocOutUnsignedByteMatArg(1, TRUE, (int) sampleRectHeight, (int) sampleRectWidth, (int) nrchannels, &returnArrayBase);
            if (isOES) {
                // We only do RGBA reads on OES, then discard unwanted stuff ourselves:
                redPlane  = (psych_uint8*) PsychMallocTemp((size_t) 4 * sampleRectWidth * sampleRectHeight);
            }
            else {
                redPlane  = (psych_uint8*) PsychMallocTemp((size_t) nrchannels * sampleRectWidth * sampleRectHeight);
            }
			planeSize = sampleRectWidth * sampleRectHeight;

			glPixelStorei(GL_PACK_ALIGNMENT,1);
			invertedY = (int) (windowRect[kPsychBottom] - sampleRect[kPsychBottom]);

            if (isOES) {
                glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_UNSIGNED_BYTE, redPlane);
                stride = 4;
            }
            else {
                stride = nrchannels;
                if (nrchannels==1) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RED, GL_UNSIGNED_BYTE, redPlane); 
                if (nrchannels==2) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE, redPlane);
                if (nrchannels==3) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGB, GL_UNSIGNED_BYTE, redPlane);
                if (nrchannels==4) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_UNSIGNED_BYTE, redPlane);
            }
			
			//in one pass transpose and flip what we read with glReadPixels before returning.  
			//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
			//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
			for(ix=0; ix < sampleRectWidth; ix++){
				for(iy=0; iy < sampleRectHeight; iy++){
					// Compute write-indices for returned data:
					redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
					greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
					blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
					alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
					
					// Always return RED/LUMINANCE channel:
					returnArrayBase[redReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 0];  
					// Other channels on demand:
					if (nrchannels>1) returnArrayBase[greenReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 1];
					if (nrchannels>2) returnArrayBase[blueReturnIndex]  = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 2];
					if (nrchannels>3) returnArrayBase[alphaReturnIndex] = redPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 3];
				}
			}		
		}
		else {
			// Readback of standard 32bpc float pixels into a double matrix:  

            // No Luminance + Alpha on OES:
            if (isOES && (nrchannels == 2)) PsychErrorExitMsg(PsychError_user, "Number of requested channels 'nrchannels' == 2 not supported on OpenGL-ES!");

            // Only float readback on floating point FBO's with EXT_color_buffer_float support:
            if (isOES && ((whichBuffer != GL_COLOR_ATTACHMENT0_EXT) || (windowRecord->bpc < 16) || !glewIsSupported("GL_EXT_color_buffer_float"))) {
                printf("PTB-ERROR: Tried to 'GetImage' pixels in floating point format from a non-floating point surface, or not supported by your hardware.\n");
                PsychErrorExitMsg(PsychError_user, "'GetImage' of floating point values from given object not supported on OpenGL-ES!");
            }

			PsychAllocOutDoubleMatArg(1, TRUE, (int) sampleRectHeight, (int) sampleRectWidth, (int) nrchannels, &returnArrayBaseDouble);
            if (isOES) {
                dredPlane = (float*) PsychMallocTemp((size_t) 4 * sizeof(float) * sampleRectWidth * sampleRectHeight);
                stride = 4;
            }
            else {
                dredPlane = (float*) PsychMallocTemp((size_t) nrchannels * sizeof(float) * sampleRectWidth * sampleRectHeight);
                stride = nrchannels;
            }
			planeSize = sampleRectWidth * sampleRectHeight * sizeof(float);

			glPixelStorei(GL_PACK_ALIGNMENT, 1);
			invertedY = (int) (windowRect[kPsychBottom]-sampleRect[kPsychBottom]);

            if (!isOES) {
                if (nrchannels==1) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RED, GL_FLOAT, dredPlane); 
                if (nrchannels==2) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_LUMINANCE_ALPHA, GL_FLOAT, dredPlane);
                if (nrchannels==3) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGB, GL_FLOAT, dredPlane);
                if (nrchannels==4) glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
            }
            else {
                glReadPixels((int) sampleRect[kPsychLeft], invertedY, (int) sampleRectWidth, (int) sampleRectHeight, GL_RGBA, GL_FLOAT, dredPlane);
            }

