コード例 #1
0
static void
path_prod(QDP_ColorMatrix *u[], QDP_ColorMatrix *m, int path[], int len,
	  int subl, QDP_Subset subset[], int (*neighsubl)(int subl, int dir))
{
  QDP_ShiftDir fb;
  QDP_ColorMatrix *p=NULL, *s=NULL;
  QDP_Lattice *lat = QDP_get_lattice_M(m);
  int nd = QDP_ndim_L(lat);

  int sn = 0;
  for(int i=0; i<len; i++) {
    int dir = abs(path[i])-1;
    // if the path moves in the + dir then we shift from the backward dir
    fb = path[i]<0 ? QDP_forward : QDP_backward;
    if(fb==QDP_backward) { // path is moving in + dir
      if(i==0) {
	QDP_M_eq_Ma(tm[sn], u[dir], subset[subl]);
      } else {
	QDP_M_eq_Ma_times_M(tm[sn], u[dir], p, subset[subl]);
	QDP_discard_M(p);
      }
      subl = neighsubl(subl, path[i]);
      s = sm[sn][nd+dir];
      QDP_discard_M(s);
      QDP_M_eq_sM(s, tm[sn], QDP_neighbor_L(lat)[dir], fb, eosub(subl));
      //p = t1; t1 = t2; t2 = p;
      sn = 1-sn;
      p = s;
    } else {
      if(i==0) {
	subl = neighsubl(subl, path[i]);
 	QDP_M_eq_M(tm[1-sn], u[dir], subset[subl]);
      } else {
	QDP_M_eq_M(tm[sn], p, subset[subl]);
	QDP_discard_M(p);
	subl = neighsubl(subl, path[i]);
	s = sm[sn][dir];
	QDP_discard_M(s);
	QDP_M_eq_sM(s, tm[sn], QDP_neighbor_L(lat)[dir], fb, eosub(subl));
	QDP_M_eq_M_times_M(tm[1-sn], u[dir], s, subset[subl]);
	QDP_discard_M(s);
      }
      p = tm[1-sn];
    }
  }
  QDP_M_eq_M(m, p, subset[subl]);
  QDP_discard_M(p);
  QDP_discard_M(s);
}
コード例 #2
0
void
QOP_asqtad_force_multi_asvec_qdp(QOP_info_t *info, QDP_ColorMatrix *links[],
				 QDP_ColorMatrix *force[], QOP_asqtad_coeffs_t *coef,
				 REAL eps[], QDP_ColorVector *xin[], int nsrc)
{
#define NC QDP_get_nc(xin[0])
  REAL coeff[nsrc];
  REAL OneLink[nsrc], Lepage[nsrc], Naik[nsrc], FiveSt[nsrc], ThreeSt[nsrc], SevenSt[nsrc];
  REAL mNaik[nsrc], mLepage[nsrc], mFiveSt[nsrc], mThreeSt[nsrc], mSevenSt[nsrc];

  QDP_ColorVector *P3[8][nsrc];

  QDP_ColorVector *P5[8][nsrc];
  QDP_ColorVector *P5tmp[8][8][nsrc];
  QDP_ColorVector *P5s[4][nsrc];
  QDP_ColorVector *P5tmps[4][8][nsrc];

  //QDP_ColorVector *xin[nsrc];
  QDP_ColorVector *xintmp[8][nsrc];
  QDP_ColorVector *Pmu[nsrc];
  QDP_ColorVector *Pmutmp[8][nsrc];
  QDP_ColorVector *Pnumu[nsrc];
  QDP_ColorVector *Pnumutmp[8][nsrc];
  QDP_ColorVector *Prhonumu[nsrc];
  QDP_ColorVector *Prhonumutmp[8][nsrc];
  QDP_ColorVector *P7[nsrc];
  QDP_ColorVector *P7tmp[8][nsrc];
  QDP_ColorVector *P7rho[nsrc];
  QDP_ColorVector *ttv[nsrc];

  int i, dir;
  int mu, nu, rho, sig;

  double nflop1 = 253935;
  double nflop2 = 433968;
  double nflop = nflop1 + (nflop2-nflop1)*(nsrc-1);
  double dtime;
  dtime = -QOP_time();

  ASQTAD_FORCE_BEGIN;

  QOP_trace("test 1\n");
  /* setup parallel transport */
  QDP_ColorMatrix *tmpmat = QDP_create_M();
  for(i=0; i<QOP_common.ndim; i++) {
    fbshift[i] = QDP_neighbor[i];
    fbshiftdir[i] = QDP_forward;
    fblink[i] = links[i];
    fbshift[OPP_DIR(i)] = QDP_neighbor[i];
    fbshiftdir[OPP_DIR(i)] = QDP_backward;
    fblink[OPP_DIR(i)] = QDP_create_M();
    QDP_M_eq_sM(tmpmat, fblink[i], QDP_neighbor[i], QDP_backward, QDP_all);
    QDP_M_eq_Ma(fblink[OPP_DIR(i)], tmpmat, QDP_all);
  }

  tv = ttv;
  for(i=0; i<nsrc; i++) {
    tv[i] = QDP_create_V();
  }

  QOP_trace("test 2\n");
  /* Allocate temporary vectors */
  for(i=0; i<nsrc; i++) {
    Pmu[i] = QDP_create_V();
    Pnumu[i] = QDP_create_V();
    Prhonumu[i] = QDP_create_V();
    P7[i] = QDP_create_V();
    P7rho[i] = QDP_create_V();
    for(dir=0; dir<8; dir++) {
      xintmp[dir][i] = QDP_create_V();
      Pmutmp[dir][i] = QDP_create_V();
      Pnumutmp[dir][i] = QDP_create_V();
      Prhonumutmp[dir][i] = QDP_create_V();
      P7tmp[dir][i] = QDP_create_V();
    }
#if 1
    for(mu=0; mu<4; mu++) {
      P5s[mu][i] = QDP_create_V();
      for(dir=0; dir<8; dir++) {
	P5tmps[mu][dir][i] = QDP_create_V();
      }
    }
#else
    for(mu=0; mu<8; mu++) {
      P5[mu][i] = QDP_create_V();
      for(dir=0; dir<8; dir++) {
	P5tmp[mu][dir][i] = QDP_create_V();
	//printf("%p %p\n", P5tmp[mu][dir][i], &(P5tmp[mu][dir][i])); fflush(stdout);
	if(P5tmp[mu][dir][i]==NULL) {
	  fprintf(stderr, "error: can't create V\n");
	  QDP_abort();
	}
      }
    }
#endif
  }
  //printf("%p\n", P5tmp[0][4][0]); fflush(stdout);

  for(mu=0; mu<8; mu++) {
    for(i=0; i<nsrc; i++) {
      P3[mu][i] = QDP_create_V();
      //P5[mu][i] = QDP_create_V();
    }
  }

  for(mu=0; mu<4; mu++) {
    tempmom_qdp[mu] = force[mu];
    QDP_M_eqm_M(tempmom_qdp[mu], tempmom_qdp[mu], QDP_odd);
  }

  /* Path coefficients times fermion epsilon */
  /* Load path coefficients from table */
  for(i=0; i<nsrc; i++) {
    OneLink[i] = coef->one_link     * eps[i];
    Naik[i]    = coef->naik         * eps[i]; mNaik[i]    = -Naik[i];
    ThreeSt[i] = coef->three_staple * eps[i]; mThreeSt[i] = -ThreeSt[i];
    FiveSt[i]  = coef->five_staple  * eps[i]; mFiveSt[i]  = -FiveSt[i];
    SevenSt[i] = coef->seven_staple * eps[i]; mSevenSt[i] = -SevenSt[i];
    Lepage[i]  = coef->lepage       * eps[i]; mLepage[i]  = -Lepage[i];
  }

