コード例 #1
0
ファイル: tstRTStrCache.cpp プロジェクト: miguelinux/vbox
/**
 * Check hash and memory performance.
 */
static void tst2(void)
{
    RTTestISub("Hash performance");

    /*
     * Generate test strings using a specific pseudo random generator.
     */
    size_t cbStrings = 0;
    char  *apszTests[8192];
    RTRAND hRand;
    RTTESTI_CHECK_RC_RETV(RTRandAdvCreateParkMiller(&hRand), VINF_SUCCESS);
    for (uint32_t i = 0; i < 8192; i++)
    {
        char szBuf[8192];
        uint32_t cch = RTRandAdvU32Ex(hRand, 3, sizeof(szBuf) - 1);
        RTRandAdvBytes(hRand, szBuf, cch);
        szBuf[cch] = '\0';
        for (uint32_t off = 0; off < cch; off++)
        {
            uint8_t b = szBuf[off];
            b &= 0x7f;
            if (!b || b == 0x7f)
                b = ' ';
            else if (RTLocCIsCntrl(b) && b != '\n' && b != '\r' && b != '\t')
                b += 0x30;
            szBuf[off] = b;
        }
        apszTests[i] = (char *)RTMemDup(szBuf, cch + 1);
        RTTESTI_CHECK_RETV(apszTests[i] != NULL);
        cbStrings += cch + 1;
    }
    RTRandAdvDestroy(hRand);
    RTTestIValue("Average string", cbStrings / RT_ELEMENTS(apszTests), RTTESTUNIT_BYTES);

    /*
     * Test new insertion first time around.
     */
    RTSTRCACHE hStrCache;
    RTTESTI_CHECK_RC_RETV(RTStrCacheCreate(&hStrCache, "hash performance"), VINF_SUCCESS);

    uint64_t nsTsStart = RTTimeNanoTS();
    for (uint32_t i = 0; i < RT_ELEMENTS(apszTests); i++)
        RTTESTI_CHECK_RETV(RTStrCacheEnter(hStrCache, apszTests[i]) != NULL);
    uint64_t cNsElapsed = RTTimeNanoTS() - nsTsStart;
    RTTestIValue("First insert", cNsElapsed / RT_ELEMENTS(apszTests), RTTESTUNIT_NS_PER_CALL);

    /*
     * Insert existing strings.
     */
    nsTsStart = RTTimeNanoTS();
    for (uint32_t i = 0; i < 8192; i++)
        RTTESTI_CHECK(RTStrCacheEnter(hStrCache, apszTests[i]) != NULL);
    cNsElapsed = RTTimeNanoTS() - nsTsStart;
    RTTestIValue("Duplicate insert", cNsElapsed / RT_ELEMENTS(apszTests), RTTESTUNIT_NS_PER_CALL);

    tstShowStats(hStrCache);
    RTTESTI_CHECK_RC(RTStrCacheDestroy(hStrCache), VINF_SUCCESS);
}
コード例 #2
0
int main(int argc, char *argv[])
{
    RTR3InitExe(argc, &argv, 0);
    int rc;
    VDSNAPTEST Test;

    RTPrintf("tstVDSnap: TESTING...\n");

    rc = RTRandAdvCreateParkMiller(&g_hRand);
    if (RT_FAILURE(rc))
    {
        RTPrintf("tstVDSnap: Creating RNG failed rc=%Rrc\n", rc);
        return 1;
    }

    RTRandAdvSeed(g_hRand, 0x12345678);

    Test.pcszBackend          = "vmdk";
    Test.pcszBaseImage        = "tstVDSnapBase.vmdk";
    Test.pcszDiffSuff         = "vmdk";
    Test.cIterations          = 30;
    Test.cbTestPattern        = 10 * _1M;
    Test.cDiskSegsMin         = 10;
    Test.cDiskSegsMax         = 50;
    Test.cDiffsMinBeforeMerge = 5;
    Test.uCreateDiffChance    = 50; /* % */
    Test.uChangeSegChance     = 50; /* % */
    Test.uAllocatedBlocks     = 50; /* 50% allocated */
    Test.fForward             = true;
    tstVDOpenCreateWriteMerge(&Test);

