コード例 #1
0
static int
ssdmd_add(ssd_cache_struct_t *cache_struct, ssdcachemd_entry_t *md_entry,
          log_ctx_t *ctx)
{
    ssdcachelru_entry_t *lru_entry = NULL;
    rb_red_blk_node *node = NULL;
    time_t t;

    // Parameter validation
    if (NULL == cache_struct || NULL == md_entry) {
        sfs_log(ctx, SFS_ERR, "%s: Invalid parameters specified \n",
                __FUNCTION__);
        errno = EINVAL;

        return -1;
    }

    // Insert into md_tree
    pthread_spin_lock(&cache_struct->md_lock);
    node = RBTreeInsert(cache_struct->md_tree,
                        (void *) md_entry->ssd_ce, (void *) md_entry);
    if (NULL == node) {
        sfs_log(ctx, SFS_ERR, "%s: Failed to insert mdentry for ce"
                " %d\n", __FUNCTION__, md_entry->ssd_ce);
        pthread_spin_unlock(&cache_struct->md_lock);

        return -1;
    }
    pthread_spin_lock(&cache_struct->md_lock);

    // Insert into lru_tree
    lru_entry = calloc(sizeof(ssdcachelru_entry_t), 1);
    if (NULL == lru_entry) {
        sfs_log(ctx, SFS_ERR, "%s: Failed to allocate memory for lruentry\n",
                __FUNCTION__);
        RBDelete(cache_struct->md_tree, node);

        return -1;
    }

    t = time(NULL);
    pthread_spin_lock(&cache_struct->lru_lock);
    node = RBTreeInsert(cache_struct->lru_tree,
                        (void*) t, (void *) lru_entry);
    if (NULL == node) {
        sfs_log(ctx, SFS_ERR, "%s: Failed to insert lruentry for ce"
                " %d\n", __FUNCTION__, md_entry->ssd_ce);
        pthread_spin_unlock(&cache_struct->lru_lock);
        free(lru_entry);
        RBDelete(cache_struct->md_tree, node);

        return -1;
    }
    pthread_spin_unlock(&cache_struct->lru_lock);

    return 0;
}
コード例 #2
0
ファイル: dhcp_cache.c プロジェクト: donpadlo/dhcp2db
void dhcp_cache_flush_old(void)
{
	cache_wrlock();

	cache_now = time(NULL);

	if(cache_last_flush + CACHE_FLUSH_PERIOD > cache_now)
	{
		cache_unlock();
		return;
	}

	log_wr(DLOG, "Flushing cache: last flush ts - %lu, flush period - %lu, now is %lu.",
			cache_last_flush, CACHE_FLUSH_PERIOD, cache_now);

	size_t num_del = 0;

	dhcp_fqueue_t * deleting_queue = search_obsolete_nodes(cache->root->left, NULL);


	char str_ether[STR_ETHER_ALEN + 1];
	char str_ipaddr[2][IP4_MAXSTR_ALEN + 1];

	dhcp_fqueue_t * q_ptr;
	dhcp_cache_node_t * del_node;
	uint32_t gw_ipaddr;

	/* Removing him's if exists */
	while(deleting_queue)
	{
		del_node = deleting_queue->node->info;

		etheraddr_bin_to_str(del_node->cli_ethaddr, str_ether);
		iptos(del_node->cached_response.dhcp_data.you_iaddr.s_addr, str_ipaddr[0]);
		gw_ipaddr = del_node->gw_ipaddr;

		RBDelete(cache, deleting_queue->node);

		log_wr(DLOG, "Cache node for %s/%s%s%s%s deleted.", str_ether, str_ipaddr[0],
				gw_ipaddr ? " (relay: " : "",
				gw_ipaddr ? iptos(gw_ipaddr, str_ipaddr[1]) : "",
				gw_ipaddr ? ")" : "");
		++num_del;

		q_ptr = deleting_queue->next;
		free(deleting_queue);
		deleting_queue = q_ptr;
	}
  	
	log_wr(DLOG, "Cache flushed. Total %u nodes deleted.", num_del);

	cache_last_flush = cache_now;

	cache_unlock();

	return;
}
コード例 #3
0
ファイル: std_map.c プロジェクト: cjheres/linux-3.0.8
HRESULT std_map_erase(std_map* self, PVOID pKey)
{
	std_map_node* x;
	Search(self, pKey, &x);
	if(x)
	{
		self->uiSize--;
		return RBDelete(self, x);
	}
	else
	{
		return E_FAIL;
	}
}
コード例 #4
0
void close_client_connection(Maintainer* maintainer, int current_socket, Node* node, int exception)
{
    getpeername(current_socket, (struct sockaddr*)&(maintainer->address),
                (socklen_t*)&(maintainer->addrlen));
    logger("<Server><close_client_connection>Host disconnected, ip %s, port %d \n",
           inet_ntoa(maintainer->address.sin_addr), ntohs(maintainer->address.sin_port));
    RBDelete(maintainer->nodes_ip,RBExactQuery(maintainer->nodes_ip, &(maintainer->address.sin_addr.s_addr))); /*TODO memory leak?*/
    FD_CLR(current_socket, &(maintainer->fd_read_set));
    FD_CLR(current_socket, &(maintainer->fd_exception_set));
    FD_CLR(current_socket, &(maintainer->fd_write_set));
    if(maintainer->max_sd == current_socket) {
        maintainer->max_sd = maintainer->master_socket;
        struct Nodes_ll* iterator = maintainer->clients;
        while(iterator != NULL) {
            if((iterator->node->socket_fd > maintainer->max_sd) && (iterator->node->socket_fd != current_socket))
                maintainer->max_sd = iterator->node->socket_fd;
            iterator = iterator->next;
        }
    }
    struct Files_ll* iterator= node->node_files;
    while(iterator != NULL) {
        --(iterator->file->num_of_owners);
        struct Nodes_ll* jterator = iterator->file->owners;
        struct Nodes_ll* pjterator = iterator->file->owners;
        while(jterator != NULL) {
            if(jterator->node->socket_fd == current_socket) {
                if(jterator != iterator->file->owners) {
                    pjterator->next = jterator->next;
                    myfree(jterator);
                    break;
                } else {
                    iterator->file->owners = iterator->file->owners->next;
                }
            }
            if(jterator != iterator->file->owners)
                pjterator = pjterator->next;
            jterator = jterator->next;
        }
        struct Files_ll* tmp = iterator;
        iterator = iterator->next;
        myfree(tmp);
    }
    RBTreeDestroy(node->requests); /*TODO memory leak?*/
    node->socket_fd = -1;
    close(current_socket);
}
コード例 #5
0
ファイル: memory_old.c プロジェクト: shikantaza/pLisp
void remove_node(unsigned int set_type, OBJECT_PTR val)
{