			//in one pass transpose and flip what we read with glReadPixels before returning.  
			//-glReadPixels insists on filling up memory in sequence by reading the screen row-wise whearas Matlab reads up memory into columns.
			//-the Psychtoolbox screen as setup by gluOrtho puts 0,0 at the top left of the window but glReadPixels always believes that it's at the bottom left.     
			for(ix=0; ix < sampleRectWidth; ix++){
				for(iy=0; iy < sampleRectHeight; iy++){
					// Compute write-indices for returned data:
					redReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth, nrchannels, iy, ix, 0);
					greenReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 1);
					blueReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 2);
					alphaReturnIndex=PsychIndexElementFrom3DArray(sampleRectHeight, sampleRectWidth,  nrchannels, iy, ix, 3);
					
					// Always return RED/LUMINANCE channel:
					returnArrayBaseDouble[redReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 0];  
					// Other channels on demand:
					if (nrchannels>1) returnArrayBaseDouble[greenReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 1];
					if (nrchannels>2) returnArrayBaseDouble[blueReturnIndex]  = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 2];
					if (nrchannels>3) returnArrayBaseDouble[alphaReturnIndex] = dredPlane[(ix + ((sampleRectHeight-1) - iy ) * sampleRectWidth) * (size_t) stride + 3];
				}
			}		
		}
	}
	
	if (isAddMovieFrame) {
		// Adding of image to a movie requested:
		
		// Get optional moviehandle:
		moviehandle = 0;
		PsychCopyInIntegerArg(4, FALSE, &moviehandle);
		if (moviehandle < 0) PsychErrorExitMsg(PsychError_user, "Provided 'moviehandle' is negative. Must be greater or equal to zero!");
		
		// Get optional frameduration:
		frameduration = 1;
		PsychCopyInIntegerArg(5, FALSE, &frameduration);
		if (frameduration < 1) PsychErrorExitMsg(PsychError_user, "Number of requested framedurations 'frameduration' is negative. Must be greater than zero!");
		
        framepixels = PsychGetVideoFrameForMoviePtr(moviehandle, &twidth, &theight, &numChannels, &bitdepth);
		if (framepixels) {
			glPixelStorei(GL_PACK_ALIGNMENT,1);
			invertedY = (int) (windowRect[kPsychBottom] - sampleRect[kPsychBottom]);
			
            if (isOES) {
                if (bitdepth != 8) PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong bpc value. Only 8 bpc supported on OpenGL-ES.");

                if (numChannels == 4) {
                    // OES: BGRA supported?
                    if (glewIsSupported("GL_EXT_read_format_bgra")) {
                        // Yep: Readback in a compatible and acceptably fast format:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_BGRA, GL_UNSIGNED_BYTE, framepixels);
                    }
                    else {
                        // Suboptimal readback path. will also cause swapped colors in movie writing:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGBA, GL_UNSIGNED_BYTE, framepixels);
                    }
                }
                else if (numChannels == 3) {
                    glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGB, GL_UNSIGNED_BYTE, framepixels);
                }
                else PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong number of channels. Only 3 or 4 channels are supported on OpenGL-ES.");
            }
            else {
                // Desktop-GL: Use optimal format and support 16 bpc bitdepth as well.
                switch (numChannels) {
                    case 4:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_BGRA, (bitdepth <= 8) ? GL_UNSIGNED_INT_8_8_8_8 : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    case 3:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RGB, (bitdepth <= 8) ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    case 1:
                        glReadPixels((int) sampleRect[kPsychLeft], invertedY, twidth, theight, GL_RED, (bitdepth <= 8) ? GL_UNSIGNED_BYTE : GL_UNSIGNED_SHORT, framepixels);
                        break;
                        
                    default:
                        PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed due to wrong number of channels. Only 1, 3 or 4 channels are supported on OpenGL.");
                        break;
                }
            }