    /* Same test with backwards merge */
    Test.fForward             = false;
    tstVDOpenCreateWriteMerge(&Test);

    rc = VDShutdown();
    if (RT_FAILURE(rc))
    {
        RTPrintf("tstVDSnap: unloading backends failed! rc=%Rrc\n", rc);
        g_cErrors++;
    }
     /*
     * Summary
     */
    if (!g_cErrors)
        RTPrintf("tstVDSnap: SUCCESS\n");
    else
        RTPrintf("tstVDSnap: FAILURE - %d errors\n", g_cErrors);

    RTRandAdvDestroy(g_hRand);

    return !!g_cErrors;
}
コード例 #3
0
ファイル: tstRTMemPool.cpp プロジェクト: miguelinux/vbox
/**
 * Test automatic cleanup upon destruction.
 */
static void tst3(void)
{
    RTTestISub("Destroy non-empty pool");

    /*
     * Nothing freed.
     */
    RTMEMPOOL hMemPool;
    RTTESTI_CHECK_RC_RETV(RTMemPoolCreate(&hMemPool, "test 3a"), VINF_SUCCESS);
    RTTESTI_CHECK_RETV(RTMemPoolAlloc(hMemPool, 10));
    RTTESTI_CHECK_RETV(RTMemPoolAlloc(hMemPool, 20));
    RTTESTI_CHECK_RETV(RTMemPoolAlloc(hMemPool, 40));
    RTTESTI_CHECK_RETV(RTMemPoolAlloc(hMemPool, 80));
    RTTESTI_CHECK_RC_RETV(RTMemPoolDestroy(hMemPool), VINF_SUCCESS);

    /*
     * Pseudo random freeing to test list maintenance.
     */
    RTRAND hRand;
    RTTESTI_CHECK_RC_OK_RETV(RTRandAdvCreateParkMiller(&hRand));

    for (uint32_t i = 0; i < 10; i++)
    {
        RTTESTI_CHECK_RC_RETV(RTMemPoolCreate(&hMemPool, "test 3b"), VINF_SUCCESS);

        void *apvHistory[256];
        RT_ZERO(apvHistory);

        uint32_t cBlocks = 0;
        uint32_t j;
        for (j = 0; j < RT_ELEMENTS(apvHistory) - i * 7; j++)
        {
            RTTESTI_CHECK_RETV(apvHistory[j] = RTMemPoolAlloc(hMemPool, j));
            memset(apvHistory[j], 'a', j);
            cBlocks++;

            if (RTRandAdvU32Ex(hRand, 0, 4) == 4)
            {
                uint32_t iFree = RTRandAdvU32Ex(hRand, 0, j);
                cBlocks -= apvHistory[iFree] != NULL;
                RTTESTI_CHECK_RETV(RTMemPoolRelease(hMemPool, apvHistory[iFree]) == 0);
                apvHistory[iFree] = NULL;
            }
        }

        RTTESTI_CHECK_RC_RETV(RTMemPoolDestroy(hMemPool), VINF_SUCCESS);
        RTTestIPrintf(RTTESTLVL_INFO, "cBlocks=%u j=%u\n", cBlocks, j);
    }

    RTRandAdvDestroy(hRand);
}
コード例 #4
0
static DECLCALLBACK(int) Test4Thread(RTTHREAD ThreadSelf, void *pvUser)
{
    /* Use randomization to get a little more variation of the sync pattern.
       We use a pseudo random generator here so that we don't end up testing
       the speed of the /dev/urandom implementation, but rather the read-write
       semaphores. */
    int rc;
    RTRAND hRand;
    RTTEST_CHECK_RC_OK_RET(g_hTest, rc = RTRandAdvCreateParkMiller(&hRand), rc);
    RTTEST_CHECK_RC_OK_RET(g_hTest, rc = RTRandAdvSeed(hRand, (uintptr_t)ThreadSelf), rc);
    unsigned c100 = RTRandAdvU32Ex(hRand, 0, 99);

