コード例 #1
0
ファイル: Pkcs5.c プロジェクト: goofwear/VeraCrypt
void hmac_ripemd160 (char *key, int keylen, char *input_digest, int len)
{
	hmac_ripemd160_ctx hmac;
	unsigned char tk[RIPEMD160_DIGESTSIZE];

    /* If the key is longer than the hash algorithm block size,
	   let key = ripemd160(key), as per HMAC specifications. */
    if (keylen > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) key, keylen);
        RMD160Final(tk, &tctx);

        key = (char *) tk;
        keylen = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }

	hmac_ripemd160_internal (key, keylen, input_digest, len, &hmac);

	burn (&hmac, sizeof(hmac));
	burn (tk, sizeof(tk));
}
コード例 #2
0
ファイル: ripemd160.c プロジェクト: veox/libbitcoin
void RMD160(const uint8_t* input, size_t length,
    uint8_t digest[RMD160_DIGEST_LENGTH])
{
    RMD160CTX ctx;
    RMD160Init(&ctx);
    RMD160Update(&ctx, input, length);
    RMD160Final(&ctx, digest);
}
コード例 #3
0
ファイル: Pkcs5.c プロジェクト: goofwear/VeraCrypt
void hmac_ripemd160_internal (char *key, int keylen, char *input_digest, int len, hmac_ripemd160_ctx* hmac)
{
	RMD160_CTX* context = &(hmac->context);
   unsigned char* k_pad = (unsigned char*) hmac->k_pad;  /* inner/outer padding - key XORd with ipad */
   int i;

	/*

	RMD160(K XOR opad, RMD160(K XOR ipad, text))

	where K is an n byte key
	ipad is the byte 0x36 repeated RIPEMD160_BLOCKSIZE times
	opad is the byte 0x5c repeated RIPEMD160_BLOCKSIZE times
	and text is the data being protected */


	/* start out by storing key in pads */
	memset(k_pad, 0x36, 65);

    /* XOR key with ipad and opad values */
    for (i=0; i<keylen; i++) 
	{
        k_pad[i] ^= key[i];
    }

    /* perform inner RIPEMD-160 */

    RMD160Init(context);           /* init context for 1st pass */
    RMD160Update(context, k_pad, RIPEMD160_BLOCKSIZE);  /* start with inner pad */
    RMD160Update(context, (const unsigned char *) input_digest, len); /* then text of datagram */
    RMD160Final((unsigned char *) input_digest, context);         /* finish up 1st pass */

    /* perform outer RIPEMD-160 */
    memset(k_pad, 0x5c, 65);
    for (i=0; i<keylen; i++) 
	 {
        k_pad[i] ^= key[i];
    }

    RMD160Init(context);           /* init context for 2nd pass */
    RMD160Update(context, k_pad, RIPEMD160_BLOCKSIZE);  /* start with outer pad */
    /* results of 1st hash */
    RMD160Update(context, (const unsigned char *) input_digest, RIPEMD160_DIGESTSIZE);
    RMD160Final((unsigned char *) input_digest, context);         /* finish up 2nd pass */
}
コード例 #4
0
ファイル: Pkcs5.c プロジェクト: goofwear/VeraCrypt
void derive_key_ripemd160 (char *pwd, int pwd_len, char *salt, int salt_len, uint32 iterations, char *dk, int dklen)
{	
	int b, l, r;
	hmac_ripemd160_ctx hmac;
#ifndef TC_WINDOWS_BOOT
	unsigned char tk[RIPEMD160_DIGESTSIZE];
    /* If the password is longer than the hash algorithm block size,
	   let password = ripemd160(password), as per HMAC specifications. */
	if (pwd_len > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) pwd, pwd_len);
        RMD160Final(tk, &tctx);

        pwd = (char *) tk;
        pwd_len = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }
#endif

	if (dklen % RIPEMD160_DIGESTSIZE)
	{
		l = 1 + dklen / RIPEMD160_DIGESTSIZE;
	}
	else
	{
		l = dklen / RIPEMD160_DIGESTSIZE;
	}

	r = dklen - (l - 1) * RIPEMD160_DIGESTSIZE;

