コード例 #1
0
ファイル: view_source.c プロジェクト: BrianGladman/gsl
FUNCTION(gsl_matrix, view_array_with_tda) (QUALIFIER ATOMIC * base,
                                           const size_t n1, 
                                           const size_t n2,
                                           const size_t tda)
{
  QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW;

  if (n2 > tda)
    {
      GSL_ERROR_VAL ("matrix dimension n2 must not exceed tda",
                     GSL_EINVAL, view);
    }

  {
    TYPE(gsl_matrix) m = NULL_MATRIX;

    m.data = (ATOMIC *)base;
    m.size1 = n1;
    m.size2 = n2;
    m.tda = tda;
    m.block = 0;
    m.owner = 0;

    view.matrix = m;    
    return view;
  }
}
コード例 #2
0
FUNCTION (gsl_matrix, view_array) (QUALIFIER ATOMIC * array, 
                                   const size_t n1, const size_t n2)
{
  QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW;

  if (n1 == 0)
    {
      GSL_ERROR_VAL ("matrix dimension n1 must be positive integer",
                     GSL_EINVAL, view);
    }
  else if (n2 == 0)
    {
      GSL_ERROR_VAL ("matrix dimension n2 must be positive integer",
                     GSL_EINVAL, view);
    }

  {
    TYPE(gsl_matrix) m = NULL_MATRIX;

    m.data = (ATOMIC *)array;
    m.size1 = n1;
    m.size2 = n2;
    m.tda = n2; 
    m.block = 0;
    m.owner = 0;

    view.matrix = m;    
    return view;
  }
}
コード例 #3
0
ファイル: view_source.c プロジェクト: BrianGladman/gsl
FUNCTION (gsl_matrix, view_array) (QUALIFIER ATOMIC * array, 
                                   const size_t n1, const size_t n2)
{
  QUALIFIED_VIEW (_gsl_matrix,view) view = NULL_MATRIX_VIEW;

  {
    TYPE(gsl_matrix) m = NULL_MATRIX;

    m.data = (ATOMIC *)array;
    m.size1 = n1;
    m.size2 = n2;
    m.tda = n2; 
    m.block = 0;
    m.owner = 0;

    view.matrix = m;    
    return view;
  }
}
コード例 #4
0
void
FUNCTION (test, func) (size_t stride, size_t N)
{
  TYPE (gsl_vector) * v0;
  TYPE (gsl_vector) * v;
  QUALIFIED_VIEW(gsl_vector,view) view;

  size_t i, j;

  if (stride == 1) 
    {
      v = FUNCTION (gsl_vector, calloc) (N);
      
      TEST(v->data == 0, "_calloc pointer");
      TEST(v->size != N, "_calloc size");
      TEST(v->stride != 1, "_calloc stride");

      {
        int status = (FUNCTION(gsl_vector,isnull)(v) != 1);
        TEST (status, "_isnull" DESC " on calloc vector");
      }

      FUNCTION (gsl_vector, free) (v);      /* free whatever is in v */
    }

  if (stride == 1) 
    {
      v = FUNCTION (gsl_vector, alloc) (N);
      
      TEST(v->data == 0, "_alloc pointer");
      TEST(v->size != N, "_alloc size");
      TEST(v->stride != 1, "_alloc stride");

      FUNCTION (gsl_vector, free) (v);      /* free whatever is in v */
    }

  if (stride == 1)
    {
      v0 = FUNCTION (gsl_vector, alloc) (N);
      view = FUNCTION (gsl_vector, subvector) (v0, 0, N);
      v = &view.vector;
    }
  else
    {
      v0 = FUNCTION (gsl_vector, alloc) (N * stride);

      for (i = 0; i < N*stride; i++)
        {
          BASE x = ZERO;
          GSL_REAL (x) = (ATOMIC)i;
          GSL_IMAG (x) = (ATOMIC)(i + 1234);
          FUNCTION (gsl_vector, set) (v0, i, x);
        }
      
      view = FUNCTION (gsl_vector, subvector_with_stride) (v0, 0, stride, N);
      v = &view.vector;
    }
      