#if 0
  printf("nsrc = %i\n", nsrc);
  printf("coeffs = %g %g %g %g %g %g\n", OneLink[0], ThreeSt[0], FiveSt[0],
	 SevenSt[0], Lepage[0], Naik[0]);
#endif

  /* *************************************** */

  QOP_trace("start force loop\n");
  for(mu=0; mu<8; mu++) {
    //u_shift_hw_fermion(temp_x_qdp, Pmu, OPP_DIR(mu), temp_hw[OPP_DIR(mu)]);
    u_shift_color_vecs(xin, Pmu, OPP_DIR(mu), nsrc, xintmp[OPP_DIR(mu)]);

    for(sig=0; sig<8; sig++) if( (sig!=mu)&&(sig!=OPP_DIR(mu)) ) {
      //u_shift_hw_fermion(Pmu, P3[sig], sig, temp_hw[sig]);
      u_shift_color_vecs(Pmu, P3[sig], sig, nsrc, Pmutmp[sig]);

      if(GOES_FORWARDS(sig)) {
	/* Add the force F_sig[x+mu]:         x--+             *
	 *                                   |   |             *
	 *                                   o   o             *
	 * the 1 link in the path: - (numbering starts form 0) */
	add_forces_to_mom(P3[sig], Pmu, sig, mThreeSt, nsrc);
      }
    }

    for(nu=0; nu<8; nu++) if( (nu!=mu)&&(nu!=OPP_DIR(mu)) ) {
      int nP5 = 0;
      //Pnumu = hw_qdp[OPP_DIR(nu)];
      //u_shift_hw_fermion(Pmu, Pnumu, OPP_DIR(nu), temp_hw[OPP_DIR(nu)]);
      u_shift_color_vecs(Pmu, Pnumu, OPP_DIR(nu), nsrc, Pmutmp[OPP_DIR(nu)]);
      //QDP_V_veq_V(Pnumu, P3[OPP_DIR(nu)], QDP_all, nsrc);
      for(sig=0; sig<8; sig++) if( (sig!=mu)&&(sig!=OPP_DIR(mu)) &&
				   (sig!=nu)&&(sig!=OPP_DIR(nu)) ) {
#if 1
	for(i=0; i<nsrc; i++) {
	  P5[sig][i] = P5s[nP5][i];
	  for(dir=0; dir<8; dir++) P5tmp[sig][dir][i] = P5tmps[nP5][dir][i];
	}
#endif
	nP5++;
	//u_shift_hw_fermion(Pnumu, P5[sig], sig, temp_hw[sig]);
	u_shift_color_vecs(Pnumu, P5[sig], sig, nsrc, Pnumutmp[sig]);

	if(GOES_FORWARDS(sig)) {
	  /* Add the force F_sig[x+mu+nu]:      x--+             *
	   *                                   |   |             *
	   *                                   o   o             *
	   * the 2 link in the path: + (numbering starts form 0) */
	  add_forces_to_mom(P5[sig], Pnumu, sig, FiveSt, nsrc);
	}
      }
      QOP_trace("test 4\n");
      for(rho=0; rho<8; rho++) if( (rho!=mu)&&(rho!=OPP_DIR(mu)) &&
				   (rho!=nu)&&(rho!=OPP_DIR(nu)) ) {
	//Prhonumu = hw_qdp[OPP_DIR(rho)];
	//u_shift_hw_fermion(Pnumu, Prhonumu, OPP_DIR(rho), 
	//		 temp_hw[OPP_DIR(rho)] );
	  u_shift_color_vecs(Pnumu, Prhonumu, OPP_DIR(rho), nsrc,
			     Pnumutmp[OPP_DIR(rho)]);
	  //QDP_V_veq_V(Prhonumu, P5[OPP_DIR(rho)], QDP_all, nsrc);
	for(sig=0; sig<8; sig++) if( (sig!=mu )&&(sig!=OPP_DIR(mu )) &&
				     (sig!=nu )&&(sig!=OPP_DIR(nu )) &&
				     (sig!=rho)&&(sig!=OPP_DIR(rho)) ) {
	  /* Length 7 paths */
	  //P7 = hw_qdp[sig];
	  //u_shift_hw_fermion(Prhonumu, P7, sig, temp_hw[sig] );
  QOP_trace("test 43\n");
	  u_shift_color_vecs(Prhonumu, P7, sig, nsrc, Prhonumutmp[sig]);
  QOP_trace("test 44\n");
	  //QDP_V_eq_r_times_V(P7[0], &SevenSt[0], P7[0], QDP_all);
	  //QDP_V_eq_r_times_V(P7[1], &SevenSt[1], P7[1], QDP_all);
	  if(GOES_FORWARDS(sig)) {
	    /* Add the force F_sig[x+mu+nu+rho]:  x--+             *
	     *                                   |   |             *
	     *                                   o   o             *
	     * the 3 link in the path: - (numbering starts form 0) */
  QOP_trace("test 45\n");
	    add_forces_to_mom(P7, Prhonumu, sig, mSevenSt, nsrc);
  QOP_trace("test 46\n");
	    //mom_meq_force(P7, Prhonumu, sig);
	  }
	  /* Add the force F_rho the 2(4) link in the path: +     */
	  //P7rho = hw_qdp[rho];
	  //u_shift_hw_fermion(P7, P7rho, rho, temp_hw[rho]);
  QOP_trace("test 47\n");
	  u_shift_color_vecs(P7, P7rho, rho, nsrc, P7tmp[rho]);
  QOP_trace("test 48\n");
	  side_link_forces(rho,sig,SevenSt,Pnumu,P7,Prhonumu,P7rho, nsrc);
  QOP_trace("test 49\n");
	  //side_link_3f_force2(rho,sig,Pnumu,P7,Prhonumu,P7rho);
	  /* Add the P7rho vector to P5 */
	  for(i=0; i<nsrc; i++) {
	    if(FiveSt[i]!=0) coeff[i] = SevenSt[i]/FiveSt[i];
	    else coeff[i] = 0;
  QOP_trace("test 410\n");
	    QDP_V_peq_r_times_V(P5[sig][i], &coeff[i], P7rho[i], QDP_all);
  QOP_trace("test 411\n");
	  }
	} /* sig */
      } /* rho */
  QOP_trace("test 5\n");
#define P5nu P7
      for(sig=0; sig<8; sig++) if( (sig!=mu)&&(sig!=OPP_DIR(mu)) &&
				   (sig!=nu)&&(sig!=OPP_DIR(nu)) ) {
	/* Length 5 paths */
	/* Add the force F_nu the 1(3) link in the path: -     */
	//P5nu = hw_qdp[nu];
	//u_shift_hw_fermion(P5[sig], P5nu, nu, temp_hw[nu]);
	u_shift_color_vecs(P5[sig], P5nu, nu, nsrc, P5tmp[sig][nu]);
	side_link_forces(nu, sig, mFiveSt, Pmu, P5[sig], Pnumu, P5nu, nsrc);
	/* Add the P5nu vector to P3 */
	for(i=0; i<nsrc; i++) {
	  if(ThreeSt[i]!=0) coeff[i] = FiveSt[i]/ThreeSt[i]; 
	  else coeff[i] = 0;
	  QDP_V_peq_r_times_V(P3[sig][i], &coeff[i], P5nu[i], QDP_all);
	}
      } /* sig */
    } /* nu */