#ifdef GC_USES_HASHTABLE

  if(set_type == WHITE)
    hashtable_remove(white, (void *)val);
  else if(set_type == GREY)
    hashtable_remove(grey, (void *)val);
  else if(set_type == BLACK)
    hashtable_remove(black, (void *)val);
  else
    assert(false);

#else

  rb_red_blk_tree *tree;

  if(set_type == WHITE)
    tree = white;
  else if(set_type == GREY)
    tree = grey;
  else if(set_type == BLACK)
    tree = black;
  else
    assert(false);

  if(!tree)
    return;

  rb_red_blk_node* newNode;
  if((newNode=RBExactQuery(tree,&val))) 
    RBDelete(tree,newNode);  

#endif
}
コード例 #6
0
void read_client_msg(Client* client, int read_fd)
{
    rb_red_blk_node* transfer = RBExactQuery(client->transfers, &read_fd);
    File_msg* file_msg = (File_msg*)(transfer->info);
    int valread = read(read_fd, file_msg->msg.buffer+file_msg->msg.offset, BUFFER_SIZE-file_msg->msg.offset);
    if(valread == 0) {
        logger("<Client><read_client_msg>client disconnected\n");
        RBDelete(client->transfers, transfer);
        close(read_fd);
        FD_CLR(read_fd, &(client->fd_read_set));
        FD_CLR(read_fd, &(client->fd_write_set));
        return;
    }
    file_msg->msg.offset += valread;
    if(file_msg->msg.offset == BUFFER_SIZE) {
        if(file_msg->aes_key[0] == '\0') {
            if(ENCRYPTION_ENABLED) {
                logger("<Client><read_client_msg>got a full RSA message from another client\n");
                char encrypted[BUFFER_SIZE];
                for(int i = 0; i<BUFFER_SIZE; ++i)
                    encrypted[i] = file_msg->msg.buffer[i];
                private_decrypt(encrypted,BUFFER_SIZE,client->keypair,file_msg->msg.buffer);
            }
            char command = file_msg->msg.buffer[0];
            if(command == 'r') {
                logger("<Client><read_client_msg>got a request message\n");
                /*rname token AES => cname ip token*/
                sscanf(file_msg->msg.buffer+1, "%s %s %s", file_msg->file_name, file_msg->token, file_msg->aes_key);
                struct sockaddr address;
                int add_len = sizeof(address);
                getpeername(read_fd, (struct sockaddr*)&(address),
                            (socklen_t*)&(add_len));
                struct in_addr ip_struct;
                inet_aton(address.sa_data, & ip_struct);
                int ip = ip_struct.s_addr;
                RBTreeInsert(client->waiting_list, file_msg->token, &read_fd);
                sprintf(client->server_msg.buffer, "c%s %d %s", file_msg->file_name, ip, file_msg->token);
                FD_SET(client->maintainer_fd, &(client->fd_write_set));
                file_msg->msg.offset=0;
            } else {
                exit(1);
            }
        } else {
            if(ENCRYPTION_ENABLED) {
                char partial_msg[128];
                for(int i = 0; i < (BUFFER_SIZE/128); ++i) {
                    for(int j=0; j<128; ++j)
                        partial_msg[j] = file_msg->msg.buffer[i*128+j];
                    AES128_ECB_decrypt(partial_msg,file_msg->aes_key,file_msg->msg.buffer+i*128);
                }
                logger("<Client><read_client_msg>AES decrypted the message\n");
            }
            if(file_msg->file_fd == -1) {
                /*ttoken size => in data mode*/
                char token[8];
                sscanf(file_msg->msg.buffer, "t%s %d", token, file_msg->msg.total_len);
                logger("<Client><read_client_msg>got a transfer message with %s for and with size %d\n", token, file_msg->msg.total_len);
                file_msg->token[0] = '\0';
                file_msg->msg.offset=0;
            } else {
                /*read data mode (write to file)*/
                if(ENCRYPTION_ENABLED) {
                    char file_write_buffer[BUFFER_SIZE];
                    AES128_ECB_decrypt(file_msg->msg.buffer, file_msg->aes_key, file_write_buffer);
                    file_msg->msg.offset += write(file_msg->file_fd, file_write_buffer, (file_msg->msg.total_len-file_msg->msg.offset) > 0 ? BUFFER_SIZE : (file_msg->msg.total_len-file_msg->msg.offset));
                }
                else
                    file_msg->msg.offset += write(file_msg->file_fd, file_msg->msg.buffer, (file_msg->msg.total_len-file_msg->msg.offset) > 0 ? BUFFER_SIZE : (file_msg->msg.total_len-file_msg->msg.offset));
                logger("<Client><read_client_msg>wrote to file\n");
                if(file_msg->msg.offset == file_msg->msg.total_len)
                    close(file_msg->file_fd);
            }
        }
    }
}
コード例 #7
0
void process_server_msg(Client* client)
{
    char command = client->server_msg.buffer[0];
    if(command == 'n')
        logger("<Client><process_server_msg>file not found : %s", client->server_msg.buffer+1);
    else if(command == 'h') {
        if(ENCRYPTION_ENABLED) {
            client->server_msg.extended_buffer = mymalloc(BUFFER_SIZE);
            for(int i=0; i<BUFFER_SIZE; ++i)
                client->server_msg.extended_buffer[i] = client->server_msg.buffer[i];
        } else {
            int host_ip, host_port;
            char file_name[32];
            char* token = mymalloc(8);
            sscanf(client->server_msg.buffer,"h%d:%d %s %s",&host_ip, &host_port, file_name, token);
            int* new_socket=mymalloc(sizeof(int));
            File_msg* file_msg = mymalloc(sizeof(File_msg));
            strcpy(file_msg->token, token);
            file_msg->msg.offset=0;
            file_msg->msg.dual_msg=FALSE;
            file_msg->file_fd=-1;
            file_msg->msg.total_len=BUFFER_SIZE;
            struct sockaddr_in remote_addr;