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        BASE x = ZERO;
        GSL_REAL (x) = (ATOMIC)i;
        GSL_IMAG (x) = (ATOMIC)(i + 1234);
        FUNCTION (gsl_vector, set) (v, i, x);
      }

    for (i = 0; i < N; i++)
      {
        if (v->data[2*i*stride] != (ATOMIC) (i) || v->data[2 * i * stride + 1] != (ATOMIC) (i + 1234))
          status = 1;
      };
  
    TEST(status,"_set" DESC " writes into array");
  }


  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        BASE x, y;
        GSL_REAL (x) = (ATOMIC)i;
        GSL_IMAG (x) = (ATOMIC)(i + 1234);
        y = FUNCTION (gsl_vector, get) (v, i);
        if (!GSL_COMPLEX_EQ (x, y))
          status = 1;
      };

    TEST (status, "_get" DESC " reads from array");
  }
  
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, ptr) (v, i) != (BASE *)v->data + i*stride)
          status = 1;
      };

    TEST (status, "_ptr" DESC " access to array");
  }


  {
    int status = 0;
    
    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, const_ptr) (v, i) != (BASE *)v->data + i*stride)
          status = 1;
      };
    
    TEST (status, "_const_ptr" DESC " access to array");
  }
  
  {
    int status = 0;
    
    for (i = 0; i < N; i++)
      {
        BASE x = ZERO;
        FUNCTION (gsl_vector, set) (v, i, x);
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 1);
    TEST (status, "_isnull" DESC " on null vector") ;
  }

  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        BASE x = ZERO;
        GSL_REAL (x) = (ATOMIC)i;
        GSL_IMAG (x) = (ATOMIC)(i + 1234);
        FUNCTION (gsl_vector, set) (v, i, x);
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on non-null vector") ;
  }

  {
    int status = 0;
    
    FUNCTION (gsl_vector, set_zero) (v);

    for (i = 0; i < N; i++)
      {
        BASE x, y = ZERO;
        x = FUNCTION (gsl_vector, get) (v, i);
        if (!GSL_COMPLEX_EQ (x, y))
          status = 1;
      };

    TEST (status, "_setzero" DESC " on non-null vector") ;
  }

  {
    int status = 0;

    BASE x;
    GSL_REAL (x) = (ATOMIC)27;
    GSL_IMAG (x) = (ATOMIC)(27 + 1234);

    FUNCTION (gsl_vector, set_all) (v, x);

    for (i = 0; i < N; i++)
      {
        BASE y = FUNCTION (gsl_vector, get) (v, i);
        if (!GSL_COMPLEX_EQ (x, y))
          status = 1;
      };

    TEST (status, "_setall" DESC " to non-zero value") ;
  }


  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set_basis) (v, i);

        for (j = 0; j < N; j++)
          {
            BASE x = FUNCTION (gsl_vector, get) (v, j);
            BASE one = ONE;
            BASE zero = ZERO;
              
            if (i == j)
              {
                if (!GSL_COMPLEX_EQ (x, one))
                  status = 1 ;
              }
            else 
              {
                if (!GSL_COMPLEX_EQ (x, zero))
                  status = 1;
              }
          };
      }

    TEST (status, "_setbasis" DESC " over range") ;
  }

  for (i = 0; i < N; i++)
    {
      BASE x = ZERO;
      GSL_REAL (x) = (ATOMIC)i;
      GSL_IMAG (x) = (ATOMIC)(i + 1234);
      FUNCTION (gsl_vector, set) (v, i, x);
    }

  {
    int status;
    BASE x, y, r, s ;
    GSL_REAL(x) = 2 ;
    GSL_IMAG(x) = 2 + 1234;
    GSL_REAL(y) = 5 ;
    GSL_IMAG(y) = 5 + 1234;

    FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ;
    
    r = FUNCTION(gsl_vector,get)(v,2);
    s = FUNCTION(gsl_vector,get)(v,5);

    status = ! GSL_COMPLEX_EQ(r,y) ;
    status |= ! GSL_COMPLEX_EQ(s,x) ;
    
    FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ;
    
    r = FUNCTION(gsl_vector,get)(v,2);
    s = FUNCTION(gsl_vector,get)(v,5);

    status |= ! GSL_COMPLEX_EQ(r,x) ;
    status |= ! GSL_COMPLEX_EQ(s,y) ;
  
    TEST (status, "_swap_elements" DESC " exchanges elements") ;
  }

  { 
    int status = 0;
    
    FUNCTION (gsl_vector,reverse) (v) ;
    
    for (i = 0; i < N; i++)
      {
        BASE x,r ;
        GSL_REAL(x) = (ATOMIC)(N - i - 1) ;
        GSL_IMAG(x) = (ATOMIC)(N - i - 1 + 1234);
        
        r = FUNCTION (gsl_vector, get) (v, i);
        
        status |= !GSL_COMPLEX_EQ(r,x);
      }
    
    gsl_test (status, NAME(gsl_vector) "_reverse" DESC " reverses elements") ;
  }
    
  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array) (v->data, N*stride);
    
    for (i = 0; i < N; i++)
      {
        BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i*stride) ;
        BASE y = FUNCTION (gsl_vector, get) (v, i);
        if (!GSL_COMPLEX_EQ(x,y)) 
          status = 1;
      };

    TEST (status, "_view_array" DESC);
  }

  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array_with_stride) (v->data, stride, N*stride);
    
    for (i = 0; i < N; i++)
      {
        BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ;
        BASE y = FUNCTION (gsl_vector, get) (v, i);
        if (!GSL_COMPLEX_EQ(x,y)) 
          status = 1;
      };

    TEST (status, "_view_array_with_stride" DESC);
  }


  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector) (v, N/3, N/2);
    
    for (i = 0; i < N/2; i++)
      {
        BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ;
        BASE y = FUNCTION (gsl_vector, get) (v, (N/3)+i);
        if (!GSL_COMPLEX_EQ(x,y)) 
          status = 1;
      };

    TEST (status, "_view_subvector" DESC);
  }

  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector_with_stride) (v, N/5, 3, N/4);
    
    for (i = 0; i < N/4; i++)
      {
        BASE x = FUNCTION (gsl_vector, get) (&v1.vector, i) ;
        BASE y = FUNCTION (gsl_vector, get) (v, (N/5)+3*i);
        if (!GSL_COMPLEX_EQ(x,y)) 
          status = 1;
      };

    TEST (status, "_view_subvector_with_stride" DESC);
  }


  {
    int status = 0;
    
    QUALIFIED_REAL_VIEW(gsl_vector,view) vv = FUNCTION(gsl_vector, real) (v);
    
    for (i = 0; i < N; i++)
      {
        ATOMIC xr = REAL_VIEW (gsl_vector, get) (&vv.vector, i) ;
        BASE y = FUNCTION (gsl_vector, get) (v, i);
        ATOMIC yr = GSL_REAL(y);

        if (xr != yr) 
          status = 1;
      };

    TEST (status, "_real" DESC);
  }

  {
    int status = 0;
    
    QUALIFIED_REAL_VIEW(gsl_vector,view) vv = FUNCTION(gsl_vector, imag) (v);
    
    for (i = 0; i < N; i++)
      {
        ATOMIC xr = REAL_VIEW (gsl_vector, get) (&vv.vector, i) ;
        BASE y = FUNCTION (gsl_vector, get) (v, i);
        ATOMIC yr = GSL_IMAG(y);

        if (xr != yr) 
          status = 1;
      };

    TEST (status, "_imag" DESC);
  }


  FUNCTION (gsl_vector, free) (v0);      /* free whatever is in v */
}
コード例 #5
0
ファイル: test_source.c プロジェクト: FMX/gsl
void
FUNCTION (test, func) (size_t stride, size_t N)
{
  TYPE (gsl_vector) * v0;
  TYPE (gsl_vector) * v;
  QUALIFIED_VIEW(gsl_vector,view) view;

  size_t i, j;

  if (stride == 1) 
    {
      v = FUNCTION (gsl_vector, calloc) (N);
      