#define Pmumu Pnumu
#define Pmumutmp Pnumutmp
#define P5sig Prhonumu
#define P5sigtmp Prhonumutmp
#define P3mu P7
#define Popmu P7
#define Pmumumu P7
    /* Now the Lepage term... It is the same as 5-link paths with
       nu=mu and FiveSt=Lepage. */
    //u_shift_hw_fermion(Pmu, Pmumu, OPP_DIR(mu), temp_hw[OPP_DIR(mu)] );
    u_shift_color_vecs(Pmu, Pmumu, OPP_DIR(mu), nsrc, Pmutmp[OPP_DIR(mu)]);

    for(sig=0; sig<8; sig++) if( (sig!=mu)&&(sig!=OPP_DIR(mu)) ) {
      //P5sig = hw_qdp[sig];
      //u_shift_hw_fermion(Pmumu, P5sig, sig, temp_hw[sig]);
      u_shift_color_vecs(Pmumu, P5sig, sig, nsrc, Pmumutmp[sig]);
      if(GOES_FORWARDS(sig)) {
	/* Add the force F_sig[x+mu+nu]:      x--+             *
	 *                                   |   |             *
	 *                                   o   o             *
	 * the 2 link in the path: + (numbering starts form 0) */
	add_forces_to_mom(P5sig, Pmumu, sig, Lepage, nsrc);
      }
      /* Add the force F_nu the 1(3) link in the path: -     */
      //P5nu = hw_qdp[mu];
      //u_shift_hw_fermion(P5sig, P5nu, mu, temp_hw[mu]);
      u_shift_color_vecs(P5sig, P5nu, mu, nsrc, P5sigtmp[mu]);
      side_link_forces(mu, sig, mLepage, Pmu, P5sig, Pmumu, P5nu, nsrc);
      /* Add the P5nu vector to P3 */
      for(i=0; i<nsrc; i++) {
	if(ThreeSt[i]!=0) coeff[i] = Lepage[i]/ThreeSt[i];
	else coeff[i] = 0;
	QDP_V_peq_r_times_V(P3[sig][i], &coeff[i], P5nu[i], QDP_all);
      }

      /* Length 3 paths (Not the Naik term) */
      /* Add the force F_mu the 0(2) link in the path: +     */
      if(GOES_FORWARDS(mu)) {
	//P3mu = hw_qdp[mu];  /* OK to clobber P5nu */
	//u_shift_hw_fermion(P3[sig], P3mu, mu, temp_hw[mu]);
	//u_shift_color_vecs(P3[sig], P3mu, mu, 2, temp_hw[mu]);
	for(i=0; i<nsrc; i++) {
	  QDP_V_eq_V(P5sig[i], P3[sig][i], QDP_all);
	}
	u_shift_color_vecs(P5sig, P3mu, mu, nsrc, P5sigtmp[mu]);
      }
      /* The above shift is not needed if mu is backwards */
      side_link_forces(mu, sig, ThreeSt, xin, P3[sig], Pmu, P3mu, nsrc);
    }

    /* Finally the OneLink and the Naik term */
    if(GOES_BACKWARDS(mu)) {
      /* Do only the forward terms in the Dslash */
      /* Because I have shifted with OPP_DIR(mu) Pmu is a forward *
       * shift.                                                   */
      /* The one link */
      add_forces_to_mom(Pmu, xin, OPP_DIR(mu), OneLink, nsrc);
      /* For the same reason Pmumu is the forward double link */

      /* Popmu is a backward shift */
      //Popmu = hw_qdp[mu]; /* OK to clobber P3mu */
      //u_shift_hw_fermion(xin, Popmu, mu, temp_hw[mu]);
      u_shift_color_vecs(xin, Popmu, mu, nsrc, xintmp[mu]);
      /* The Naik */
      /* link no 1: - */
      add_forces_to_mom(Pmumu, Popmu, OPP_DIR(mu), mNaik, nsrc);
      /* Pmumumu can overwrite Popmu which is no longer needed */
      //Pmumumu = hw_qdp[OPP_DIR(mu)];
      //u_shift_hw_fermion(Pmumu, Pmumumu, OPP_DIR(mu), temp_hw[OPP_DIR(mu)]);
      u_shift_color_vecs(Pmumu, Pmumumu, OPP_DIR(mu), nsrc, Pmumutmp[OPP_DIR(mu)]);
      /* link no 0: + */
      add_forces_to_mom(Pmumumu, xin, OPP_DIR(mu), Naik, nsrc);
    } else {
      /* The rest of the Naik terms */
      //Popmu = hw_qdp[mu]; /* OK to clobber P3mu */
      //u_shift_hw_fermion(xin, Popmu, mu, temp_hw[mu]);
      u_shift_color_vecs(xin, Popmu, mu, nsrc, xintmp[mu]);
      /* link no 2: + */
      /* Pmumu is double backward shift */
      add_forces_to_mom(Popmu, Pmumu, mu, Naik, nsrc);
    }
    /* Here we have to do together the Naik term and the one link term */

  }/* mu */
  QOP_trace("test 6\n");
  QOP_trace("test 7\n");

  for(mu=0; mu<4; mu++) {
    QDP_M_eq_M(tmpmat, tempmom_qdp[mu], QDP_even);
    QDP_M_eqm_M(tmpmat, tempmom_qdp[mu], QDP_odd);
    QDP_M_eq_antiherm_M(tempmom_qdp[mu], tmpmat, QDP_all);
  }
  QDP_destroy_M(tmpmat);

  //printf("%p\n", P5tmp[0][4][0]); fflush(stdout);
  //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
  /* Free temporary vectors */
  for(i=0; i<nsrc; i++) {
    QDP_destroy_V(Pmu[i]);
    QDP_destroy_V(Pnumu[i]);
    QDP_destroy_V(Prhonumu[i]);
    QDP_destroy_V(P7[i]);
    QDP_destroy_V(P7rho[i]);
    //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
    for(dir=0; dir<8; dir++) {
      QDP_destroy_V(xintmp[dir][i]);
      QDP_destroy_V(Pmutmp[dir][i]);
      QDP_destroy_V(Pnumutmp[dir][i]);
      QDP_destroy_V(Prhonumutmp[dir][i]);
      QDP_destroy_V(P7tmp[dir][i]);
    }
    //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
    for(mu=0; mu<4; mu++) {
      //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
      QDP_destroy_V(P5s[mu][i]);
      //QDP_destroy_V(P5[mu][i]);
      //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
      for(dir=0; dir<8; dir++) {
	//if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
	QDP_destroy_V(P5tmps[mu][dir][i]);
	//printf("%p\n", P5tmp[mu][dir][i]); fflush(stdout);
	//QDP_destroy_V(P5tmp[mu][dir][i]);
	//if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
      }
      //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
    }
    //if(QDP_this_node==0) { printf("line %i\n",__LINE__); fflush(stdout); }
  }

  //if(QDP_this_node==0) { printf("here3\n"); fflush(stdout); }
  for(mu=0; mu<8; mu++) {
    for(i=0; i<nsrc; i++) {
      QDP_destroy_V(P3[mu][i]);
    }
    //QDP_destroy_V(P5[mu][0]);
    //QDP_destroy_V(P5[mu][1]);
  }

  for(i=0; i<nsrc; i++) {
    QDP_destroy_V(tv[i]);
  }

  //if(QDP_this_node==0) { printf("here4\n"); fflush(stdout); }
  for(i=4; i<8; i++) {
    QDP_destroy_M(fblink[i]);
  }

  dtime += QOP_time();
  info->final_sec = dtime;
  info->final_flop = nflop*QDP_sites_on_node;
  info->status = QOP_SUCCESS;