            memset(&remote_addr, 0, sizeof(remote_addr));
            remote_addr.sin_family = AF_INET;
            remote_addr.sin_addr.s_addr = host_ip;
            remote_addr.sin_port = htons(host_port);
            *new_socket = socket(AF_INET, SOCK_STREAM, 0);
            connect(*new_socket, (struct sockaddr *)&remote_addr, sizeof(struct sockaddr));
            strcpy(file_msg->aes_key, "NO_KEY");
            sprintf(file_msg->msg.buffer, "r%s %s %s", file_name, token, file_msg->aes_key);
            FD_SET(*new_socket, &(client->fd_read_set));
            FD_SET(*new_socket, &(client->fd_write_set));
            client->fdmax = client->fdmax > *new_socket ? client->fdmax : *new_socket;
            RBTreeInsert(client->waiting_list, token, new_socket);
            RBTreeInsert(client->transfers, new_socket, file_msg);
            write(*new_socket, file_msg->msg.buffer, BUFFER_SIZE);
            logger("<Client><process_server_msg>got \'h\'\n");
        }
    } else if(command == 'i') {
        int host_ip, host_port;
        char file_name[32];
        char* token = mymalloc(8);
        int read_size = sscanf(client->server_msg.extended_buffer,"h%d:%d %s %s",
                               &host_ip, &host_port, &file_name, token);
        /*extBuffer+buffer == pub_key*/
        char tmp_key[PUBKEY_SIZE];
        for(int i=read_size; i<BUFFER_SIZE; ++i)
            tmp_key[i-read_size]=client->server_msg.extended_buffer[i];
        myfree(client->server_msg.extended_buffer);
        client->server_msg.offset=0;
        for(int i=BUFFER_SIZE-read_size; i<read_size+PUBKEY_SIZE-BUFFER_SIZE; ++i)
            tmp_key[i]=client->server_msg.buffer[i-BUFFER_SIZE+read_size+1];
        /*we have the other end's public key*/
        int* new_socket=mymalloc(sizeof(int));
        File_msg* file_msg = mymalloc(sizeof(File_msg));
        strcpy(file_msg->token, token);
        file_msg->msg.offset=0;
        file_msg->msg.dual_msg=FALSE;
        file_msg->file_fd=-1;
        file_msg->msg.total_len=BUFFER_SIZE;
        strcpy(file_msg->file_name, file_name);
        struct sockaddr_in remote_addr;
        memset(&remote_addr, 0, sizeof(remote_addr));
        remote_addr.sin_family = AF_INET;
        remote_addr.sin_addr.s_addr = host_ip;
        remote_addr.sin_port = htons(host_port);
        *new_socket = socket(AF_INET, SOCK_STREAM, 0);
        connect(*new_socket, (struct sockaddr *)&remote_addr, sizeof(struct sockaddr));
        generate_random_aes_key(file_msg->aes_key);
        sprintf(file_msg->msg.buffer, "r%s %s %s", file_name, token, file_msg->aes_key);
        encrypt_buffer_with_key(file_msg->msg.buffer, tmp_key);
        FD_SET(*new_socket, &(client->fd_write_set));
        FD_SET(*new_socket, &(client->fd_read_set));
        client->fdmax = client->fdmax > *new_socket ? client->fdmax : *new_socket;
        RBTreeInsert(client->waiting_list, token, new_socket);
        RBTreeInsert(client->transfers, new_socket, file_msg);
        write(*new_socket, file_msg->msg.buffer, BUFFER_SIZE);
        logger("<Client><process_server_msg>got \'i\'\n");
    } else if(command == 'o') {
        char given_token[8];
        strcpy(given_token, client->server_msg.buffer+1);
        rb_red_blk_node* request_node = RBExactQuery(client->waiting_list, given_token);
        if(request_node == NULL)
            exit(1);
        FD_SET(*(int*)(request_node->info), &(client->fd_write_set));
        rb_red_blk_node* transfer = RBExactQuery(client->transfers, request_node->info);
        RBDelete(client->waiting_list, request_node);
        File_msg* file_msg = (File_msg*)(transfer->key);
        file_msg->file_fd = open(file_msg->file_name, O_RDONLY, 666);
        if(file_msg->file_fd == -1)
            exit(1);
        //make the transfer msg
        struct stat stat_buf;
        fstat(file_msg->file_fd, &stat_buf);
        sprintf(file_msg->msg.buffer, "t %s %d", file_msg->token, stat_buf.st_size);
        file_msg->msg.offset=0;
        file_msg->msg.total_len=BUFFER_SIZE;
        logger("<Client><process_server_msg>got \'o\'\n");
    }
    else if(command == 'f') {
        char given_token[8];
        strcpy(given_token, client->server_msg.buffer+1);
        rb_red_blk_node* request_node = RBExactQuery(client->waiting_list, given_token);
        if(request_node == NULL)
            exit(1);
        rb_red_blk_node* transfer = RBExactQuery(client->transfers, request_node->info);
        RBDelete(client->waiting_list, request_node);
        RBDelete(client->transfers, transfer);
        logger("<Client><process_server_msg>got \'f\'\n");
    }
}
コード例 #8
0
ファイル: ranktest.c プロジェクト: dkondor/rbtree
int main(int argc, char** argv) {
  int option=0;
  int64_t newKey,newKey2;
  rb_red_blk_node* newNode;
  rb_red_blk_tree* tree;
  int64_t* array = 0;
  int64_t* array2 = 0;
  unsigned int N = 65536; //total number of elements to insert
  unsigned int M = 16384; //number of elements to delete from the beginning
  unsigned int M2 = 16384; //number of elements to delete from the end
  int i;
  unsigned int j;
  time_t t1 = time(0);
  unsigned int seed = t1;
  double par = 2.5;
  
  for(i=1;i<argc;i++) if(argv[i][0] == '-') switch(argv[i][1]) {
	  case 'N':
	  	N = atoi(argv[i+1]);
	  	break;
	  case 'M':
	  	M = atoi(argv[i+1]);
	  	if(i+2 < argc) {
			if(isdigit(argv[i+2][0])) M2 = atoi(argv[i+2]);
			else M2 = M;
		}
		else M2 = M;
		break;
	  case 's':
	  	seed = atoi(argv[i+1]);
	  	break;
	  case 'p':
	  	par = atof(argv[i+1]);
		break;
	  default:
	  	fprintf(stderr,"unrecognized parameter: %s!\n",argv[i]);
	  	break;
  }
  