            // Add frame to movie, mark it as "upside down", with invalid -1 timestamp and a duration of frameduration ticks:
			if (PsychAddVideoFrameToMovie(moviehandle, frameduration, TRUE, -1) != 0) {
				PsychErrorExitMsg(PsychError_user, "AddFrameToMovie failed with error above!");
			}
		}
		else {
			PsychErrorExitMsg(PsychError_user, "Invalid 'moviePtr' provided. Doesn't correspond to a movie open for recording!");
		}
	}
	
	if (viewid == -1) {
		// Need to reset framebuffer binding to get rid of the inputBufferFBO which is bound due to
		// multisample resolve ops, or of other special FBO bindings --> Activate system framebuffer:
		PsychSetDrawingTarget(NULL);		
	}

	return(PsychError_none);
}
コード例 #12
0
PsychError SCREENLoadNormalizedGammaTable(void) 
{
    int i, screenNumber, numEntries, inM, inN, inP, loadOnNextFlip, physicalDisplay, outputId;
    float *outRedTable, *outGreenTable, *outBlueTable, *inRedTable, *inGreenTable, *inBlueTable;
    double *inTable, *outTable;	
    PsychWindowRecordType *windowRecord;

    //all subfunctions should have these two lines
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    PsychErrorExit(PsychCapNumOutputArgs(1));
    PsychErrorExit(PsychCapNumInputArgs(4));

    // Get optional physicalDisplay argument - It defaults to zero on OS/X, -1 on Linux:
    physicalDisplay = -1;
    PsychCopyInIntegerArg(4, FALSE, &physicalDisplay);

    // Read in the screen number:
    // On OS/X we also accept screen indices for physical displays (as opposed to active dispays).
    // This only makes a difference in mirror-mode, where there is only 1 active display, but that
    // corresponds to two physical displays which can have different gamma setting requirements:
    if ((PSYCH_SYSTEM == PSYCH_OSX) && (physicalDisplay > 0)) {
        PsychCopyInIntegerArg(1, TRUE, &screenNumber);
        if (screenNumber < 1) PsychErrorExitMsg(PsychError_user, "A 'screenNumber' that is smaller than one provided, although 'physicalDisplay' flag set. This is not allowed!");

	// Invert screenNumber as a sign its a physical display, not an active display:
	screenNumber = -1 * screenNumber;
    }
    else {
        PsychCopyInScreenNumberArg(1, TRUE, &screenNumber);
    }

    if ((PSYCH_SYSTEM == PSYCH_LINUX) && (physicalDisplay > -1)) {
	// Affect one specific display output for given screen:
	outputId = physicalDisplay;
    }
    else {
	// Other OS'es, and Linux with default setting: Affect all outputs
	// for a screen.
	outputId = -1;
    }

    // Load and sanity check the input matrix:
    inM = -1; inN = -1; inP = -1;
    if (!PsychAllocInDoubleMatArg(2, FALSE, &inM,  &inN, &inP, &inTable)) {
        // Special case: Allow passing in an empty gamma table argument. This
        // triggers auto-load of identity LUT and setup of GPU for identity passthrough:
        inM = 0; inN = 3; inP = 1;
    }

    // Sanity check dimensions:
    if((inN != 3) || (inP != 1)) PsychErrorExitMsg(PsychError_user, "The gamma table must have 3 columns (Red, Green, Blue).");
	
    // Identity passthrouh setup requested?
    if (inM == 0) {
        // Yes. Try to enable it, return its status code:
        PsychAllocInWindowRecordArg(1, TRUE, &windowRecord);
        i = PsychSetGPUIdentityPassthrough(windowRecord, screenNumber, TRUE);
        PsychCopyOutDoubleArg(1, FALSE, (double) i);
        
        // Done.
        return(PsychError_none);
    }

	#if PSYCH_SYSTEM != PSYCH_WINDOWS
		// OS-X and Linux allow tables with other than 256 slots:
		// OS/X either passes them to hw if in native size, or performs
		// software interpolation to convert it into native size. We allow any table size with 1 - x slots.
		// A table size of 1 row will have a special meaning. It interprets the 1 row of the table as gamma formula
		// min, max, gamma and lets the OS compute a corresponding gamma correction table.
		// A table size of zero rows will trigger an internal upload of an identity table via byte transfer.
		// On Linux we need to interpolate ourselves on non-matching table sizes.
	#else
		// Windows requires 256 slots:
		if((inM != 256) && (inM != 0)) {
			PsychErrorExitMsg(PsychError_user, "The gamma table must have 256 rows.");
		}
	#endif
	