  ASQTAD_FORCE_END;
#undef NC
}
コード例 #3
0
void 
QOPPC(symanzik_1loop_gauge_force1) (QOP_info_t *info, QOP_GaugeField *gauge, 
		   QOP_Force *force, QOP_gauge_coeffs_t *coeffs, REAL eps)
{
  REAL Plaq, Rect, Pgm ;
  QDP_ColorMatrix *tempmom_qdp[4];
  QDP_ColorMatrix *Amu[6]; // products of 2 links Unu(x)*Umu(x+nu)
  QDP_ColorMatrix *tmpmat;
  QDP_ColorMatrix *tmpmat1;
  QDP_ColorMatrix *tmpmat2;
  QDP_ColorMatrix *staples;
  QDP_ColorMatrix *tmpmat3;
  QDP_ColorMatrix *tmpmat4;

  int i, k;
  int mu, nu, sig;
  double dtime;
  //REAL eb3 = -eps*beta/3.0;
  REAL eb3 = -eps/3.0;
  int j[3][2] = {{1,2},
                 {0,2},
                 {0,1}};
  
  //  QOP_printf0("beta: %e, eb3: %e\n", beta, eb3);
  dtime = -QOP_time();

  for(mu=0; mu<4; mu++) {
    tempmom_qdp[mu] = QDP_create_M();
    QDP_M_eq_zero(tempmom_qdp[mu], QDP_all);
  }

  tmpmat = QDP_create_M();
  for(i=0; i<QOP_common.ndim; i++) {
    fblink[i] = gauge->links[i];
    fblink[OPP_DIR(i)] = QDP_create_M();
    QDP_M_eq_sM(tmpmat, fblink[i], QDP_neighbor[i], QDP_backward, QDP_all);
    QDP_M_eq_Ma(fblink[OPP_DIR(i)], tmpmat, QDP_all);
  }
  

  for(i=0; i<6; i++) {
    Amu[i] = QDP_create_M();
  }

  staples = QDP_create_M();
  tmpmat1 = QDP_create_M();
  tmpmat2 = QDP_create_M();
  tmpmat3 = QDP_create_M();
  tmpmat4 = QDP_create_M();

  Plaq = coeffs->plaquette;
  Rect = coeffs->rectangle;
  Pgm  = coeffs->parallelogram;

  //Construct 3-staples and rectangles
  for(mu=0; mu<4; mu++) {
    i=0;
    for(nu=0; nu<4; nu++) {
      if(nu!=mu){
	// tmpmat1 = Umu(x+nu)
	QDP_M_eq_sM(tmpmat1, fblink[mu], QDP_neighbor[nu], QDP_forward, QDP_all); 
        QDP_M_eq_M_times_M(Amu[i], fblink[nu], tmpmat1, QDP_all);

        //tmpmat2 = Umu(x-nu)
	QDP_M_eq_sM(tmpmat2, fblink[mu], QDP_neighbor[nu], QDP_backward, QDP_all);
        QDP_M_eq_M_times_M(Amu[i+3], fblink[OPP_DIR(nu)], tmpmat2, QDP_all);
       

 
	//tmpmat = U_{nu}(x+mu)
        QDP_M_eq_sM(tmpmat, fblink[nu], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_M_times_Ma(staples, Amu[i], tmpmat, QDP_all);        
        QDP_M_peq_r_times_M(tempmom_qdp[mu], &Plaq, staples, QDP_all);
 
        //tmpmat = U_{-nu}(x+mu)
        QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(nu)], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_Ma_times_M(tmpmat3, fblink[OPP_DIR(nu)], staples, QDP_all);
        QDP_M_eq_M_times_M(tmpmat4, tmpmat3, tmpmat, QDP_all);
        QDP_M_eq_sM(tmpmat, tmpmat4, QDP_neighbor[nu], QDP_forward, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[mu], &Rect, tmpmat, QDP_all);

        QDP_M_eq_Ma_times_M(tmpmat4, tmpmat2, tmpmat3, QDP_all);
        QDP_M_eq_sM(tmpmat, tmpmat4, QDP_neighbor[nu], QDP_forward, QDP_all);
        QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[mu], QDP_backward, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[nu], &Rect, tmpmat3, QDP_all);

        //tmpmat = U_{-nu}(x+mu)
        QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(nu)], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_M_times_Ma(tmpmat3, tmpmat2, tmpmat, QDP_all);
        QDP_M_eq_M_times_Ma(tmpmat, tmpmat3, staples, QDP_all);        
        QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[nu], QDP_forward, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[nu], &Rect, tmpmat3, QDP_all);




        //tmpmat = U_{-nu}(x+mu) 
        QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(nu)], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_M_times_Ma(staples, Amu[i+3], tmpmat, QDP_all);        
        QDP_M_peq_r_times_M(tempmom_qdp[mu], &Plaq, staples, QDP_all);

        QDP_M_eq_Ma_times_M(tmpmat3, fblink[nu], staples, QDP_all);
        QDP_M_eq_sM(tmpmat, fblink[nu], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_M_times_M(tmpmat4, tmpmat3, tmpmat, QDP_all);
        QDP_M_eq_sM(tmpmat, tmpmat4, QDP_neighbor[nu], QDP_backward, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[mu], &Rect, tmpmat, QDP_all);

        QDP_M_eq_Ma_times_M(tmpmat, tmpmat3, tmpmat1, QDP_all);
        QDP_M_eq_sM(tmpmat4, tmpmat, QDP_neighbor[mu], QDP_backward, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[nu], &Rect, tmpmat4, QDP_all);

        QDP_M_eq_sM(tmpmat, fblink[nu], QDP_neighbor[mu], QDP_forward, QDP_all);
        QDP_M_eq_M_times_M(tmpmat3, staples, tmpmat, QDP_all);
        QDP_M_eq_M_times_Ma(tmpmat4, tmpmat3, tmpmat1, QDP_all);
        QDP_M_peq_r_times_M(tempmom_qdp[nu], &Rect, tmpmat4, QDP_all);
        i++;
      }
      
    }

    // Construct the  pgm staples and add them to force
    QDP_M_eq_zero(staples, QDP_all);
    i=0;
    for(nu=0; nu<4; nu++){
      if(nu!=mu){
        k=0;
	for(sig=0; sig<4;sig ++){
	  if(sig!=mu && nu!=sig){
	    
	    // the nu_sig_mu ... staple and 3 reflections
            //tmpmat = Amu["sig"](x+nu)
	    QDP_M_eq_sM(tmpmat, Amu[j[i][k]], QDP_neighbor[nu], QDP_forward, QDP_all);
            //tmpmat1 = Unu(x)*Amu["sig"](x+nu)
            QDP_M_eq_M_times_M(tmpmat1, fblink[nu], tmpmat, QDP_all);   
            //tmpmat3 = Unu(x+mu+sig)
            QDP_M_eq_sM(tmpmat, fblink[nu], QDP_neighbor[mu], QDP_forward, QDP_all);
	    QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[sig], QDP_forward, QDP_all); // HERE?
            //tmpmat2 = Unu(x)*Amu["sig"](x+nu)*adj(Unu(x+mu+sig))
	    QDP_M_eq_M_times_Ma(tmpmat2, tmpmat1, tmpmat3, QDP_all);
            //tmpmat = Usig(x+mu)
	    QDP_M_eq_sM(tmpmat, fblink[sig], QDP_neighbor[mu], QDP_forward, QDP_all);
            //tmpmat1 = Unu(x)*Amu["sig"](x+nu)*adj(Unu(x+mu+sig))*adj(Usig(x+mu))
	    QDP_M_eq_M_times_Ma(tmpmat1, tmpmat2, tmpmat, QDP_all);