  if(M + M2 >= N) {
	  fprintf(stderr,"Error: number of elements to delete (%u + %u) is more than the total number of elements (%u)!\n",
	  	M,M2,N);
	  return 1;
  }
  
  tree=RBTreeCreate(CmpInt64,NullFunction,NullFunction,NullFunction,NullFunction,DFInt64,&par);
  array = SafeMalloc(sizeof(int64_t)*N);
  for(j=0;j<N;j++) {
	  array[j] = ((int64_t)rand())*((int64_t)rand())*((int64_t)rand());
	  RBTreeInsert(tree,(void*)(array[j]),0);
  }
  
  for(j=0;j<M;j++) {
	  newNode = RBExactQuery(tree,(void*)(array[j]));
	  if(!newNode) {
		  fprintf(stderr,"Error: node not found!\n");
		  goto rbt_end;
	  }
	  RBDelete(tree,newNode);
  }
  
  for(j=N-M2;j<N;j++) {
	  newNode = RBExactQuery(tree,(void*)(array[j]));
	  if(!newNode) {
		  fprintf(stderr,"Error: node not found!\n");
		  goto rbt_end;
	  }
	  RBDelete(tree,newNode);
  }
  
  N = N-M2-M;
  array2 = array+M;
  quicksort(array2,0,N);
  j=0;
  newNode = TreeFirst(tree);
  double cdf = 0.0;
  do {
	  int64_t v1 = (int64_t)(newNode->key);
	  if(v1 != array2[j]) {
		  fprintf(stderr,"error: %d != %d!\n",v1,array2[j]);
		  break;
	  }
	  double cdf2 = GetNodeRank(tree,newNode);
	  double diff = fabs(cdf2-cdf);
	  if(diff > EPSILON) {
		  fprintf(stderr,"wrong cdf value: %g != %g (diff: %g)!\n",cdf,cdf2,diff);
		  break;
	  }
	  j++;
	  cdf += DFInt64((void*)array2[j],&par);
	  newNode = TreeSuccessor(tree,newNode);
  } while(newNode != tree->nil && j<N);
  
  if( !(newNode == tree->nil && j == N) ) {
	  fprintf(stderr,"error: tree or array too short / long!\n");
  }

rbt_end:
  
  RBTreeDestroy(tree);
  free(array);
  
  time_t t2 = time(0);
  fprintf(stderr,"runtime: %u\n",(unsigned int)(t2-t1));
  
  return 0;
}
コード例 #9
0
static SparseMatrix get_overlap_graph(int dim, int n, real *x, real *width, int check_overlap_only){
  /* if check_overlap_only = TRUE, we only check whether there is one overlap */
  scan_point *scanpointsx, *scanpointsy;
  int i, k, neighbor;
  SparseMatrix A = NULL, B = NULL;
  rb_red_blk_node *newNode, *newNode0, *newNode2 = NULL;
  rb_red_blk_tree* treey;
  real one = 1;

  A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD);

  scanpointsx = N_GNEW(2*n,scan_point);
  for (i = 0; i < n; i++){
    scanpointsx[2*i].node = i;
    scanpointsx[2*i].x = x[i*dim] - width[i*dim];
    scanpointsx[2*i].status = INTV_OPEN;
    scanpointsx[2*i+1].node = i+n;
    scanpointsx[2*i+1].x = x[i*dim] + width[i*dim];
    scanpointsx[2*i+1].status = INTV_CLOSE;
  }
  qsort(scanpointsx, 2*n, sizeof(scan_point), comp_scan_points);

  scanpointsy = N_GNEW(2*n,scan_point);
  for (i = 0; i < n; i++){
    scanpointsy[i].node = i;
    scanpointsy[i].x = x[i*dim+1] - width[i*dim+1];
    scanpointsy[i].status = INTV_OPEN;
    scanpointsy[i+n].node = i;
    scanpointsy[i+n].x = x[i*dim+1] + width[i*dim+1];
    scanpointsy[i+n].status = INTV_CLOSE;
  }


  treey = RBTreeCreate(NodeComp,NodeDest,InfoDest,NodePrint,InfoPrint);

  for (i = 0; i < 2*n; i++){
#ifdef DEBUG_RBTREE
    fprintf(stderr," k = %d node = %d x====%f\n",(scanpointsx[i].node)%n, (scanpointsx[i].node), (scanpointsx[i].x));
#endif

    k = (scanpointsx[i].node)%n;


    if (scanpointsx[i].status == INTV_OPEN){
#ifdef DEBUG_RBTREE
      fprintf(stderr, "inserting...");
      treey->PrintKey(&(scanpointsy[k]));
#endif

      RBTreeInsert(treey, &(scanpointsy[k]), NULL); /* add both open and close int for y */

#ifdef DEBUG_RBTREE
      fprintf(stderr, "inserting2...");
      treey->PrintKey(&(scanpointsy[k+n]));
#endif

      RBTreeInsert(treey, &(scanpointsy[k+n]), NULL);
    } else {
      real bsta, bbsta, bsto, bbsto; int ii; 

      assert(scanpointsx[i].node >= n);

      newNode = newNode0 = RBExactQuery(treey, &(scanpointsy[k + n]));
      ii = ((scan_point *)newNode->key)->node;
      assert(ii < n);
      bsta = scanpointsy[ii].x; bsto = scanpointsy[ii+n].x;