	 // Copy in optional loadOnNextFlip - flag. It defaults to zero. If provided
	 // with a non-zero value, we will defer actual update of the gamma table to
	 // the next bufferswap as initiated via Screen('Flip').
	 loadOnNextFlip = 0;
	 PsychCopyInIntegerArg(3, FALSE, &loadOnNextFlip);

	 if (loadOnNextFlip>0) {
		 if ((PSYCH_SYSTEM == PSYCH_OSX) && (physicalDisplay > 0)) PsychErrorExitMsg(PsychError_user, "Non-zero 'loadOnNextFlip' flag not allowed if 'physicalDisplays' flag is non-zero!");
		 if ((PSYCH_SYSTEM == PSYCH_LINUX) && (physicalDisplay > -1)) PsychErrorExitMsg(PsychError_user, "Non-zero 'loadOnNextFlip' flag not allowed if 'physicalDisplays' setting is positive!");

		 // Allocate tables in associated windowRecord: We will update during next
		 // Flip operation for specified windowRecord.
		 PsychAllocInWindowRecordArg(1, TRUE, &windowRecord);
		 
		 // Sanity checks:
		 if (!PsychIsOnscreenWindow(windowRecord)) PsychErrorExitMsg(PsychError_user, "Target window for gamma table upload is not an onscreen window!");
		 if (windowRecord->inRedTable && loadOnNextFlip!=2) PsychErrorExitMsg(PsychError_user, "This window has already a new gamma table assigned for upload on next Flip!");
		 
		 if (windowRecord->inRedTable && windowRecord->inTableSize != inM) {
			free(windowRecord->inRedTable); windowRecord->inRedTable = NULL;
			free(windowRecord->inGreenTable); windowRecord->inGreenTable = NULL;
			free(windowRecord->inBlueTable); windowRecord->inBlueTable = NULL;
		 }
		 
		 if (windowRecord->inRedTable == NULL) {
			 // Allocate persistent memory:
			 inRedTable=malloc(sizeof(float) * inM);
			 inGreenTable=malloc(sizeof(float) * inM);
			 inBlueTable=malloc(sizeof(float) * inM);
			 
			 // Assign the pointers to the windowRecord:
			 windowRecord->inRedTable = inRedTable;
			 windowRecord->inGreenTable = inGreenTable;
			 windowRecord->inBlueTable = inBlueTable;
			 windowRecord->inTableSize = inM;
		 }
		 else {
			inRedTable = windowRecord->inRedTable;
			inGreenTable = windowRecord->inGreenTable;
			inBlueTable = windowRecord->inBlueTable;
		 }
		
		 windowRecord->loadGammaTableOnNextFlip = (loadOnNextFlip == 1) ? 1 : 0;
	 }
	 else {
		 // Allocate temporary tables: We will update immediately.
		 inRedTable=PsychMallocTemp(sizeof(float) * inM);
		 inGreenTable=PsychMallocTemp(sizeof(float) * inM);
		 inBlueTable=PsychMallocTemp(sizeof(float) * inM);
	 }
	 
    for(i=0;i<inM;i++){
        inRedTable[i]=(float)inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i, 0, 0)];
        inGreenTable[i]=(float)inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i, 1, 0)];
        inBlueTable[i]=(float)inTable[PsychIndexElementFrom3DArray(inM, 3, 0, i, 2, 0)];

        if(inRedTable[i]>1 || inRedTable[i]< 0 || inGreenTable[i] > 1 || inGreenTable[i] < 0 || inBlueTable[i] >1 || inBlueTable[i] < 0)
            PsychErrorExitMsg(PsychError_user, "Gamma Table Values must be in interval 0 =< x =< 1");
    }

    if (loadOnNextFlip < 2) {
        //first read the existing gamma table so we can return it.  
        PsychReadNormalizedGammaTable(screenNumber, outputId, &numEntries, &outRedTable, &outGreenTable, &outBlueTable);
        PsychAllocOutDoubleMatArg(1, FALSE, numEntries, 3, 0, &outTable);
        
        for(i=0;i<numEntries;i++){
            outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 0, 0)]=(double)outRedTable[i];
            outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 1, 0)]=(double)outGreenTable[i];
            outTable[PsychIndexElementFrom3DArray(numEntries, 3, 0, i, 2, 0)]=(double)outBlueTable[i];
        }
    }
     