	    QDP_M_peq_M(staples, tmpmat1, QDP_all);


            //tmpmat = Amu["sig"](x-nu)
	    QDP_M_eq_sM(tmpmat, Amu[j[i][k]], QDP_neighbor[nu], QDP_backward, QDP_all);
            //tmpmat1 = U_{-nu}(x)*Amu["sig"](x-nu)
            QDP_M_eq_M_times_M(tmpmat1, fblink[OPP_DIR(nu)], tmpmat, QDP_all);   
            //tmpmat3 = U_{-nu}(x+mu+sig)
            QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(nu)], QDP_neighbor[mu], QDP_forward, QDP_all);
	    QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[sig], QDP_forward, QDP_all); // HERE?
            //tmpmat2 = U_{-nu}nu(x)*Amu["sig"](x-nu)*adj(Unu(x+mu+sig))
	    QDP_M_eq_M_times_Ma(tmpmat2, tmpmat1, tmpmat3, QDP_all);
            //tmpmat = Usig(x+mu)
	    QDP_M_eq_sM(tmpmat, fblink[sig], QDP_neighbor[mu], QDP_forward, QDP_all);
            //tmpmat1 = U_{-nu}(x)*Amu["sig"](x-nu)*adj(Unu(x+mu+sig))*adj(Usig(x+mu))
	    QDP_M_eq_M_times_Ma(tmpmat1, tmpmat2, tmpmat, QDP_all);

	    QDP_M_peq_M(staples, tmpmat1, QDP_all);


            //tmpmat = Amu["-sig"](x-nu)
	    QDP_M_eq_sM(tmpmat, Amu[j[i][k]+3], QDP_neighbor[nu], QDP_backward, QDP_all);
            //tmpmat1 = U_{-nu}(x)*Amu["-sig"](x-nu)
            QDP_M_eq_M_times_M(tmpmat1, fblink[OPP_DIR(nu)], tmpmat, QDP_all);   
            //tmpmat = U_{-nu}(x+mu-sig)
            QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(nu)], QDP_neighbor[mu], QDP_forward, QDP_all);
	    QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[sig], QDP_backward, QDP_all); // HERE?
            //tmpmat2 = U_{-nu}nu(x)*Amu["-sig"](x-nu)*adj(Unu(x+mu-sig))
	    QDP_M_eq_M_times_Ma(tmpmat2, tmpmat1, tmpmat3, QDP_all);
            //tmpmat = U_{-sig}(x+mu)
	    QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(sig)], QDP_neighbor[mu], QDP_forward, QDP_all);
            //tmpmat1 = U_{-nu}(x)*Amu["-sig"](x-nu)*adj(Unu(x+mu-sig))*adj(U_{-sig}(x+mu))
	    QDP_M_eq_M_times_Ma(tmpmat1, tmpmat2, tmpmat, QDP_all);

	    QDP_M_peq_M(staples, tmpmat1, QDP_all);

            


            //tmpmat = Amu["-sig"](x+nu)
	    QDP_M_eq_sM(tmpmat, Amu[j[i][k]+3], QDP_neighbor[nu], QDP_forward, QDP_all);
            //tmpmat1 = Unu(x)*Amu["-sig"](x+nu)
            QDP_M_eq_M_times_M(tmpmat1, fblink[nu], tmpmat, QDP_all);   
            //tmpmat3 = Unu(x+mu-sig)
            QDP_M_eq_sM(tmpmat, fblink[nu], QDP_neighbor[mu], QDP_forward, QDP_all);
	    QDP_M_eq_sM(tmpmat3, tmpmat, QDP_neighbor[sig], QDP_backward, QDP_all); // HERE?
            //tmpmat2 = Unu(x)*Amu["-sig"](x+nu)*adj(Unu(x+mu-sig))
	    QDP_M_eq_M_times_Ma(tmpmat2, tmpmat1, tmpmat3, QDP_all);
            //tmpmat = U_{-sig}(x+mu)
	    QDP_M_eq_sM(tmpmat, fblink[OPP_DIR(sig)], QDP_neighbor[mu], QDP_forward, QDP_all);
            //tmpmat1 = Unu(x)*Amu["sig"](x+nu)*adj(Unu(x+mu+sig))*adj(Usig(x+mu))
	    QDP_M_eq_M_times_Ma(tmpmat1, tmpmat2, tmpmat, QDP_all);

	    QDP_M_peq_M(staples, tmpmat1, QDP_all);

	    k++;
	  }//close if sig!=nu ...
	}//close sig loop
	i++;
      }// close if nu!=mu
    }//close the pgm nu loop

    QDP_M_peq_r_times_M(tempmom_qdp[mu], &Pgm, staples, QDP_all);
   

    
  }// closes the mu loop

#ifdef CHKSUM
  QLA_ColorMatrix qcm;
  QLA_Complex det, chk;
  QLA_c_eq_r(chk, 0);
#endif
  for(mu=0; mu<4; mu++){
    QDP_M_eq_M_times_Ma(tmpmat, fblink[mu], tempmom_qdp[mu], QDP_all); // HERE?
    QDP_M_eq_r_times_M_plus_M( tempmom_qdp[mu], &eb3, tmpmat, force->force[mu], QDP_all);// HERE?
    QDP_M_eq_antiherm_M(force->force[mu], tempmom_qdp[mu], QDP_all);// HERE
#ifdef CHKSUM
    QDP_m_eq_sum_M(&qcm, force->force[mu], QDP_all);
    QLA_C_eq_det_M(&det, &qcm);
    QLA_c_peq_c(chk, det);
#endif
  }
#ifdef CHKSUM
  QOP_printf0("chksum: %g %g\n", QLA_real(chk), QLA_imag(chk));
#endif

  //DESTROY various fields

  QDP_destroy_M(tmpmat);
  QDP_destroy_M(tmpmat1);
  QDP_destroy_M(tmpmat2);
  QDP_destroy_M(tmpmat3);
  QDP_destroy_M(staples);
  QDP_destroy_M(tmpmat4);

  for(mu=0; mu<4; mu++){
    QDP_destroy_M(tempmom_qdp[mu]);
  }
  for(i=0; i<6; i++) {
    QDP_destroy_M(Amu[i]);
  }

  for(i=4; i<8; i++) {
    QDP_destroy_M(fblink[i]);
  }

  dtime += QOP_time();

  double nflop = 96720;
  info->final_sec = dtime;
  info->final_flop = nflop*QDP_sites_on_node; 
  info->status = QOP_SUCCESS;
  //QOP_printf0("Time in slow g_force: %e\n", info->final_sec);
} 
コード例 #4
0
ファイル: d_congrad2_qdp.c プロジェクト: erinaldi/milc_qcd
int
congrad_w(int niter, Real rsqmin, Real *final_rsq_ptr) 
{
  int i;
  int iteration;	/* counter for iterations */
  double source_norm;
  double rsqstop;
  QLA_Real a, b;
  double rsq,oldrsq,pkp;	/* Sugar's a,b,resid**2,previous resid*2 */
				/* pkp = cg_p.K.cg_p */
  QLA_Real mkappa;
  QLA_Real sum;
#ifdef CGTIME
  double dtime;
#endif
#ifdef LU
  mkappa = -kappa*kappa;
#else
  mkappa = -kappa;
#endif

  setup_cg();

  for(i=0; i<4; i++) {
    set_M_from_site(gaugelink[i], F_OFFSET(link[i]),EVENANDODD);
  }
  set_D_from_site(psi, F_OFFSET(psi),EVENANDODD);
  set_D_from_site(chi, F_OFFSET(chi),EVENANDODD);