      TEST(v->data == 0, "_calloc pointer");
      TEST(v->size != N, "_calloc size");
      TEST(v->stride != 1, "_calloc stride");

      {
        int status = (FUNCTION(gsl_vector,isnull)(v) != 1);
        TEST (status, "_isnull" DESC " on calloc vector");
        
        status = (FUNCTION(gsl_vector,ispos)(v) != 0);
        TEST (status, "_ispos" DESC " on calloc vector");

        status = (FUNCTION(gsl_vector,isneg)(v) != 0);
        TEST (status, "_isneg" DESC " on calloc vector");

        status = (FUNCTION(gsl_vector,isnonneg)(v) != 1);
        TEST (status, "_isnonneg" DESC " on calloc vector");

      }

      FUNCTION (gsl_vector, free) (v);      /* free whatever is in v */
    }

  if (stride == 1) 
    {
      v = FUNCTION (gsl_vector, alloc) (N);
      
      TEST(v->data == 0, "_alloc pointer");
      TEST(v->size != N, "_alloc size");
      TEST(v->stride != 1, "_alloc stride");

      FUNCTION (gsl_vector, free) (v);      /* free whatever is in v */
    }

  if (stride == 1)
    {
      v0 = FUNCTION (gsl_vector, alloc) (N);
      view = FUNCTION (gsl_vector, subvector) (v0, 0, N);
      v = &view.vector;
    }
  else
    {
      v0 = FUNCTION (gsl_vector, alloc) (N * stride);

      for (i = 0; i < N*stride; i++)
        {
          v0->data[i] = i;
        }
      
      view = FUNCTION (gsl_vector, subvector_with_stride) (v0, 0, stride, N);
      v = &view.vector;
    }
      
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i);
      }

    for (i = 0; i < N; i++)
      {
        if (v->data[i*stride] != (ATOMIC) (i))
          status = 1;
      };
  
    TEST(status,"_set" DESC " writes into array");
  }


  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (i))
          status = 1;
      };

    TEST (status, "_get" DESC " reads from array");
  }
  
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, ptr) (v, i) != v->data + i*stride)
          status = 1;
      };

    TEST (status, "_ptr" DESC " access to array");
  }


  {
    int status = 0;
    
    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, const_ptr) (v, i) != v->data + i*stride)
          status = 1;
      };
    
    TEST (status, "_const_ptr" DESC " access to array");
  }


  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) 0);
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 1);
    TEST (status, "_isnull" DESC " on null vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 0);
    TEST (status, "_ispos" DESC " on null vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 0);
    TEST (status, "_isneg" DESC " on null vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 1);
    TEST (status, "_isnonneg" DESC " on null vector") ;

  }

  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) (i % 10));
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on non-negative vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 0);
    TEST (status, "_ispos" DESC " on non-negative vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 0);
    TEST (status, "_isneg" DESC " on non-negative vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 1);
    TEST (status, "_isnonneg" DESC " on non-negative vector") ;
  }


#ifndef UNSIGNED
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        ATOMIC vi = (i % 10) - (ATOMIC) 5;
        FUNCTION (gsl_vector, set) (v, i, vi);
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on mixed vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 0);
    TEST (status, "_ispos" DESC " on mixed vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 0);
    TEST (status, "_isneg" DESC " on mixed vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 0);
    TEST (status, "_isnonneg" DESC " on mixed vector") ;
  }

  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, -(ATOMIC) (i % 10));
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on non-positive vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 0);
    TEST (status, "_ispos" DESC " on non-positive vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 0);
    TEST (status, "_isneg" DESC " on non-positive non-null vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 0);
    TEST (status, "_isnonneg" DESC " on non-positive non-null vector") ;
  }
#endif

  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) (i % 10 + 1));
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on positive vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 1);
    TEST (status, "_ispos" DESC " on positive vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 0);
    TEST (status, "_isneg" DESC " on positive vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 1);
    TEST (status, "_isnonneg" DESC " on positive vector") ;
  }