    //Now set the new gamma table
    if (loadOnNextFlip == 0) PsychLoadNormalizedGammaTable(screenNumber, outputId, inM, inRedTable, inGreenTable, inBlueTable);

    return(PsychError_none);
}
コード例 #13
0
PsychError SCREENDrawDots(void)
{
    PsychWindowRecordType                   *windowRecord;
    int                                     whiteValue, m,n,p,mc,nc,pc,idot_type;
    int                                     i, nrpoints, nrsize;
    boolean                                 isArgThere, usecolorvector, isdoublecolors, isuint8colors;
    double									*xy, *size, *center, *dot_type, *colors;
    unsigned char                           *bytecolors;
    GLfloat									pointsizerange[2];
    double									convfactor;

    // All sub functions should have these two lines
    PsychPushHelp(useString, synopsisString,seeAlsoString);
    if(PsychIsGiveHelp()) {
        PsychGiveHelp();
        return(PsychError_none);
    };

    // Check for superfluous arguments
    PsychErrorExit(PsychCapNumInputArgs(6));   //The maximum number of inputs
    PsychErrorExit(PsychCapNumOutputArgs(0));  //The maximum number of outputs

    // Get the window record from the window record argument and get info from the window record
    PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);

    // Query, allocate and copy in all vectors...
    nrpoints = 2;
    nrsize = 0;
    colors = NULL;
    bytecolors = NULL;

    PsychPrepareRenderBatch(windowRecord, 2, &nrpoints, &xy, 4, &nc, &mc, &colors, &bytecolors, 3, &nrsize, &size);
    isdoublecolors = (colors) ? TRUE:FALSE;
    isuint8colors  = (bytecolors) ? TRUE:FALSE;
    usecolorvector = (nc>1) ? TRUE:FALSE;

    // Get center argument
    isArgThere = PsychIsArgPresent(PsychArgIn, 5);
    if(!isArgThere) {
        center = (double *) PsychMallocTemp(2 * sizeof(double));
        center[0] = 0;
        center[1] = 0;
    } else {
        PsychAllocInDoubleMatArg(5, TRUE, &m, &n, &p, &center);
        if(p!=1 || n!=2 || m!=1) PsychErrorExitMsg(PsychError_user, "center must be a 1-by-2 vector");
    }

    // Get dot_type argument
    isArgThere = PsychIsArgPresent(PsychArgIn, 6);
    if(!isArgThere) {
        idot_type = 0;
    } else {
        PsychAllocInDoubleMatArg(6, TRUE, &m, &n, &p, &dot_type);
        if(p!=1 || n!=1 || m!=1 || (dot_type[0]<0 || dot_type[0]>2))
            PsychErrorExitMsg(PsychError_user, "dot_type must be 0, 1 or 2");
        idot_type = (int) dot_type[0];
    }

    // Child-protection: Alpha blending needs to be enabled for smoothing to work:
    if (idot_type>0 && windowRecord->actualEnableBlending!=TRUE) {
        PsychErrorExitMsg(PsychError_user, "Point smoothing doesn't work with alpha-blending disabled! See Screen('BlendFunction') on how to enable it.");
    }

    // Turn on antialiasing to draw circles
    if(idot_type) {
        glEnable(GL_POINT_SMOOTH);
        glGetFloatv(GL_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
        // A dot type of 2 requests for highest quality point smoothing:
        glHint(GL_POINT_SMOOTH_HINT, (idot_type>1) ? GL_NICEST : GL_DONT_CARE);
    }
    else {
#ifndef GL_ALIASED_POINT_SIZE_RANGE
#define GL_ALIASED_POINT_SIZE_RANGE 0x846D
#endif

        glGetFloatv(GL_ALIASED_POINT_SIZE_RANGE, (GLfloat*) &pointsizerange);
    }

    // Set size of a single dot:
    if (size[0] > pointsizerange[1] || size[0] < pointsizerange[0]) {
        printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
               size[0], pointsizerange[0], pointsizerange[1]);
        PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
    }

    // Setup initial common point size for all points:
    glPointSize(size[0]);

    // Setup modelview matrix to perform translation by 'center':
    glMatrixMode(GL_MODELVIEW);

    // Make a backup copy of the matrix:
    glPushMatrix();

    // Apply a global translation of (center(x,y)) pixels to all following points:
    glTranslated(center[0], center[1], 0);

    // Render the array of 2D-Points - Efficient version:
    // This command sequence allows fast processing of whole arrays
    // of vertices (or points, in this case). It saves the call overhead
    // associated with the original implementation below and is potentially
    // optimized in specific OpenGL implementations.