#ifdef PRESHIFT_LINKS
  {
    QDP_ColorMatrix *tcm;
    tcm = QDP_create_M();
    for(i=0; i<4; i++) {
      QDP_M_eq_sM(tcm, gaugelink[i], QDP_neighbor[i], QDP_backward, QDP_all);
      QDP_M_eq_Ma(gaugelink[i+4], tcm, QDP_all);
    }
    QDP_destroy_M(tcm);
  }
#endif

#ifdef CGTIME
  dtime = -dclock();
#endif

  iteration=0;
 start:
  /* mp <-  M_adjoint*M*psi
     r,p <- chi - mp
     rsq = |r|^2
     source_norm = |chi|^2
  */
  rsq = source_norm = 0.0;

#ifdef LU

  QDP_D_eq_D(cgp, psi, QDP_even);
  dslash_special_qdp(tt1, cgp, 1, QDP_odd, temp1);
  dslash_special_qdp(ttt, tt1, 1, QDP_even, temp2);
  QDP_D_eq_r_times_D_plus_D(ttt, &mkappa, ttt, cgp, QDP_even);

  dslash_special_qdp(tt2, ttt, -1, QDP_odd, temp3);
  dslash_special_qdp(mp, tt2, -1, QDP_even, temp4);
  QDP_D_eq_r_times_D_plus_D(mp, &mkappa, mp, ttt, QDP_even);
  QDP_D_eq_D_minus_D(cgr, chi, mp, QDP_even);
  QDP_D_eq_D(cgp, cgr, QDP_even);

  QDP_r_eq_norm2_D(&sum, chi, QDP_even);
  source_norm = sum;
  QDP_r_eq_norm2_D(&sum, cgr, QDP_even);
  rsq = sum;

#else

  QDP_D_eq_D(cgp, psi, QDP_even);
  dslash_special_qdp(ttt, cgp, 1, QDP_all, temp1);
  QDP_D_eq_r_times_D_plus_D(ttt, &mkappa, ttt, cgp, QDP_all);

  dslash_special_qdp(mp, ttt, -1, QDP_all, temp1);
  QDP_D_eq_r_times_D_plus_D(mp, &mkappa, mp, ttt, QDP_all);

  QDP_D_eq_D_minus_D(cgr, chi, mp, QDP_all);
  QDP_D_eq_D(cgp, cgr, QDP_all);

  QDP_r_eq_norm2_D(&sum, chi, QDP_all);
  source_norm = sum;
  QDP_r_eq_norm2_D(&sum, cgr, QDP_all);
  rsq = sum;

#endif

  iteration++ ;	/* iteration counts number of multiplications
		   by M_adjoint*M */
  total_iters++;
  /**if(this_node==0)printf("congrad2: source_norm = %e\n",source_norm);
     if(this_node==0)printf("congrad2: iter %d, rsq %e, pkp %e, a %e\n",
     iteration,(double)rsq,(double)pkp,(double)a );**/
  rsqstop = rsqmin * source_norm;
  if( rsq <= rsqstop ){
    *final_rsq_ptr= (Real)rsq;
    return (iteration);
  }

  /* main loop - do until convergence or time to restart */
  /* 
     oldrsq <- rsq
     mp <- M_adjoint*M*p
     pkp <- p.M_adjoint*M.p
     a <- rsq/pkp
     psi <- psi + a*p
     r <- r - a*mp
     rsq <- |r|^2
     b <- rsq/oldrsq
     p <- r + b*p
  */
  do {
    oldrsq = rsq;
#ifdef LU
    dslash_special_qdp(tt1, cgp, 1, QDP_odd, temp1);
    dslash_special_qdp(ttt, tt1, 1, QDP_even, temp2);
    QDP_D_eq_r_times_D_plus_D(ttt, &mkappa, ttt, cgp, QDP_even);

    dslash_special_qdp(tt2, ttt, -1, QDP_odd, temp3);
    dslash_special_qdp(mp, tt2, -1, QDP_even, temp4);
    QDP_D_eq_r_times_D_plus_D(mp, &mkappa, mp, ttt, QDP_even);

    QDP_r_eq_re_D_dot_D(&sum, cgp, mp, QDP_even);
    pkp = sum;
#else
    dslash_special_qdp(ttt, cgp, 1, QDP_all, temp1);
    QDP_D_eq_r_times_D_plus_D(ttt, &mkappa, ttt, cgp, QDP_all);

    dslash_special_qdp(mp, ttt, -1, QDP_all, temp1);
    QDP_D_eq_r_times_D_plus_D(mp, &mkappa, mp, ttt, QDP_all);

    QDP_r_eq_re_D_dot_D(&sum, cgp, mp, QDP_all);
    pkp = sum;
#endif
    iteration++;
    total_iters++;

    a = rsq / pkp;
    QDP_D_peq_r_times_D(psi, &a, cgp, MYSUBSET);
    QDP_D_meq_r_times_D(cgr, &a, mp, MYSUBSET);
    QDP_r_eq_norm2_D(&sum, cgr, MYSUBSET);
    rsq = sum;

    /**if(this_node==0)printf("congrad2: iter %d, rsq %e, pkp %e, a %e\n",
       iteration,(double)rsq,(double)pkp,(double)a );**/
    if( rsq <= rsqstop ){
      *final_rsq_ptr= (Real)rsq;
#ifdef CGTIME
      dtime += dclock();
      if(this_node==0)
	printf("CONGRAD2: time = %.2e size_r= %.2e iters= %d MF = %.1f\n",
	       dtime,rsq,iteration,
	       (double)6480*iteration*even_sites_on_node/(dtime*1e6));
      //(double)5616*iteration*even_sites_on_node/(dtime*1e6));
#endif
      set_site_from_D(F_OFFSET(psi), psi,EVENANDODD);
      return (iteration);
    }

    b = rsq / oldrsq;
    QDP_D_eq_r_times_D_plus_D(cgp, &b, cgp, cgr, MYSUBSET);

  } while( iteration%niter != 0);

  set_site_from_D(F_OFFSET(psi), psi,EVENANDODD);

  if( iteration < 3*niter ) goto start;
  *final_rsq_ptr= (Real)rsq;
  return(iteration);
}
コード例 #5
0
/* Smearing level i*/
static void 
QOP_hisq_force_multi_smearing_fnmat(QOP_info_t *info, 
				    QDP_ColorMatrix * gf[4],
				    REAL *residues,
				    QDP_ColorVector *x[], 
				    int nterms, 
				    QDP_ColorMatrix *force_accum[4],
				    QDP_ColorMatrix *force_accum_old[4],
				    QDP_ColorMatrix *force_accum_naik_old[4],
				    int internal_num_q_paths,
				    Q_path *internal_q_paths_sorted,
				    int *internal_netbackdir_table)
{
  int i,j,k,lastdir=-99,ipath,ilink;
  int length,dir,odir;
  REAL coeff;

  QDP_ColorMatrix *tmat;
  QDP_ColorMatrix *oprod_along_path[MAX_PATH_LENGTH+1];
  QDP_ColorMatrix *mats_along_path[MAX_PATH_LENGTH+1];
  QDP_ColorMatrix *mat_tmp0,*mat_tmp1, *stmp[8];;
  QDP_ColorVector *vec_tmp[2];

  int netbackdir;
  size_t nflops = 0;

// table of net path displacements (backwards from usual convention)