	/* first l - 1 blocks */
	for (b = 1; b < l; b++)
	{
		derive_u_ripemd160 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
		memcpy (dk, hmac.u, RIPEMD160_DIGESTSIZE);
		dk += RIPEMD160_DIGESTSIZE;
	}

	/* last block */
	derive_u_ripemd160 (pwd, pwd_len, salt, salt_len, iterations, b, &hmac);
	memcpy (dk, hmac.u, r);


	/* Prevent possible leaks. */
	burn (&hmac, sizeof(hmac));
#ifndef TC_WINDOWS_BOOT
	burn (tk, sizeof(tk));
#endif
}
コード例 #5
0
ファイル: rmd160hl.c プロジェクト: chneukirchen/outils
/* ARGSUSED */
char *
RMD160End(RMD160_CTX *ctx, char *buf)
{
	int i;
	u_int8_t digest[RMD160_DIGEST_LENGTH];
	static const char hex[] = "0123456789abcdef";

	if (buf == NULL && (buf = malloc(RMD160_DIGEST_STRING_LENGTH)) == NULL)
		return (NULL);

	RMD160Final(digest, ctx);
	for (i = 0; i < RMD160_DIGEST_LENGTH; i++) {
		buf[i + i] = hex[digest[i] >> 4];
		buf[i + i + 1] = hex[digest[i] & 0x0f];
	}
	buf[i + i] = '\0';
	memset(digest, 0, sizeof(digest));
	return (buf);
}
コード例 #6
0
ファイル: skeysubr.c プロジェクト: bingos/bitrig
static int
keycrunch_rmd160(char *result, char *seed, char *passwd)
{
	char *buf;
	RMD160_CTX rmd;
	u_int32_t results[5];
	unsigned int buflen;

	/*
	 * If seed and passwd are defined we are in keycrunch() mode,
	 * else we are in f() mode.
	 */
	if (seed && passwd) {
		buflen = strlen(seed) + strlen(passwd);
		if ((buf = malloc(buflen + 1)) == NULL)
			return(-1);
		(void)strlcpy(buf, seed, buflen + 1);
		lowcase(buf);
		(void)strlcat(buf, passwd, buflen + 1);
		sevenbit(buf);
	} else {
		buf = result;
		buflen = SKEY_BINKEY_SIZE;
	}

	/* Crunch the key through RMD-160 */
	RMD160Init(&rmd);
	RMD160Update(&rmd, (unsigned char *)buf, buflen);
	RMD160Final((unsigned char *)results, &rmd);

	/* Fold 160 to 64 bits */
	results[0] ^= results[2];
	results[1] ^= results[3];
	results[0] ^= results[4];

	(void)memcpy((void *)result, (void *)results, SKEY_BINKEY_SIZE);

	if (buf != result)
		(void)free(buf);

	return(0);
}
コード例 #7
0
ファイル: rmd160hl.c プロジェクト: Morgawr/minix-pkgsrc
char *
RMD160End(RMD160_CTX *ctx, char *buf)
{
    int i;
    char *p = buf;
    uint8_t digest[20];
    static const char hex[]="0123456789abcdef";

    _DIAGASSERT(ctx != NULL);
    /* buf may be NULL */

    if (p == NULL && (p = malloc(41)) == NULL)
	return 0;

    RMD160Final(digest,ctx);
    for (i = 0; i < 20; i++) {
	p[i + i] = hex[(uint32_t)digest[i] >> 4];
	p[i + i + 1] = hex[digest[i] & 0x0f];
    }
    p[i + i] = '\0';
    return(p);
}
コード例 #8
0
ファイル: Random.c プロジェクト: makomi/VeraCrypt
/* The random pool mixing function */
BOOL Randmix ()
{
	if (bRandmixEnabled)
	{
		unsigned char hashOutputBuffer [MAX_DIGESTSIZE];
		WHIRLPOOL_CTX	wctx;
		RMD160_CTX		rctx;
		sha512_ctx		sctx;
		sha256_ctx		s256ctx;
		int poolIndex, digestIndex, digestSize;

		switch (HashFunction)
		{
		case RIPEMD160:
			digestSize = RIPEMD160_DIGESTSIZE;
			break;

		case SHA512:
			digestSize = SHA512_DIGESTSIZE;
			break;