    uint64_t *pcItr = (uint64_t *)pvUser;
    bool fWrite;
    for (;;)
    {
        unsigned readrec = RTRandAdvU32Ex(hRand, 0, 3);
        unsigned writerec = RTRandAdvU32Ex(hRand, 0, 3);
        /* Don't overdo recursion testing. */
        if (readrec > 1)
            readrec--;
        if (writerec > 1)
            writerec--;

        fWrite = (c100 < g_uWritePercent);
        if (fWrite)
        {
            for (unsigned i = 0; i <= writerec; i++)
            {
                rc = RTCritSectRwEnterExcl(&g_CritSectRw);
                if (RT_FAILURE(rc))
                {
                    RTTestFailed(g_hTest, "Write recursion %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc);
                    break;
                }
            }
            if (RT_FAILURE(rc))
                break;
            if (ASMAtomicIncU32(&g_cConcurrentWriters) != 1)
            {
                RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s after write locking it",
                             g_cConcurrentWriters, RTThreadSelfName());
                break;
            }
            if (g_cConcurrentReaders != 0)
            {
                RTTestFailed(g_hTest, "g_cConcurrentReaders=%u on %s after write locking it",
                             g_cConcurrentReaders, RTThreadSelfName());
                break;
            }
        }
        else
        {
            rc = RTCritSectRwEnterShared(&g_CritSectRw);
            if (RT_FAILURE(rc))
            {
                RTTestFailed(g_hTest, "Read locking on %s failed with rc=%Rrc", RTThreadSelfName(), rc);
                break;
            }
            ASMAtomicIncU32(&g_cConcurrentReaders);
            if (g_cConcurrentWriters != 0)
            {
                RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s after read locking it",
                             g_cConcurrentWriters, RTThreadSelfName());
                break;
            }
        }
        for (unsigned i = 0; i < readrec; i++)
        {
            rc = RTCritSectRwEnterShared(&g_CritSectRw);
            if (RT_FAILURE(rc))
            {
                RTTestFailed(g_hTest, "Read recursion %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc);
                break;
            }
        }
        if (RT_FAILURE(rc))
            break;

        /*
         * Check for fairness: The values of the threads should not differ too much
         */
        (*pcItr)++;

        /*
         * Check for correctness: Give other threads a chance. If the implementation is
         * correct, no other thread will be able to enter this lock now.
         */
        if (g_fYield)
            RTThreadYield();

        for (unsigned i = 0; i < readrec; i++)
        {
            rc = RTCritSectRwLeaveShared(&g_CritSectRw);
            if (RT_FAILURE(rc))
            {
                RTTestFailed(g_hTest, "Read release %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc);
                break;
            }
        }
        if (RT_FAILURE(rc))
            break;

        if (fWrite)
        {
            if (ASMAtomicDecU32(&g_cConcurrentWriters) != 0)
            {
                RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s before write release",
                             g_cConcurrentWriters, RTThreadSelfName());
                break;
            }
            if (g_cConcurrentReaders != 0)
            {
                RTTestFailed(g_hTest, "g_cConcurrentReaders=%u on %s before write release",
                             g_cConcurrentReaders, RTThreadSelfName());
                break;
            }
            for (unsigned i = 0; i <= writerec; i++)
            {
                rc = RTCritSectRwLeaveExcl(&g_CritSectRw);
                if (RT_FAILURE(rc))
                {
                    RTTestFailed(g_hTest, "Write release %u on %s failed with rc=%Rrc", i, RTThreadSelfName(), rc);
                    break;
                }
            }
        }
        else
        {
            if (g_cConcurrentWriters != 0)
            {
                RTTestFailed(g_hTest, "g_cConcurrentWriters=%u on %s before read release",
                             g_cConcurrentWriters, RTThreadSelfName());
                break;
            }
            ASMAtomicDecU32(&g_cConcurrentReaders);
            rc = RTCritSectRwLeaveShared(&g_CritSectRw);
            if (RT_FAILURE(rc))
            {
                RTTestFailed(g_hTest, "Read release on %s failed with rc=%Rrc", RTThreadSelfName(), rc);
                break;
            }
        }