    // Pass a pointer to the start of the point-coordinate array:
    glVertexPointer(2, GL_DOUBLE, 0, &xy[0]);

    // Enable fast rendering of arrays:
    glEnableClientState(GL_VERTEX_ARRAY);

    if (usecolorvector) {
        if (isdoublecolors) glColorPointer(mc, GL_DOUBLE, 0, colors);
        if (isuint8colors)  glColorPointer(mc, GL_UNSIGNED_BYTE, 0, bytecolors);
        glEnableClientState(GL_COLOR_ARRAY);
    }

    // Render all n points, starting at point 0, render them as POINTS:
    if (nrsize==1) {
        // One common point size for all dots provided. Good! This is very efficiently
        // done with one single render-call:
        glDrawArrays(GL_POINTS, 0, nrpoints);
    }
    else {
        // Different size for each dot provided: We have to do One GL - call per dot.
        // This is *pretty inefficient* and should be reimplemented in the future via
        // Point-Sprite extensions, cleverly used display lists or via vertex-shaders...
        // For now we do it the stupid way:
        for (i=0; i<nrpoints; i++) {
            if (size[i] > pointsizerange[1] || size[i] < pointsizerange[0]) {
                printf("PTB-ERROR: You requested a point size of %f units, which is not in the range (%f to %f) supported by your graphics hardware.\n",
                       size[i], pointsizerange[0], pointsizerange[1]);
                PsychErrorExitMsg(PsychError_user, "Unsupported point size requested in Screen('DrawDots').");
            }

            // Setup point size for this point:
            glPointSize(size[i]);

            // Render point:
            glDrawArrays(GL_POINTS, i, 1);
        }
    }

    // Disable fast rendering of arrays:
    glDisableClientState(GL_VERTEX_ARRAY);
    if (usecolorvector) glDisableClientState(GL_COLOR_ARRAY);

    // Restore old matrix from backup copy, undoing the global translation:
    glPopMatrix();

    // turn off antialiasing again
    if(idot_type) glDisable(GL_POINT_SMOOTH);

    // Reset pointsize to 1.0
    glPointSize(1);

    // Mark end of drawing op. This is needed for single buffered drawing:
    PsychFlushGL(windowRecord);

    //All psychfunctions require this.
    return(PsychError_none);
}
コード例 #14
0
PsychError PSYCHHIDGetCollections(void) 
{
    pRecDevice 			specDevice=NULL;
    UInt32                      numDeviceElements;
    
    const char 			*elementFieldNames[]={"typeMaskName", "name", "deviceIndex", "collectionIndex", "typeValue", "typeName", "usagePageValue",
                                                        "usageValue", "usageName", "memberCollectionIndices", "memberElementIndices"};
    int 			i, numElementStructElements, numElementStructFieldNames=11, elementIndex, deviceIndex;
    PsychGenericScriptType	*elementStruct, *memberCollectionIndicesMat, *memberIOElementIndicesMat;	
    pRecElement			currentElement;
    char			elementTypeName[PSYCH_HID_MAX_DEVICE_ELEMENT_TYPE_NAME_LENGTH];	
    char			usageName[PSYCH_HID_MAX_DEVICE_ELEMENT_USAGE_NAME_LENGTH];
    char			*typeMaskName;
    HIDElementTypeMask		typeMask;
    pRecElement			*memberCollectionRecords, *memberIOElementRecords;     
    double			*memberCollectionIndices, *memberIOElementIndices; 
    int				numSubCollections, numSubIOElements;
    
    	 
    PsychPushHelp(useString, synopsisString, seeAlsoString);
    if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};

    PsychErrorExit(PsychCapNumOutputArgs(1));
    PsychErrorExit(PsychCapNumInputArgs(1));
        