  Q_path *this_path;	// pointer to current path

  /* Allocate fields */
  for(i=0;i<=MAX_PATH_LENGTH;i++){
    oprod_along_path[i] = QDP_create_M();
  }
  for(i=1;i<=MAX_PATH_LENGTH;i++){ 
    // 0 element is never used (it's unit matrix)
    mats_along_path[i] = QDP_create_M();
  }

  mat_tmp0   = QDP_create_M();
  mat_tmp1   = QDP_create_M();
  for(i=0; i<8; i++) stmp[i] = QDP_create_M();
  tmat       = QDP_create_M();
  vec_tmp[0] = QDP_create_V();
  vec_tmp[1] = QDP_create_V();
 
  // clear force accumulators
  for(dir=XUP;dir<=TUP;dir++)
    QDP_M_eq_zero(force_accum[dir], QDP_all);

  // loop over paths, and loop over links in path 
  for( ipath=0; ipath<internal_num_q_paths; ipath++ ){
    this_path = &(internal_q_paths_sorted[ipath]); 
    if(this_path->forwback== -1)continue;	// skip backwards dslash 
    length = this_path->length;
    netbackdir = internal_netbackdir_table[ipath];

    // move f(i-1) force from current site in positive direction,
    //  this corresponds to outer product |X><Y| calculated at the endpoint of the path 
    if( netbackdir<8) { // Not a Naik path
      link_gather_connection_qdp(oprod_along_path[0] , 
				 force_accum_old[OPP_DIR(netbackdir)],
				 tmat, netbackdir );
    }
    else { // Naik path
      if( NULL==force_accum_naik_old ) {
        QOP_printf0( "hisq_force_multi_smearing_fnmat:  mismatch:\n" );
        QOP_printf0( "force_accum_naik_old is NULL, but path table contains Naik paths(!)\n" );
        exit(0);
      }
      // CONVERSION FROM 3-LINK DIRECTION TO 1-LINK DIRECTION
      link_gather_connection_qdp(oprod_along_path[0] , 
				 force_accum_naik_old[OPP_DIR(netbackdir-8)],
				 tmat, netbackdir );
    }

    // figure out how much of the outer products along the path must be
    // recomputed. j is last one needing recomputation. k is first one.
    j=length-1; // default is recompute all
    if( GOES_BACKWARDS(this_path->dir[0]) ) k=1; else k=0;

    for(ilink=j;ilink>=k;ilink--){
      link_transport_connection_qdp( oprod_along_path[length-ilink], 
				     oprod_along_path[length-ilink-1], gf,
				     mat_tmp0, stmp, this_path->dir[ilink]  );
      nflops += 198;
    }

    // maintain an array of transports "to this point" along the path.
    //	Don't recompute beginning parts of path if same as last path 
    ilink=0; // first link where new transport is needed
    // Sometimes we don't need the matrix for the last link
    if( GOES_FORWARDS(this_path->dir[length-1]) ) k=length-1; else k=length;

    for( ; ilink<k; ilink++ ){
      if( ilink==0 ){
        dir = this_path->dir[0];
	if( GOES_FORWARDS(dir) ){
	  QDP_M_eq_sM(tmat, gf[dir], QDP_neighbor[dir],
		      QDP_backward, QDP_all);
	  QDP_M_eq_Ma(mats_along_path[1], tmat, QDP_all);
	  QDP_discard_M(tmat);
	}
	else{
	  QDP_M_eq_M(mats_along_path[1], gf[OPP_DIR(dir)], QDP_all);
	}
      }
      else { // ilink != 0
        dir = OPP_DIR(this_path->dir[ilink]);

	link_transport_connection_qdp( mats_along_path[ilink+1], 
				       mats_along_path[ilink], gf,
				       mat_tmp0, stmp, dir );
	nflops += 198;
      }
    } // end loop over links

    // A path has (length+1) points, counting the ends.  At first
    //	 point, no "down" direction links have their momenta "at this
    //	 point". At last, no "up" ... 
    if( GOES_FORWARDS(this_path->dir[length-1]) ) k=length-1; else k=length;
    for( ilink=0; ilink<=k; ilink++ ){
      if(ilink<length)dir = this_path->dir[ilink];
      else dir=NODIR;
      coeff = this_path->coeff;
      if( (ilink%2)==1 )coeff = -coeff;
      // add in contribution to the force 
      if( ilink<length && GOES_FORWARDS(dir) ){
	link_gather_connection_qdp(mat_tmp1, 
		       oprod_along_path[length-ilink-1], tmat, dir );
        if(ilink==0) 
	  {
	    QDP_M_eq_M(mat_tmp0,mat_tmp1,QDP_all);
	  }
        else
	  {
	    QDP_M_eq_M_times_Ma(mat_tmp0, mats_along_path[ilink], 
				mat_tmp1, QDP_all);
	    nflops += 198;
	    QDP_M_eq_Ma(mat_tmp1,mat_tmp0,QDP_all);
	  }
	QDP_M_peq_r_times_M(force_accum[dir],&coeff,mat_tmp1,QDP_all);
	nflops += 36;
      }
      if( ilink>0 && GOES_BACKWARDS(lastdir) ){
	odir = OPP_DIR(lastdir);
        if( ilink==1 ){
	  QDP_M_eq_M(mat_tmp0,oprod_along_path[length-ilink],QDP_all);
	  QDP_M_eq_Ma(mat_tmp1,mat_tmp0,QDP_all);
	}
        else{
	  link_gather_connection_qdp(mat_tmp1, mats_along_path[ilink-1], 
				     tmat, odir );
	  QDP_M_eq_M_times_Ma(mat_tmp0, oprod_along_path[length-ilink], 
			      mat_tmp1, QDP_all);
	  nflops += 198;
	  QDP_M_eq_Ma(mat_tmp1, mat_tmp0, QDP_all);
        }
	QDP_M_peq_r_times_M(force_accum[odir],&coeff,mat_tmp1,QDP_all);
	nflops += 36;
      }
      lastdir = dir;
    } // end loop over links in path //
  } // end loop over paths //

  QDP_destroy_V( vec_tmp[0] );
  QDP_destroy_V( vec_tmp[1] );
  QDP_destroy_M( mat_tmp0 );
  QDP_destroy_M( mat_tmp1 );
  QDP_destroy_M( tmat );
  for(i=0; i<8; i++) QDP_destroy_M(stmp[i]);
  for(i=0;i<=MAX_PATH_LENGTH;i++){
    QDP_destroy_M( oprod_along_path[i] );
  }
  for(i=1;i<=MAX_PATH_LENGTH;i++){
    QDP_destroy_M( mats_along_path[i] );
  }

  info->final_flop = ((double)nflops)*QDP_sites_on_node;

  return;
}//hisq_force_multi_smearing_fnmat
コード例 #6
0
void 
QOP_hisq_deriv_multi_fnmat2_qdp(QOP_info_t *info,  
				QOP_FermionLinksHisq *flh,
				QDP_ColorMatrix *deriv[],
				QOP_hisq_coeffs_t *hisq_coeff,
				REAL *residues,
				QDP_ColorVector *x[], 
				int *n_orders_naik)
{
#define NC QDP_get_nc(deriv[0])
  if(!QOP_asqtad.inited) QOP_asqtad_invert_init();

  double dtime = QDP_time();
  double totalflops = 0;
  int siteflops = 0;
  QOP_info_t tinfo;

  QDP_ColorMatrix *Ugf[4], *Vgf[4], *Wgf[4];
  for(int i=0; i<4; i++) {
    Ugf[i] = flh->U_links[i];
    Vgf[i] = flh->V_links[i];
    Wgf[i] = flh->W_unitlinks[i];
  }