#ifdef DEBUG_RBTREE
      fprintf(stderr, "poping..%d....yinterval={%f,%f}\n", scanpointsy[k + n].node, bsta, bsto);
      treey->PrintKey(newNode->key);
#endif

     assert(treey->nil != newNode);
      while ((newNode) && ((newNode = TreePredecessor(treey, newNode)) != treey->nil)){
	neighbor = (((scan_point *)newNode->key)->node)%n;
	bbsta = scanpointsy[neighbor].x; bbsto = scanpointsy[neighbor+n].x;/* the y-interval of the node that has one end of the interval lower than the top of the leaving interval (bsto) */
#ifdef DEBUG_RBTREE
	fprintf(stderr," predecessor is node %d y = %f\n", ((scan_point *)newNode->key)->node, ((scan_point *)newNode->key)->x);
#endif
	if (neighbor != k){
	  if (ABS(0.5*(bsta+bsto) - 0.5*(bbsta+bbsto)) < 0.5*(bsto-bsta) + 0.5*(bbsto-bbsta)){/* if the distance of the centers of the interval is less than sum of width, we have overlap */
	    A = SparseMatrix_coordinate_form_add_entries(A, 1, &neighbor, &k, &one);
#ifdef DEBUG_RBTREE
	    fprintf(stderr,"======================================  %d %d\n",k,neighbor);
#endif
	    if (check_overlap_only) goto check_overlap_RETURN;
	  }
	} else {
	  newNode2 = newNode;
	}

      }

#ifdef DEBUG_RBTREE
      fprintf(stderr, "deleteing...");
      treey->PrintKey(newNode0->key);
#endif

      if (newNode0) RBDelete(treey,newNode0);


     if (newNode2 && newNode2 != treey->nil && newNode2 != newNode0) {

#ifdef DEBUG_RBTREE
	fprintf(stderr, "deleteing2...");
	treey->PrintKey(newNode2->key);
#endif

	if (newNode0) RBDelete(treey,newNode2);
      }

    }
  }

check_overlap_RETURN:
   FREE(scanpointsx);
  FREE(scanpointsy);
  RBTreeDestroy(treey);

  B = SparseMatrix_from_coordinate_format(A);
  SparseMatrix_delete(A);
  A = SparseMatrix_symmetrize(B, FALSE);
  SparseMatrix_delete(B);
  if (Verbose) fprintf(stderr, "found %d clashes\n", A->nz);
  return A;
}
コード例 #10
0
ファイル: redblack.cpp プロジェクト: bigmuscle/bigmuscle
void Clust::DeleteMetric(unsigned uIndex1, unsigned uIndex2)
	{
	unsigned RBNode = (unsigned) VectorIndex(uIndex1, uIndex2);
	RBDelete(RBNode);
	}
コード例 #11
0
//returns the total number of collided cells
int add_block_1_axis(rb_red_blk_tree *tree, int x1, int y1, int x2, int y2, unsigned int type, int add_amount) {
  circ_tree_node *node_begin, *node_end;
  node_end = get_node(tree, x2, type)->key;  //the end strictly needs to be called before the beginning
  node_begin = get_node(tree, x1, type)->key;
  stk_stack *axis_range = RBEnumerate(tree, node_begin, node_end);

  rb_red_blk_node *rb_node, *rb_node_prev = NULL;
  int temp_collision = 0, collision = 0, prev_pos;

  for (;;) {
    //rb_node_prev = rb_node;
    rb_node = (rb_red_blk_node *) StackPop(axis_range);

    //if (rb_node_prev == NULL)
      rb_node_prev = TreePredecessor(tree, rb_node);
    
    circ_tree_node *node = (circ_tree_node *) rb_node->key;
    circ_tree_node *node_prev;

    if (rb_node_prev == NULL || rb_node_prev == tree->nil)
      node_prev = NULL;
    else
      node_prev = (circ_tree_node *) rb_node_prev->key;

    unsigned int stack_not_empty = StackNotEmpty(axis_range);

    //collision
    if (temp_collision) 
      //if temp collision is non-zero, by definition, node_prev
      //cannot be NULL
      collision += temp_collision * (node->pos - prev_pos);

    prev_pos = node->pos;

    if (type == TOP_LEVEL) {
      if (stack_not_empty) 
	temp_collision = add_block_1_axis(node->data.tree, y1, 0, y2, 0, SECOND_LEVEL, add_amount);
      if ((node_prev != NULL && 
	   !RBTreeCompare(node->data.tree, node_prev->data.tree, 
			  circ_node_equals)) ||
	  (node_prev == NULL && RBIsTreeEmpty(node->data.tree)))
	RBDelete(tree, rb_node);
      
    } else {
      if (stack_not_empty) {
	if (node->data.state > 0 && node->data.state > -add_amount) 
	  //if there is already a block here, and if there would still 
	  //be a block left, assess collision
	  temp_collision = add_amount;
	else
	  temp_collision = 0;
	node->data.state += add_amount;
      }

      //if both nodes are the same
      if ((node_prev != NULL && node_prev->data.state == node->data.state) ||
	  //or the previous node is null and this is zero
	  (node_prev == NULL && node->data.state == 0)) {
	RBDelete(tree, rb_node);
      }
    }

    if (!stack_not_empty)
      break;
  }
  StackDestroy(axis_range, dummy_fun);