        if (g_fTerminate)
            break;

        c100++;
        c100 %= 100;
    }
    if (!g_fQuiet)
        RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "Thread %s exited with %lld\n", RTThreadSelfName(), *pcItr);
    RTRandAdvDestroy(hRand);
    return VINF_SUCCESS;
}
コード例 #5
0
static int tstRandAdv(RTRAND hRand)
{
    /*
     * Test distribution.
     */
#if 1
    /* unsigned 32-bit */
    static const struct
    {
        uint32_t u32First;
        uint32_t u32Last;
    } s_aU32Tests[] =
    {
        { 0, UINT32_MAX },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 4 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 8 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 16 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 64 },
        { 0, UINT32_MAX / 2 },
        { UINT32_MAX / 4, UINT32_MAX / 4 * 3 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { 1234, 1234 + TST_RAND_SAMPLE_RANGES - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aU32Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        uint32_t const uFirst = s_aU32Tests[iTest].u32First;
        uint32_t const uLast  = s_aU32Tests[iTest].u32Last;
        uint32_t const uRange = uLast - uFirst; Assert(uLast >= uFirst);
        uint32_t const uDivisor = uRange / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvU32Ex(,%#RX32, %#RX32) distribution... [div=%#RX32 range=%#RX32]\n", uFirst, uLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            uint32_t uRand = RTRandAdvU32Ex(hRand, uFirst, uLast);
            CHECK_EXPR_MSG(uRand >= uFirst, ("%#RX32 %#RX32\n", uRand, uFirst));
            CHECK_EXPR_MSG(uRand <= uLast,  ("%#RX32 %#RX32\n", uRand, uLast));
            uint32_t off = uRand - uFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* unsigned 64-bit */
    static const struct
    {
        uint64_t u64First;
        uint64_t u64Last;
    } s_aU64Tests[] =
    {
        { 0, UINT64_MAX },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 4 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 8 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 16 },
        { 0, UINT64_MAX / 2 + UINT64_MAX / 64 },
        { 0, UINT64_MAX / 2 },
        { UINT64_MAX / 4, UINT64_MAX / 4 * 3 },
        { 0, UINT32_MAX },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 4 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 8 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 16 },
        { 0, UINT32_MAX / 2 + UINT32_MAX / 64 },
        { 0, UINT32_MAX / 2 },
        { UINT32_MAX / 4, UINT32_MAX / 4 * 3 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { 1234, 1234 + TST_RAND_SAMPLE_RANGES - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aU64Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        uint64_t const uFirst = s_aU64Tests[iTest].u64First;
        uint64_t const uLast  = s_aU64Tests[iTest].u64Last;
        uint64_t const uRange = uLast - uFirst;  Assert(uLast >= uFirst);
        uint64_t const uDivisor = uRange / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvU64Ex(,%#RX64, %#RX64) distribution... [div=%#RX64 range=%#RX64]\n", uFirst, uLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            uint64_t uRand = RTRandAdvU64Ex(hRand, uFirst, uLast);
            CHECK_EXPR_MSG(uRand >= uFirst, ("%#RX64 %#RX64\n", uRand, uFirst));
            CHECK_EXPR_MSG(uRand <= uLast,  ("%#RX64 %#RX64\n", uRand, uLast));
            uint64_t off = uRand - uFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* signed 32-bit */
    static const struct
    {
        int32_t i32First;
        int32_t i32Last;
    } s_aS32Tests[] =
    {
        { -429496729, 429496729 },
        { INT32_MIN, INT32_MAX },
        { INT32_MIN, INT32_MAX / 2 },
        { -0x20000000, INT32_MAX },
        { -0x10000000, INT32_MAX },
        { -0x08000000, INT32_MAX },
        { -0x00800000, INT32_MAX },
        { -0x00080000, INT32_MAX },
        { -0x00008000, INT32_MAX },
        { -0x00000800, INT32_MAX },
        { 2, INT32_MAX / 2 },
        { 4000000, INT32_MAX / 2 },
        { -4000000, INT32_MAX / 2 },
        { INT32_MIN / 2, INT32_MAX / 2 },
        { INT32_MIN / 3, INT32_MAX / 2 },
        { INT32_MIN / 3, INT32_MAX / 3 },
        { INT32_MIN / 3, INT32_MAX / 4 },
        { INT32_MIN / 4, INT32_MAX / 4 },
        { INT32_MIN / 5, INT32_MAX / 5 },
        { INT32_MIN / 6, INT32_MAX / 6 },
        { INT32_MIN / 7, INT32_MAX / 6 },
        { INT32_MIN / 7, INT32_MAX / 7 },
        { INT32_MIN / 7, INT32_MAX / 8 },
        { INT32_MIN / 8, INT32_MAX / 8 },
        { INT32_MIN / 9, INT32_MAX / 9 },
        { INT32_MIN / 9, INT32_MAX / 12 },
        { INT32_MIN / 12, INT32_MAX / 12 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { -TST_RAND_SAMPLE_RANGES / 2, TST_RAND_SAMPLE_RANGES / 2 - 1 },
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aS32Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        int32_t const  iFirst = s_aS32Tests[iTest].i32First;
        int32_t const  iLast  = s_aS32Tests[iTest].i32Last;
        uint32_t const uRange = iLast - iFirst; AssertMsg(iLast >= iFirst, ("%d\n", iTest));
        uint32_t const uDivisor = (uRange ? uRange : UINT32_MAX) / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvS32Ex(,%#RI32, %#RI32) distribution... [div=%#RX32 range=%#RX32]\n", iFirst, iLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            int32_t iRand = RTRandAdvS32Ex(hRand, iFirst, iLast);
            CHECK_EXPR_MSG(iRand >= iFirst, ("%#RI32 %#RI32\n", iRand, iFirst));
            CHECK_EXPR_MSG(iRand <= iLast,  ("%#RI32 %#RI32\n", iRand, iLast));
            uint32_t off = iRand - iFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