		case SHA256:
			digestSize = SHA256_DIGESTSIZE;
			break;

		case WHIRLPOOL:
			digestSize = WHIRLPOOL_DIGESTSIZE;
			break;

		default:
			TC_THROW_FATAL_EXCEPTION;
		}

		if (RNG_POOL_SIZE % digestSize)
			TC_THROW_FATAL_EXCEPTION;

		for (poolIndex = 0; poolIndex < RNG_POOL_SIZE; poolIndex += digestSize)		
		{
			/* Compute the message digest of the entire pool using the selected hash function. */
			switch (HashFunction)
			{
			case RIPEMD160:
				RMD160Init(&rctx);
				RMD160Update(&rctx, pRandPool, RNG_POOL_SIZE);
				RMD160Final(hashOutputBuffer, &rctx);
				break;

			case SHA512:
				sha512_begin (&sctx);
				sha512_hash (pRandPool, RNG_POOL_SIZE, &sctx);
				sha512_end (hashOutputBuffer, &sctx);
				break;

			case SHA256:
				sha256_begin (&s256ctx);
				sha256_hash (pRandPool, RNG_POOL_SIZE, &s256ctx);
				sha256_end (hashOutputBuffer, &s256ctx);
				break;

			case WHIRLPOOL:
				WHIRLPOOL_init (&wctx);
				WHIRLPOOL_add (pRandPool, RNG_POOL_SIZE * 8, &wctx);
				WHIRLPOOL_finalize (&wctx, hashOutputBuffer);
				break;

			default:		
				// Unknown/wrong ID
				TC_THROW_FATAL_EXCEPTION;
			}

			/* XOR the resultant message digest to the pool at the poolIndex position. */
			for (digestIndex = 0; digestIndex < digestSize; digestIndex++)
			{
				pRandPool [poolIndex + digestIndex] ^= hashOutputBuffer [digestIndex];
			}
		}

		/* Prevent leaks */
		burn (hashOutputBuffer, MAX_DIGESTSIZE);	
		switch (HashFunction)
		{
		case RIPEMD160:
			burn (&rctx, sizeof(rctx));		
			break;

		case SHA512:
			burn (&sctx, sizeof(sctx));		
			break;

		case SHA256:
			burn (&s256ctx, sizeof(s256ctx));		
			break;

		case WHIRLPOOL:
			burn (&wctx, sizeof(wctx));		
			break;

		default:		
			// Unknown/wrong ID
			TC_THROW_FATAL_EXCEPTION;
		}
	}
	return TRUE;
}
コード例 #9
0
static int
__archive_libc_ripemd160final(archive_rmd160_ctx *ctx, void *md)
{
  RMD160Final(md, ctx);
  return (ARCHIVE_OK);
}
コード例 #10
0
ファイル: Hash.cpp プロジェクト: AB9IL/VeraCrypt
	void Ripemd160::GetDigest (const BufferPtr &buffer)
	{
		if_debug (ValidateDigestParameters (buffer));
		RMD160Final (buffer, (RMD160_CTX *) Context.Ptr());
	}
コード例 #11
0
ファイル: hash.c プロジェクト: rhaamo/sosyslog
/*
 * mac:
 *	method:		hash method to use (see enum, gethash(..) output)
 *	data1:		buffer 1 (commonly a key[i])
 *	data1len:	data1 lenght
 *	data2:		buffer 2 (commonly a message)
 *	data2len:	data2 lenght
 *	dest:		destination buffer
 *
 *	Fills dest with a key and returns dest lenght
 *	dest should have enough space.
 *	On error returns -1
 */
int
mac(int method, const unsigned char *data1, unsigned int data1len,
    const unsigned char *data2, unsigned int data2len, unsigned char *dest)
{
	HASH_CTX	 ctx;
	int	 	 i, destlen, tmplen;
	unsigned char	*tmp;

	/* Calculate tmp buffer lenght */
	tmplen = 0;
	if (data1len && data2len) {
		if (data1len > data2len) {
			tmplen = data1len / data2len * data2len;
			tmplen += (tmplen < data1len) ? data2len : 0;
		} else if (data1len < data2len) {
			tmplen = data2len / data1len * data1len;
			tmplen += (tmplen < data2len) ? data1len : 0;
		} else tmplen = data1len;
	} else {
		tmplen = (data1len) ? data1len : data2len;
		if (!tmplen)
			tmplen = 1; 
	}
	