  return collision;
}
コード例 #12
0
ファイル: Plot.c プロジェクト: Raugharr/Herald
void DestroyPlot(struct Plot* _Plot) {
	DestroyObject(&_Plot->Object);
	RBDelete(&g_GameWorld.PlotList, PlotLeader(_Plot));
	free(_Plot);
}
コード例 #13
0
void render(PaletteRef *raster, int lineWidth, int numLines, const rb_red_blk_tree *scanLinePrimBuckets){
	static OntoProj screenPlaneData = {offsetof(Point, z), 0};
	static const Transformation screenPlane = {(TransformationF)(&snapOntoProj), &screenPlaneData};
	{
		int line;
		rb_red_blk_tree activePrimSet;
		ActiveEdgeList ael = freshAEL();
		rb_red_blk_map_tree inFlags;
		rb_red_blk_tree deFlags;
		/* This ensures that both trees are initialized and in a cleared state */
		RBTreeMapInit(&inFlags, pointerDiffF, NULL, &RBMapNodeAlloc, NULL);
		RBTreeInit(&deFlags, pointerDiffF, NULL, &RBNodeAlloc);
		RBTreeInit(&activePrimSet, pointerDiffF, NULL, &RBNodeAlloc);
		dPrintf(("Scanning line: 0\n"));
		for(line = 0; line < numLines; (++line), (raster += lineWidth)) {
			rb_red_blk_node *primIt, *p = NULL, *nextP;
			dPrintf(("\tUpdating activePrimSet\n"));
			for (primIt = activePrimSet.first; primIt != activePrimSet.sentinel; (p = primIt), (primIt = nextP)) {
				const Primitive* prim = primIt->key;
				const int top = roundOwn(topMostPoint(prim));
				nextP = TreeSuccessor(&activePrimSet, primIt);
				if(top < line){
#ifndef NDEBUG
					{
						const int bottom = roundOwn(bottomMostPoint(prim));
						dPrintf(("\t\t%d -> %d ( %s ) is not valid here: %d\n",top,bottom,fmtColor(prim->color), line));
					}
#endif
					RBDelete(&activePrimSet, primIt);
					primIt = p; /* We don't want to advance p into garbage data */
				}
			}
			{
				const rb_red_blk_tree *bucket = scanLinePrimBuckets + line;
				const rb_red_blk_node *node;
				for(node = bucket->first; node != bucket->sentinel; node = TreeSuccessor(bucket, node)) {
					Primitive * prim = node->key;
#ifndef NDEBUG
					{
						const int top = roundOwn(topMostPoint(prim)),
						bottom = roundOwn(bottomMostPoint(prim));
						dPrintf(("\t\t%d -> %d ( %s ) is added here: %d\n",top,bottom,fmtColor(prim->color), line));
					}
#endif
					RBTreeInsert(&activePrimSet, prim);
				}
			}
			stepEdges(&ael, &activePrimSet);
			{
				int curPixel = 0;
				const Primitive *curDraw = NULL;
				EdgeListEntry *nextEdge;
				LinkN* i = ael.activeEdges;
				if(i){
					nextEdge = i->data;
					while(nextEdge && curPixel < lineWidth){
						EdgeListEntry *const startEdge = nextEdge;
						Primitive *const startOwner = startEdge->owner;
						int startX = roundOwn(getSmartXForLine(startEdge, line)), nextX;
						rb_red_blk_map_node *inFlag = (rb_red_blk_map_node *)RBExactQuery((rb_red_blk_tree*)(&inFlags), startOwner);
						
						if(inFlag){
							static Point localPoints[6]; /* We don't recurse, so this is fine */
							static Edge flatHere = {localPoints, localPoints + 1},
							flatIn = {localPoints + 2, localPoints + 3},
							vert = {localPoints + 4, localPoints + 5};
							const EdgeListEntry *const edgeInEntry = inFlag->info;
							Point **const edgeHere = startEdge->edge, **edgeIn = edgeInEntry->edge;
							const Point *const s = edgeHere[START],
							*const e = edgeHere[END];
							Point here;
							bool sV, eV, v;
							float dotH, dotIn;
							transformEdge(&screenPlane, edgeHere, flatHere);
							transformEdge(&screenPlane, edgeIn, flatIn);
							INIT_POINT(here, startX, line, 0);
							sV = contains(edgeIn, s);
							eV = contains(edgeIn, e);
							v = (sV || eV) && contains(flatIn, &here) && contains(flatHere, &here) && (startOwner->arity != 1);
							vert[START] = &here;
							INIT_POINT(*(vert[END]), startX, line+1, 0);
							dotH = v ? dotEdge(vert, flatHere) : 0;
							dotIn = v ? dotEdge(vert, flatIn) : 0;
							if(!v || dotH * dotIn > 0){
								dPrintf(("\tNot *in* old %s at %f\n", fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line)));
								RBSetAdd(&deFlags, startOwner);
							} else {
								dPrintf(("\tFound horizontal vertex %s at %f. Don't delete it yet\n",fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line)));
							}
						} else {
							dPrintf(("\tNow *in* new %s at %f\n",fmtColor(startEdge->owner->color), getSmartXForLine(startEdge, line)));
							/* This might happen if a polygon is parallel to the x-axis */
							RBMapPut(&inFlags, startOwner, startEdge);
						}
						
						if(curPixel < startX){
							dPrintf(("\tcurPixel has fallen behind, dragging from %d to %d\n",curPixel, startX));
							curPixel = startX;
						}
						
						i = i->tail;
						if(i){
							nextEdge = i->data;
							nextX = roundOwn(getSmartXForLine(nextEdge, line));
							dPrintf(("\tNext edges @ x = %d from %s\n",nextX, fmtColor(nextEdge->owner->color)));
						} else {
							dPrintf(("\tNo more edges\n"));
							nextEdge = NULL;
							nextX = 0;
						}
						
						nextX = min(nextX, lineWidth);
						while ((!nextEdge && curPixel < lineWidth) || (curPixel < nextX)) {
							bool zFight = false, solitary = false;
							float bestZ = HUGE_VAL;
							const rb_red_blk_node *node;
							curDraw = NULL;
							dPrintf(("\tTesting depth:\n"));
							for(node = inFlags.tree.first; node != inFlags.tree.sentinel; node = TreeSuccessor((rb_red_blk_tree*)(&inFlags), node)) {
								const Primitive *prim = node->key;
								/* We need sub-pixel accuracy */
								const float testZ = getZForXY(prim, curPixel, line);
								if(testZ <= bestZ + PT_EPS){
									dPrintf(("\t\tHit: %f <= %f for %s\n",testZ, bestZ, fmtColor(prim->color)));
									if (CLOSE_ENOUGH(testZ, bestZ)) {
										if (prim->arity == 1) {
											zFight = curDraw && curDraw->arity == 1;
											curDraw = prim;
											solitary = RBSetContains(&deFlags, prim);
										} else {
											zFight = curDraw && curDraw->arity != 1;
										}
									} else {
										zFight = false;
										bestZ = testZ;
										curDraw = prim;
										solitary = RBSetContains(&deFlags, prim);
									}
								} else {
									dPrintf(("\t\tMiss: %f > %f for %s\n",testZ, bestZ, fmtColor(prim->color)));
								}
							}
							
							if(curDraw){
#ifndef NDEBUG
								if(nextEdge || solitary){
#endif
									const int drawWidth =  (zFight || solitary) ? 1 : ((nextEdge ? nextX : lineWidth) - curPixel),
									stopPixel = curPixel + min(lineWidth - curPixel,
															   max(0, drawWidth));
									const PaletteRef drawColor = /*(uint16_t)roundOwn(63 * bestZ / 100) << 5;*/decodeColor(curDraw->color);
									dPrintf(("Drawing %d @ (%d, %d)\n",drawWidth,curPixel,line));
									dPrintf(("Drawing %d @ (%d, %d)\n",stopPixel - curPixel,curPixel,line));
									while(curPixel < stopPixel){
										raster[curPixel++] = drawColor;
									}
#ifndef NDEBUG
								} else {
									dPrintf(("Warning: we probably shouldn't have to draw if there are no more edges to turn us off. Look for parity errors\n");
											RBTreeClear((rb_red_blk_tree*)&inFlags));
								}
#endif
							} else if(!inFlags.tree.size && nextEdge){
								/* fast forward, we aren't in any polys */
								dPrintf(("Not in any polys at the moment, fast-forwarding(1) to %d\n", nextX));
								curPixel = nextX;
							} else {
								/* Nothing left */
								dPrintf(("Nothing to draw at end of line\n"));
								curPixel = lineWidth;
							}
							