#if 1
    /* signed 64-bit */
    static const struct
    {
        int64_t i64First;
        int64_t i64Last;
    } s_aS64Tests[] =
    {
        { INT64_MIN, INT64_MAX },
        { INT64_MIN, INT64_MAX / 2 },
        { INT64_MIN / 2, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 4, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 8, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 16, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 64, INT64_MAX / 2 },
        { INT64_MIN / 2 + INT64_MIN / 64, INT64_MAX / 2 + INT64_MAX / 64 },
        { INT64_MIN / 2, INT64_MAX / 2 + INT64_MAX / 64 },
        { INT64_MIN / 2, INT64_MAX / 2 + INT64_MAX / 8 },
        { INT64_MIN / 2, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 4, INT64_MAX / 2 - INT64_MAX / 4 },
        { INT64_MIN / 2 - INT64_MIN / 4, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 8, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 16, INT64_MAX / 2 - INT64_MAX / 8 },
        { INT64_MIN / 2 - INT64_MIN / 16, INT64_MAX / 2 - INT64_MAX / 16 },
        { INT64_MIN / 2 - INT64_MIN / 32, INT64_MAX / 2 - INT64_MAX / 16 },
        { INT64_MIN / 2 - INT64_MIN / 32, INT64_MAX / 2 - INT64_MAX / 32 },
        { INT64_MIN / 2 - INT64_MIN / 64, INT64_MAX / 2 - INT64_MAX / 64 },
        { INT64_MIN / 2 - INT64_MIN / 8, INT64_MAX / 2 },
        { INT64_MIN / 4, INT64_MAX / 4 },
        { INT64_MIN / 5, INT64_MAX / 5 },
        { INT64_MIN / 6, INT64_MAX / 6 },
        { INT64_MIN / 7, INT64_MAX / 7 },
        { INT64_MIN / 8, INT64_MAX / 8 },
        { INT32_MIN, INT32_MAX },
        { INT32_MIN, INT32_MAX / 2 },
        { -0x20000000, INT32_MAX },
        { -0x10000000, INT32_MAX },
        { -0x7f000000, INT32_MAX },
        { -0x08000000, INT32_MAX },
        { -0x00800000, INT32_MAX },
        { -0x00080000, INT32_MAX },
        { -0x00008000, INT32_MAX },
        { 2, INT32_MAX / 2 },
        { 4000000, INT32_MAX / 2 },
        { -4000000, INT32_MAX / 2 },
        { INT32_MIN / 2, INT32_MAX / 2 },
        { 0, TST_RAND_SAMPLE_RANGES - 1 },
        { -TST_RAND_SAMPLE_RANGES / 2, TST_RAND_SAMPLE_RANGES / 2 - 1 }
    };
    for (unsigned iTest = 0; iTest < RT_ELEMENTS(s_aS64Tests); iTest++)
    {
        uint32_t       acHits[TST_RAND_SAMPLE_RANGES] = {0};
        int64_t const  iFirst = s_aS64Tests[iTest].i64First;
        int64_t const  iLast  = s_aS64Tests[iTest].i64Last;
        uint64_t const uRange = iLast - iFirst; AssertMsg(iLast >= iFirst, ("%d\n", iTest));
        uint64_t const uDivisor = (uRange ? uRange : UINT64_MAX) / TST_RAND_SAMPLE_RANGES + 1;
        RTPrintf("tstRand:   TESTING RTRandAdvS64Ex(,%#RI64, %#RI64) distribution... [div=%#RX64 range=%#016RX64]\n", iFirst, iLast, uDivisor, uRange);
        for (unsigned iSample = 0; iSample < TST_RAND_SAMPLE_RANGES * 10240; iSample++)
        {
            int64_t iRand = RTRandAdvS64Ex(hRand, iFirst, iLast);
            CHECK_EXPR_MSG(iRand >= iFirst, ("%#RI64 %#RI64\n", iRand, iFirst));
            CHECK_EXPR_MSG(iRand <= iLast,  ("%#RI64 %#RI64\n", iRand, iLast));
            uint64_t off = iRand - iFirst;
            acHits[off / uDivisor]++;
        }
        tstRandCheckDist(acHits, iTest);
    }
#endif