#if (!defined(UNSIGNED) && !defined(BASE_CHAR))
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, -(ATOMIC) (i % 10 + 1));
      }
    
    status = (FUNCTION(gsl_vector,isnull)(v) != 0);
    TEST (status, "_isnull" DESC " on negative vector") ;

    status = (FUNCTION(gsl_vector,ispos)(v) != 0);
    TEST (status, "_ispos" DESC " on negative vector") ;

    status = (FUNCTION(gsl_vector,isneg)(v) != 1);
    TEST (status, "_isneg" DESC " on negative vector") ;

    status = (FUNCTION(gsl_vector,isnonneg)(v) != 0);
    TEST (status, "_isnonneg" DESC " on negative vector") ;
  }
#endif

  {
    int status = 0;
    
    FUNCTION (gsl_vector, set_zero) (v);

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC)0)
          status = 1;
      };

    TEST (status, "_setzero" DESC " on non-null vector") ;
  }

  {
    int status = 0;
    
    FUNCTION (gsl_vector, set_all) (v, (ATOMIC)27);

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) (27))
          status = 1;
      };

    TEST (status, "_setall" DESC " to non-zero value") ;
  }


  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set_basis) (v, i);

        for (j = 0; j < N; j++)
          {
            if (i == j)
              {
                if (FUNCTION (gsl_vector, get) (v, j) != (ATOMIC)1)
                  status = 1 ;
              }
            else 
              {
                if (FUNCTION (gsl_vector, get) (v, j) != (ATOMIC)(0))
                  status = 1;
              }
          };
      }

    TEST (status, "_setbasis" DESC " over range") ;
  }

  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i);
      }

    FUNCTION (gsl_vector, scale) (v, 2.0);

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) ((ATOMIC)i*(ATOMIC)2.0))
          status = 1;
      };

    TEST (status, "_scale" DESC " by 2") ;
  }

  {
    int status = 0;

    FUNCTION (gsl_vector, add_constant) (v, (ATOMIC)7);

    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (v, i) != (ATOMIC) ((ATOMIC)i*(ATOMIC)2.0 + (ATOMIC)7))
          status = 1;
      };

    TEST (status, "_add_constant" DESC) ;
  }
    
  {
    int status = 0;

    for (i = 0; i < N; i++)
      {
        FUNCTION (gsl_vector, set) (v, i, (ATOMIC) i);
      }

    FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ;
    
    status = (FUNCTION(gsl_vector,get)(v,2) != 5) ;
    status |= (FUNCTION(gsl_vector,get)(v,5) != 2) ;
    
    FUNCTION (gsl_vector,swap_elements) (v, 2, 5) ;
    
    status |= (FUNCTION(gsl_vector,get)(v,2) != 2) ;
    status |= (FUNCTION(gsl_vector,get)(v,5) != 5) ;
    
    TEST (status, "_swap_elements" DESC " (2,5)") ;
  }

  {
    int status = 0;

    FUNCTION (gsl_vector,reverse) (v) ;
    
    for (i = 0; i < N; i++)
      {
        status |= (FUNCTION (gsl_vector, get) (v, i) !=  (ATOMIC) (N - i - 1));
      }
    
    TEST (status, "_reverse" DESC " reverses elements") ;
  }


  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array) (v->data, N*stride);
    
    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (&v1.vector, i*stride) != FUNCTION (gsl_vector, get) (v, i)) 
          status = 1;
      };

    TEST (status, "_view_array" DESC);
  }

  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, view_array_with_stride) (v->data, stride, N*stride);
    
    for (i = 0; i < N; i++)
      {
        if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, i)) 
          status = 1;
      };

    TEST (status, "_view_array_with_stride" DESC);
  }


  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector) (v, N/3, N/2);
    
    for (i = 0; i < N/2; i++)
      {
        if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, (N/3) + i)) 
          status = 1;
      };

    TEST (status, "_view_subvector" DESC);
  }

  {
    int status = 0;
    