							for(node = deFlags.first; node != deFlags.sentinel; node = TreeSuccessor(&deFlags, node)){
								RBMapRemove(&inFlags, node->key);
							}
							RBTreeClear(&deFlags);
						}
						if (!inFlags.tree.size && nextEdge) {
							dPrintf(("Not in any polys at the moment, fast-forwarding(2) to %d\n", nextX));
							curPixel = nextX;
						}
					}
				}
			}
#ifndef NDEBUG
			{
				dPrintf(("Scanning line: %d\n", line+1));
				if(inFlags.tree.size){
					rb_red_blk_node *node;
					dPrintf(("\tGarbage left in inFlags:\n"));
					for (node = inFlags.tree.first; node != inFlags.tree.sentinel; node = TreeSuccessor((rb_red_blk_tree*)&inFlags, node)) {
						dPrintf(("\t\t%s\n",fmtColor(((const Primitive*)node->key)->color)));
					}
				}
			}
#endif
			RBTreeClear(&deFlags);
			RBTreeClear((rb_red_blk_tree*)(&inFlags));
		}
		RBTreeDestroy(&activePrimSet, false);
		RBTreeDestroy(&deFlags, false);
		RBTreeDestroy((rb_red_blk_tree*)(&inFlags), false);
	}
コード例 #14
0
int main() {
  stk_stack* enumResult;
  int option=0;
  int newKey,newKey2;
  int* newInt;
  rb_red_blk_node* newNode;
  rb_red_blk_tree* tree;

  tree=RBTreeCreate(IntComp,IntDest,InfoDest,IntPrint,InfoPrint);
  while(option!=8) {
    printf("choose one of the following:\n");
    printf("(1) add to tree\n(2) delete from tree\n(3) query\n");
    printf("(4) find predecessor\n(5) find sucessor\n(6) enumerate\n");
    printf("(7) print tree\n(8) quit\n");
    do option=fgetc(stdin); while(-1 != option && isspace(option));
    option-='0';
    switch(option)
      {
      case 1:
	{
	  printf("type key for new node\n");
	  scanf("%i",&newKey);
	  newInt=(int*) malloc(sizeof(int));
	  *newInt=newKey;
	  RBTreeInsert(tree,newInt,0);
	}
	break;
	
      case 2:
	{
	  printf("type key of node to remove\n");
	  scanf("%i",&newKey);
	  if ( ( newNode=RBExactQuery(tree,&newKey ) ) ) RBDelete(tree,newNode);/*assignment*/
	  else printf("key not found in tree, no action taken\n");
	}
	break;

      case 3:
	{
	  printf("type key of node to query for\n");
	  scanf("%i",&newKey);
	  if ( ( newNode = RBExactQuery(tree,&newKey) ) ) {/*assignment*/
	    printf("data found in tree at location %i\n",(int)newNode);
	  } else {
	    printf("data not in tree\n");
	  }
	}
	break;
      case 4:
	{
	  printf("type key of node to find predecessor of\n");
	  scanf("%i",&newKey);
	  if ( ( newNode = RBExactQuery(tree,&newKey) ) ) {/*assignment*/
	    newNode=TreePredecessor(tree,newNode);
	    if(tree->nil == newNode) {
	      printf("there is no predecessor for that node (it is a minimum)\n");
	    } else {
	      printf("predecessor has key %i\n",*(int*)newNode->key);
	    }
	  } else {
	    printf("data not in tree\n");
	  }
	}
	break;
      case 5:
	{
	  printf("type key of node to find successor of\n");
	  scanf("%i",&newKey);
	  if ( (newNode = RBExactQuery(tree,&newKey) ) ) {
	    newNode=TreeSuccessor(tree,newNode);
	    if(tree->nil == newNode) {
	      printf("there is no successor for that node (it is a maximum)\n");
	    } else {
	      printf("successor has key %i\n",*(int*)newNode->key);
	    }
	  } else {
	    printf("data not in tree\n");
	  }
	}
	break;
      case 6:
	{
	  printf("type low and high keys to see all keys between them\n");
	  scanf("%i %i",&newKey,&newKey2);
	  enumResult=RBEnumerate(tree,&newKey,&newKey2);	  
	  while ( (newNode = StackPop(enumResult)) ) {
	    tree->PrintKey(newNode->key);
	    printf("\n");
	  }
	  free(enumResult);
	}
	break;
      case 7:
	{
	  RBTreePrint(tree);
	}
	break;
      case 8:
	{
	  RBTreeDestroy(tree);
	  return 0;
	}
	break;
      default:
	printf("Invalid input; Please try again.\n");
      }
  }
  return 0;
}
コード例 #15
0
ファイル: dhcp_cache.c プロジェクト: donpadlo/dhcp2db
int dhcp_cache_update(const dhcp_parsed_message_t * request, const dhcp_full_packet_t * response,
		uint16_t dhcp_data_len)
{
	char str_ether[STR_ETHER_ALEN + 1];
	char str_ipaddr[2][IP4_MAXSTR_ALEN + 1];

	etheraddr_bin_to_str(request->raw_dhcp_msg->cli_hwaddr, str_ether);
	iptos(response->dhcp_data.you_iaddr.s_addr, str_ipaddr[0]);

	dhcp_cache_node_t s_data;
	s_data.if_ipaddr = request->dhcp_dev->ipaddr;
	s_data.gw_ipaddr = request->raw_dhcp_msg->gw_iaddr.s_addr;
	s_data.cli_ethaddr = (typeof(s_data.cli_ethaddr))request->raw_dhcp_msg->cli_hwaddr;
	s_data.header_ethaddr = (typeof(s_data.header_ethaddr))request->from_ether;

	rb_red_blk_node *f_node;