    /*
     * Test saving and restoring the state.
     */
    RTPrintf("tstRand:   TESTING RTRandAdvSave/RestoreSave\n");
    char szState[256];
    size_t cbState = sizeof(szState);
    int rc = RTRandAdvSaveState(hRand, szState, &cbState);
    if (rc != VERR_NOT_SUPPORTED)
    {
        CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvSaveState(%p,,256) -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));
        uint32_t const u32A1 = RTRandAdvU32(hRand);
        uint32_t const u32B1 = RTRandAdvU32(hRand);
        RTPrintf("tstRand:   state:\"%s\"  A=%RX32 B=%RX32\n", szState, u32A1, u32B1);

        rc = RTRandAdvRestoreState(hRand, szState);
        CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvRestoreState(%p,\"%s\") -> %Rrc (%d)\n", (uintptr_t)hRand, szState, rc, rc));
        uint32_t const u32A2 = RTRandAdvU32(hRand);
        uint32_t const u32B2 = RTRandAdvU32(hRand);
        CHECK_EXPR_MSG(u32A1 == u32A2, ("u32A1=%RX32 u32A2=%RX32\n", u32A1, u32A2));
        CHECK_EXPR_MSG(u32B1 == u32B2, ("u32B1=%RX32 u32B2=%RX32\n", u32B1, u32B2));
    }
    else
    {
        szState[0] = '\0';
        rc = RTRandAdvRestoreState(hRand, szState);
        CHECK_EXPR_MSG(rc == VERR_NOT_SUPPORTED,  ("RTRandAdvRestoreState(%p,\"\") -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));
    }


    /*
     * Destroy it.
     */
    rc = RTRandAdvDestroy(hRand);
    CHECK_EXPR_MSG(rc == VINF_SUCCESS,  ("RTRandAdvDestroy(%p) -> %Rrc (%d)\n", (uintptr_t)hRand, rc, rc));

    return 0;
}