  QDP_ColorMatrix *force_accum_0[4];
  QDP_ColorMatrix *force_accum_0_naik[4];
  QDP_ColorMatrix *force_accum_1[4];
  QDP_ColorMatrix *force_accum_1u[4];
  QDP_ColorMatrix *force_accum_2[4];
  QDP_ColorMatrix *force_final[4];
  QDP_ColorMatrix *tmat = QDP_create_M();
  for(int i=0; i<4; i++) {
     force_accum_0[i] = QDP_create_M();
     force_accum_0_naik[i] = QDP_create_M();
     force_accum_1[i] = QDP_create_M();
     force_accum_1u[i] = QDP_create_M();
     force_accum_2[i] = QDP_create_M();
     force_final[i] = QDP_create_M();
     QDP_M_eq_zero(force_accum_2[i], QDP_all);
  }

  int n_naiks = hisq_coeff->n_naiks;
  int nterms = 0;
  for(int inaik = 0; inaik < n_naiks; inaik++)
    nterms += n_orders_naik[inaik];

  // loop on different naik masses
  int n_naik_shift = 0;
  for(int inaik=0; inaik<n_naiks; inaik++) {
    int n_orders_naik_current;
    if( inaik==0 ) {
      n_orders_naik_current = nterms;
    } else {
      n_orders_naik_current = n_orders_naik[inaik];
    }

    QOP_get_mid(&tinfo, force_accum_0, QDP_neighbor, 4, residues+n_naik_shift,
		1, x+n_naik_shift, n_orders_naik_current);
    totalflops += tinfo.final_flop;
    QOP_get_mid(&tinfo, force_accum_0_naik, QOP_common.neighbor3, 4,
		residues+n_naik_shift, 1, x+n_naik_shift,
		n_orders_naik_current);
    totalflops += tinfo.final_flop;
    // compensate for -1 on odd sites here instead of at end
    for(int dir=0; dir<4; dir++) {
      QDP_M_eqm_M(force_accum_0[dir], force_accum_0[dir], QDP_odd);
      QDP_M_eqm_M(force_accum_0_naik[dir], force_accum_0_naik[dir], QDP_odd);
    }

    // smearing level 0
    for(int i=0; i<4; i++) QDP_M_eq_zero(force_accum_1[i], QDP_all);
    if(inaik==0) {
      QOP_asqtad_coeffs_t acoef;
      acoef.one_link = hisq_coeff->asqtad_one_link;
      acoef.three_staple = hisq_coeff->asqtad_three_staple;
      acoef.five_staple = hisq_coeff->asqtad_five_staple;
      acoef.seven_staple = hisq_coeff->asqtad_seven_staple;
      acoef.lepage = hisq_coeff->asqtad_lepage;
      acoef.naik = hisq_coeff->asqtad_naik;
      QOP_asqtad_deriv(&tinfo, Wgf, force_accum_1, &acoef,
		       force_accum_0, force_accum_0_naik);
      //QOP_printf0("HISQ smear0 flops = %g\n", tinfo.final_flop);
      totalflops += tinfo.final_flop;
    } else {
      QOP_asqtad_coeffs_t acoef;
      acoef.one_link = hisq_coeff->difference_one_link;
      acoef.three_staple = 0;
      acoef.five_staple = 0;
      acoef.seven_staple = 0;
      acoef.lepage = 0;
      acoef.naik = hisq_coeff->difference_naik;
      QOP_asqtad_deriv(&tinfo, Wgf, force_accum_1, &acoef,
		       force_accum_0, force_accum_0_naik);
      totalflops += tinfo.final_flop;
    }

    QLA_Real coeff_mult;
    if( inaik==0 ) {
      coeff_mult = 1.0;
    } else {
      coeff_mult = hisq_coeff->eps_naik[inaik];
    }
    for(int dir=0; dir<4; dir++) {
      QDP_M_peq_r_times_M(force_accum_2[dir], &coeff_mult,
			  force_accum_1[dir], QDP_all);
    }
    siteflops += 4*36;

    n_naik_shift += n_orders_naik[inaik];
  }

  // smearing level 1
  QOP_asqtad_coeffs_t acoef;
  acoef.one_link = hisq_coeff->fat7_one_link;
  acoef.three_staple = hisq_coeff->fat7_three_staple;
  acoef.five_staple = hisq_coeff->fat7_five_staple;
  acoef.seven_staple = hisq_coeff->fat7_seven_staple;
  acoef.lepage = 0;
  acoef.naik = 0;
  if(QOP_hisq_links.use_fat7_lepage) {
    acoef.lepage = hisq_coeff->fat7_lepage;
  }

  QOP_hisq_unitarize_method_t umethod = hisq_coeff->umethod;
  if ( umethod==QOP_UNITARIZE_NONE ){

    for(int dir=0; dir<4; dir++)
      QDP_M_eq_zero(force_accum_1[dir], QDP_all);
    QOP_asqtad_deriv(&tinfo, Ugf, force_accum_1, &acoef,
		     force_accum_2, NULL);
    totalflops += tinfo.final_flop;

  } else if ( umethod==QOP_UNITARIZE_RATIONAL ) {

    for(int mu=0; mu<4; mu++) QDP_M_eq_Ma(force_accum_1u[mu], force_accum_2[mu], QDP_all);
    // reunitarization
#if QOP_Colors == 3
    QOP_hisq_force_multi_reunit(&tinfo, Vgf, force_accum_2, force_accum_1u);
#else
    for(int mu=0; mu<4; mu++) {
      QOP_projectU_deriv_qdp(&tinfo, force_accum_2[mu], Wgf[mu], Vgf[mu], force_accum_1u[mu]);
    }
#endif
    //QOP_printf0("reunit flops = %g\n", tinfo.final_flop);
    for(int mu=0; mu<4; mu++) QDP_M_eq_Ma(force_accum_1u[mu], force_accum_2[mu], QDP_all);
    totalflops += tinfo.final_flop;

    for(int dir=0; dir<4; dir++) QDP_M_eq_zero(force_accum_1[dir], QDP_all);
    QOP_asqtad_deriv(&tinfo, Ugf, force_accum_1, &acoef,
		     force_accum_1u, NULL);
    //QOP_printf0("HISQ smear1 flops = %g\n", tinfo.final_flop);
    totalflops += tinfo.final_flop;

  } else {
    QOP_printf0("Unknown or unsupported unitarization method\n");
    exit(1);
  }

  // take into account even/odd parity (it is NOT done in "smearing" routine)
  // eps multiplication done outside QOP 
  // extra factor of 2
  for(int dir=0; dir<4; dir++) {
    QLA_Real treal = 2;
    //QDP_M_peq_r_times_M(deriv[dir], &treal, force_accum_1[dir], QDP_even);
    //QDP_M_meq_r_times_M(deriv[dir], &treal, force_accum_1[dir], QDP_odd);
    QDP_M_peq_r_times_M(deriv[dir], &treal, force_accum_1[dir], QDP_all);
  }
  siteflops += 4*36;

  for(int i=0; i<4; i++) {
     QDP_destroy_M( force_accum_0[i] );
     QDP_destroy_M( force_accum_0_naik[i] );
     QDP_destroy_M( force_accum_1[i] );
     QDP_destroy_M( force_accum_1u[i] );
     QDP_destroy_M( force_accum_2[i] );
     QDP_destroy_M( force_final[i] );
  }
  QDP_destroy_M( tmat );

  totalflops += ((double)siteflops)*QDP_sites_on_node;
  info->final_sec = QDP_time() - dtime;
  info->final_flop = totalflops;
  info->status = QOP_SUCCESS;
#undef NC
}