	cache_wrlock();
	time_t now = time(NULL);

	dhcp_cache_node_t * cached_node = NULL;
	if ( ( f_node = RBExactQuery(cache, &s_data) ) ) 
	{
		cached_node = f_node->info;
		log_wr(DLOG, "Update cached data for client %s/%s.", str_ether, str_ipaddr[0]);
		cached_node->timestamp = now;
		memcpy(&cached_node->cached_response, response, sizeof(*response));
	} 
	else 
	{	/* Node not found in cache. Add. */
		cached_node = calloc(1, sizeof(dhcp_cache_node_t));
		if(!cached_node)
		{
			log_wr(CLOG, "Can't allocate memory for new DHCP cache node: '%s'", strerror(errno));
			exit(error_memory);
		}

		memcpy(&cached_node->cached_response, response, sizeof(cached_node->cached_response));
		cached_node->if_ipaddr = request->dhcp_dev->ipaddr;
		cached_node->gw_ipaddr = request->raw_dhcp_msg->gw_iaddr.s_addr;
		cached_node->cli_ethaddr = cached_node->cached_response.dhcp_data.cli_hwaddr;
		cached_node->header_ethaddr = cached_node->cached_response.eth_head.ether_dhost;
		cached_node->timestamp = now;

		f_node = RBTreeInsert(cache, cached_node, cached_node);

		log_wr(DLOG, "Added response for client %s/%s%s%s%s to DHCP cache.", str_ether, str_ipaddr[0],
					cached_node->gw_ipaddr ? " (relay: " : "",
					cached_node->gw_ipaddr ? iptos(cached_node->gw_ipaddr, str_ipaddr[1]) : "",
					cached_node->gw_ipaddr ? ")" : "");
	}

	/* Set DHCPACK message type for cached response */
	uint16_t type_len;
	uint8_t * cached_response_type = get_dhcp_option_ptr(&cached_node->cached_response.dhcp_data,
			cached_node->cached_response.udp_header.len, DHCP_OPT_MESSAGE_TYPE, &type_len);
	if(!cached_response_type)
	{
		log_wr(CLOG, "Invalid DHCP message cached (%s/%s): DHCP message type option not found.",
				str_ether, str_ipaddr);
		RBDelete(cache, f_node);
		free(cached_node);

		cache_unlock();

		return 0;
	}

	cached_node->dhcp_data_len = dhcp_data_len;

	*cached_response_type = DHCPACK;

	cache_unlock();

	return 1;
}
コード例 #16
0
ファイル: overlap.c プロジェクト: DaniHaag/jsPlumb_Liviz.js
static SparseMatrix get_overlap_graph(int dim, int n, real *x, real *width){
  scan_point *scanpointsx, *scanpointsy;
  int i, k, neighbor;
  SparseMatrix A = NULL, B = NULL;
  rb_red_blk_node *newNode, *newNode0;
  rb_red_blk_tree* treey;
  real one = 1;

  A = SparseMatrix_new(n, n, 1, MATRIX_TYPE_REAL, FORMAT_COORD);

  scanpointsx = N_GNEW(2*n,scan_point);
  for (i = 0; i < n; i++){
    scanpointsx[2*i].node = i;
    scanpointsx[2*i].x = x[i*dim] - width[i*dim];
    scanpointsx[2*i].status = INTV_OPEN;
    scanpointsx[2*i+1].node = i+n;
    scanpointsx[2*i+1].x = x[i*dim] + width[i*dim];
    scanpointsx[2*i+1].status = INTV_CLOSE;
  }
  qsort(scanpointsx, 2*n, sizeof(scan_point), comp_scan_points);

  scanpointsy = N_GNEW(2*n,scan_point);
  for (i = 0; i < n; i++){
    scanpointsy[i].node = i;
    scanpointsy[i].x = x[i*dim+1] - width[i*dim+1];
    scanpointsy[i].status = INTV_OPEN;
    scanpointsy[i+n].node = i;
    scanpointsy[i+n].x = x[i*dim+1] + width[i*dim+1];
    scanpointsy[i+n].status = INTV_CLOSE;
  }


  treey = RBTreeCreate(NodeComp,NodeDest,InfoDest,NodePrint,InfoPrint);

  for (i = 0; i < 2*n; i++){
#ifdef DEBUG_RBTREE
    fprintf(stderr," k = %d node = %d x====%f\n",(scanpointsx[i].node)%n, (scanpointsx[i].node), (scanpointsx[i].x));
#endif

    k = (scanpointsx[i].node)%n;


    if (scanpointsx[i].status == INTV_OPEN){
#ifdef DEBUG_RBTREE
      fprintf(stderr, "inserting...");
      treey->PrintKey(&(scanpointsy[k]));
#endif

      RBTreeInsert(treey, &(scanpointsy[k]), NULL); /* add both open and close int for y */

#ifdef DEBUG_RBTREE
      fprintf(stderr, "inserting2...");
      treey->PrintKey(&(scanpointsy[k+n]));
#endif

      RBTreeInsert(treey, &(scanpointsy[k+n]), NULL);
    } else {
      assert(scanpointsx[i].node >= n);

      newNode = newNode0 = RBExactQuery(treey, &(scanpointsy[k + n]));

#ifdef DEBUG_RBTREE
      fprintf(stderr, "poping..%d....", scanpointsy[k + n].node);
      treey->PrintKey(newNode->key);
#endif

      assert(treey->nil != newNode);
      while ((newNode) && ((newNode = TreePredecessor(treey, newNode)) != treey->nil) && ((scan_point *)newNode->key)->node != k){
	neighbor = (((scan_point *)newNode->key)->node)%n;
	A = SparseMatrix_coordinate_form_add_entries(A, 1, &neighbor, &k, &one);
#ifdef DEBUG_RBTREE
	fprintf(stderr,"%d %d\n",k,neighbor);
#endif

      }

#ifdef DEBUG_RBTREE
      fprintf(stderr, "deleteing...");
      treey->PrintKey(newNode0->key);
#endif

      if (newNode0) RBDelete(treey,newNode0);
      if (newNode != treey->nil && newNode != newNode0) {

#ifdef DEBUG_RBTREE
	fprintf(stderr, "deleting2...");
	treey->PrintKey(newNode->key)
#endif

	if (newNode0) RBDelete(treey,newNode);
      }
    }
  }