    QUALIFIED_VIEW(gsl_vector,view) v1 = FUNCTION(gsl_vector, subvector_with_stride) (v, N/5, 3, N/4);
    
    for (i = 0; i < N/4; i++)
      {
        if (FUNCTION (gsl_vector, get) (&v1.vector, i) != FUNCTION (gsl_vector, get) (v, (N/5) + 3*i)) 
          status = 1;
      };

    TEST (status, "_view_subvector_with_stride" DESC);
  }


  {
    BASE exp_max = FUNCTION(gsl_vector,get)(v, 0);
    BASE exp_min = FUNCTION(gsl_vector,get)(v, 0);
    size_t exp_imax = 0, exp_imin = 0;

    for (i = 0; i < N; i++)
      {
        BASE k = FUNCTION(gsl_vector, get) (v, i) ;
        if (k < exp_min) {
          exp_min = FUNCTION(gsl_vector, get) (v, i);
          exp_imin = i;
        }
      }

    for (i = 0; i < N; i++)
      {
        BASE k = FUNCTION(gsl_vector, get) (v, i) ;
        if (k > exp_max) {
          exp_max = FUNCTION(gsl_vector, get) (v, i) ;
          exp_imax = i;
        } 
      }

    {
      BASE max = FUNCTION(gsl_vector, max) (v) ;
      TEST (max != exp_max, "_max returns correct maximum value");
    }

    {
      BASE min = FUNCTION(gsl_vector, min) (v) ;
      TEST (min != exp_min, "_min returns correct minimum value");
    }

    {
      BASE min, max;
      FUNCTION(gsl_vector, minmax) (v, &min, &max);

      TEST (max != exp_max, "_minmax returns correct maximum value");
      TEST (min != exp_min, "_minmax returns correct minimum value");
    }


    {
      size_t imax =  FUNCTION(gsl_vector, max_index) (v) ;
      TEST (imax != exp_imax, "_max_index returns correct maximum i");
    }

    {
      size_t imin = FUNCTION(gsl_vector, min_index) (v) ;
      TEST (imin != exp_imin, "_min_index returns correct minimum i");
    }

    {
      size_t imin, imax;

      FUNCTION(gsl_vector, minmax_index) (v,  &imin, &imax);

      TEST (imax != exp_imax, "_minmax_index returns correct maximum i");
      TEST (imin != exp_imin, "_minmax_index returns correct minimum i");
    }
    
#if FP
    i = N/2;
    FUNCTION(gsl_vector, set) (v, i, GSL_NAN);
    exp_max = GSL_NAN; exp_min = GSL_NAN;
    exp_imax = i; exp_imin = i;

    {
      BASE max = FUNCTION(gsl_vector, max) (v) ;
      gsl_test_abs (max, exp_max, 0, "_max returns correct maximum value for NaN");
    }

    {
      BASE min = FUNCTION(gsl_vector, min) (v) ;
      gsl_test_abs (min, exp_min, 0, "_min returns correct minimum value for NaN");
    }

    {
      BASE min, max;
      FUNCTION(gsl_vector, minmax) (v, &min, &max);

      gsl_test_abs (max, exp_max, 0, "_minmax returns correct maximum value for NaN");
      gsl_test_abs (min, exp_min, 0, "_minmax returns correct minimum value for NaN");
    }


    {
      size_t imax =  FUNCTION(gsl_vector, max_index) (v) ;
      TEST (imax != exp_imax, "_max_index returns correct maximum i for NaN");
    }

    {
      size_t imin = FUNCTION(gsl_vector, min_index) (v) ;
      TEST (imin != exp_imin, "_min_index returns correct minimum i for NaN");
    }

    {
      size_t imin, imax;

      FUNCTION(gsl_vector, minmax_index) (v,  &imin, &imax);

      TEST (imax != exp_imax, "_minmax_index returns correct maximum i for NaN");
      TEST (imin != exp_imin, "_minmax_index returns correct minimum i for NaN");
    }
#endif

  }


  FUNCTION (gsl_vector, free) (v0);      /* free whatever is in v */
}