	/* Allocate needed memory and clear tmp buffer */
	if ( (tmp = (unsigned char *) calloc(1, tmplen)) == NULL)
		return (-1);

	/* tmp = data1 xor data2 */
	if (data1len && data2len)
		for (i = 0; i < tmplen; i++)
			tmp[i] = data1[i % data1len] ^ data2[i % data2len];
	else if (data1len)
		memcpy(tmp, data1, tmplen);
	else
		memcpy(tmp, data2, tmplen);

	/* dest = hash(tmp) */
	switch(method) {
	case MD5:
		MD5Init(&ctx.md5);
		MD5Update(&ctx.md5, tmp, tmplen);
		MD5Final(dest, &ctx.md5);
		destlen = 16;
		break;
	case RMD160:
		RMD160Init(&ctx.rmd160);
		RMD160Update(&ctx.rmd160, tmp, tmplen);
		RMD160Final(dest, &ctx.rmd160);
		destlen = 20;
		break;
	case SHA1:
	default:
		SHA1Init(&ctx.sha1);
		SHA1Update(&ctx.sha1, tmp, tmplen);
		SHA1Final(dest, &ctx.sha1);
		destlen = 20;
		break;
	}
		
	free(tmp);
	return (destlen);
}
コード例 #12
0
ファイル: PKCS5.C プロジェクト: AntiRootkit/TrueCrypt-7.1a
void hmac_ripemd160 (char *key, int keylen, char *input, int len, char *digest)
{
    RMD160_CTX context;
    unsigned char k_ipad[65];  /* inner padding - key XORd with ipad */
    unsigned char k_opad[65];  /* outer padding - key XORd with opad */
    unsigned char tk[RIPEMD160_DIGESTSIZE];
    int i;

    /* If the key is longer than the hash algorithm block size,
	   let key = ripemd160(key), as per HMAC specifications. */
    if (keylen > RIPEMD160_BLOCKSIZE) 
	{
        RMD160_CTX      tctx;

        RMD160Init(&tctx);
        RMD160Update(&tctx, (const unsigned char *) key, keylen);
        RMD160Final(tk, &tctx);

        key = (char *) tk;
        keylen = RIPEMD160_DIGESTSIZE;

		burn (&tctx, sizeof(tctx));	// Prevent leaks
    }

	/*

	RMD160(K XOR opad, RMD160(K XOR ipad, text))

	where K is an n byte key
	ipad is the byte 0x36 repeated RIPEMD160_BLOCKSIZE times
	opad is the byte 0x5c repeated RIPEMD160_BLOCKSIZE times
	and text is the data being protected */


	/* start out by storing key in pads */
	memset(k_ipad, 0x36, sizeof(k_ipad));
    memset(k_opad, 0x5c, sizeof(k_opad));

    /* XOR key with ipad and opad values */
    for (i=0; i<keylen; i++) 
	{
        k_ipad[i] ^= key[i];
        k_opad[i] ^= key[i];
    }

    /* perform inner RIPEMD-160 */

    RMD160Init(&context);           /* init context for 1st pass */
    RMD160Update(&context, k_ipad, RIPEMD160_BLOCKSIZE);  /* start with inner pad */
    RMD160Update(&context, (const unsigned char *) input, len); /* then text of datagram */
    RMD160Final((unsigned char *) digest, &context);         /* finish up 1st pass */

    /* perform outer RIPEMD-160 */
    RMD160Init(&context);           /* init context for 2nd pass */
    RMD160Update(&context, k_opad, RIPEMD160_BLOCKSIZE);  /* start with outer pad */
    /* results of 1st hash */
    RMD160Update(&context, (const unsigned char *) digest, RIPEMD160_DIGESTSIZE);
    RMD160Final((unsigned char *) digest, &context);         /* finish up 2nd pass */

	/* Prevent possible leaks. */
    burn (k_ipad, sizeof(k_ipad));
    burn (k_opad, sizeof(k_opad));
	burn (tk, sizeof(tk));
	burn (&context, sizeof(context));
}