    PsychCopyInIntegerArg(1, TRUE, &deviceIndex);
    PsychHIDVerifyInit();
    specDevice= PsychHIDGetDeviceRecordPtrFromIndex(deviceIndex);
    PsychHIDVerifyOpenDeviceInterfaceFromDeviceRecordPtr(specDevice);
    numDeviceElements= HIDCountDeviceElements(specDevice, kHIDElementTypeCollection);
    numElementStructElements = (int)numDeviceElements;
    PsychAllocOutStructArray(1, FALSE, numElementStructElements, numElementStructFieldNames, elementFieldNames, &elementStruct);
    elementIndex=0;
    for(currentElement=HIDGetFirstDeviceElement(specDevice,kHIDElementTypeCollection); 
        currentElement != NULL; 
        currentElement=HIDGetNextDeviceElement(currentElement, kHIDElementTypeCollection))
        {
        typeMask=HIDConvertElementTypeToMask (currentElement->type);
 	PsychHIDGetTypeMaskStringFromTypeMask(typeMask, &typeMaskName);
        PsychSetStructArrayStringElement("typeMaskName",	elementIndex, 	typeMaskName,	 			elementStruct);
        PsychSetStructArrayStringElement("name",		elementIndex, 	currentElement->name,	 		elementStruct);
        PsychSetStructArrayDoubleElement("deviceIndex",		elementIndex, 	(double)deviceIndex, 			elementStruct);
        PsychSetStructArrayDoubleElement("collectionIndex",	elementIndex, 	(double)elementIndex+1, 		elementStruct);
        PsychSetStructArrayDoubleElement("typeValue",		elementIndex, 	(double)currentElement->type, 		elementStruct);
        HIDGetTypeName(currentElement->type, elementTypeName);
        PsychSetStructArrayStringElement("typeName",		elementIndex, 	elementTypeName,	 		elementStruct);
        PsychSetStructArrayDoubleElement("usagePageValue",	elementIndex, 	(double)currentElement->usagePage, 	elementStruct);
        PsychSetStructArrayDoubleElement("usageValue",		elementIndex, 	(double)currentElement->usage, 		elementStruct);
        HIDGetUsageName (currentElement->usagePage, currentElement->usage, usageName);
        PsychSetStructArrayStringElement("usageName",		elementIndex, 	usageName,	 			elementStruct);
                          
        //find and return the indices of this collection's member collections and indices
        numSubCollections=PsychHIDCountCollectionElements(currentElement, kHIDElementTypeCollection);
        numSubIOElements=PsychHIDCountCollectionElements(currentElement, kHIDElementTypeIO);
        memberCollectionRecords=(pRecElement*)PsychMallocTemp(sizeof(pRecElement) * numSubCollections);
        memberIOElementRecords=(pRecElement*)PsychMallocTemp(sizeof(pRecElement) * numSubIOElements);
        PsychHIDFindCollectionElements(currentElement, kHIDElementTypeCollection, memberCollectionRecords, numSubCollections);
        PsychHIDFindCollectionElements(currentElement, kHIDElementTypeIO, memberIOElementRecords, numSubIOElements);
        memberCollectionIndices=NULL;
        PsychAllocateNativeDoubleMat(1, numSubCollections, 1, &memberCollectionIndices, &memberCollectionIndicesMat);
        memberIOElementIndices=NULL;
        PsychAllocateNativeDoubleMat(1, numSubIOElements, 1, &memberIOElementIndices, &memberIOElementIndicesMat);
        
        for(i=0;i<numSubCollections;i++)
            memberCollectionIndices[i]=PsychHIDGetIndexFromRecord(specDevice, memberCollectionRecords[i], kHIDElementTypeCollection);
        for(i=0;i<numSubIOElements;i++)
            memberIOElementIndices[i]=PsychHIDGetIndexFromRecord(specDevice, memberIOElementRecords[i], kHIDElementTypeIO);
        PsychFreeTemp(memberCollectionRecords);
        PsychFreeTemp(memberIOElementRecords);
        PsychSetStructArrayNativeElement("memberCollectionIndices", 	elementIndex,	memberCollectionIndicesMat,	elementStruct);
        PsychSetStructArrayNativeElement("memberElementIndices", 	elementIndex,	memberIOElementIndicesMat,	elementStruct);

        ++elementIndex; 
    }

    return(PsychError_none);	
}