コード例 #1
0
ファイル: tr_shade_calc.c プロジェクト: Pan7/ioq3df
/*
=========================
RB_CalcDeformNormals

Wiggle the normals for wavy environment mapping
=========================
*/
void RB_CalcDeformNormals( deformStage_t *ds ) {
	int i;
	float	scale;
	float	*xyz = ( float * ) tess.xyz;
	uint32_t *normal = tess.normal;

	for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal++ ) {
		vec3_t fNormal;

		R_VboUnpackNormal(fNormal, *normal);

		scale = 0.98f;
		scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		fNormal[ 0 ] += ds->deformationWave.amplitude * scale;

		scale = 0.98f;
		scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		fNormal[ 1 ] += ds->deformationWave.amplitude * scale;

		scale = 0.98f;
		scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		fNormal[ 2 ] += ds->deformationWave.amplitude * scale;

		VectorNormalizeFast( fNormal );

		*normal = R_VboPackNormal(fNormal);
	}
}
コード例 #2
0
ファイル: tr_model_iqm.c プロジェクト: DaneTheory/spearmint
/*
=================
RB_AddIQMSurfaces

Compute vertices for this model surface
=================
*/
void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
	srfIQModel_t	*surf = (srfIQModel_t *)surface;
	iqmData_t	*data = surf->data;
	float		jointMats[IQM_MAX_JOINTS * 12];
	int		i;

	vec4_t		*outXYZ;
	uint32_t	*outNormal;
#ifdef USE_VERT_TANGENT_SPACE
	uint32_t	*outTangent;
#endif
	vec2_t		(*outTexCoord)[2];
	vec4_t	*outColor;

	iqmData_t	*skeleton = R_GetIQMModelDataByHandle( backEnd.currentEntity->e.frameModel, data );
	iqmData_t	*oldSkeleton = R_GetIQMModelDataByHandle( backEnd.currentEntity->e.oldframeModel, data );

	int	frame = skeleton->num_frames ? backEnd.currentEntity->e.frame % skeleton->num_frames : 0;
	int	oldframe = oldSkeleton->num_frames ? backEnd.currentEntity->e.oldframe % oldSkeleton->num_frames : 0;
	float	backlerp = backEnd.currentEntity->e.backlerp;

	int		*tri;
	glIndex_t	*ptr;
	glIndex_t	base;

	if ( data != skeleton && data->num_joints != skeleton->num_poses ) {
		ri.Printf( PRINT_WARNING, "WARNING: frameModel '%s' for model '%s' has different number of joints\n",
				R_GetModelByHandle( backEnd.currentEntity->e.frameModel )->name, R_GetModelByHandle( backEnd.currentEntity->e.hModel )->name );
		skeleton = data;
	}

	if ( data != oldSkeleton && data->num_joints != oldSkeleton->num_poses ) {
		ri.Printf( PRINT_WARNING, "WARNING: oldframeModel '%s' for model '%s' has different number of joints\n",
				R_GetModelByHandle( backEnd.currentEntity->e.oldframeModel )->name, R_GetModelByHandle( backEnd.currentEntity->e.hModel )->name );
		oldSkeleton = data;
	}

	RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );

	outXYZ = &tess.xyz[tess.numVertexes];
	outNormal = &tess.normal[tess.numVertexes];
#ifdef USE_VERT_TANGENT_SPACE
	outTangent = &tess.tangent[tess.numVertexes];
#endif
	outTexCoord = &tess.texCoords[tess.numVertexes];
	outColor = &tess.vertexColors[tess.numVertexes];

	// compute interpolated joint matrices
	if ( skeleton->num_poses > 0 ) {
		ComputePoseMats( data, skeleton, oldSkeleton, frame, oldframe, backlerp, jointMats );
	}

	// transform vertexes and fill other data
	for( i = 0; i < surf->num_vertexes;
	     i++, outXYZ++, outNormal++, outTexCoord++, outColor++ ) {
		int	j, k;
		float	vtxMat[12];
		float	nrmMat[9];
		int	vtx = i + surf->first_vertex;
		float	blendWeights[4];
		int		numWeights;

		for ( numWeights = 0; numWeights < 4; numWeights++ ) {
			if ( data->blendWeightsType == IQM_FLOAT )
				blendWeights[numWeights] = data->blendWeights.f[4*vtx + numWeights];
			else
				blendWeights[numWeights] = (float)data->blendWeights.b[4*vtx + numWeights] / 255.0f;

			if ( blendWeights[numWeights] <= 0 )
				break;
		}

		if ( skeleton->num_poses == 0 || numWeights == 0 ) {
			// no blend joint, use identity matrix.
			Com_Memcpy( vtxMat, identityMatrix, 12 * sizeof (float) );
		} else {
			// compute the vertex matrix by blending the up to
			// four blend weights
			Com_Memset( vtxMat, 0, 12 * sizeof (float) );
			for( j = 0; j < numWeights; j++ ) {
				for( k = 0; k < 12; k++ ) {
					vtxMat[k] += blendWeights[j] * jointMats[12*data->blendIndexes[4*vtx + j] + k];
				}
			}
		}

		// compute the normal matrix as transpose of the adjoint
		// of the vertex matrix
		nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
		nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
		nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
		nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
		nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
		nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
		nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
		nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
		nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];

		(*outTexCoord)[0][0] = data->texcoords[2*vtx + 0];
		(*outTexCoord)[0][1] = data->texcoords[2*vtx + 1];
		(*outTexCoord)[1][0] = (*outTexCoord)[0][0];
		(*outTexCoord)[1][1] = (*outTexCoord)[0][1];

		(*outXYZ)[0] =
			vtxMat[ 0] * data->positions[3*vtx+0] +
			vtxMat[ 1] * data->positions[3*vtx+1] +
			vtxMat[ 2] * data->positions[3*vtx+2] +
			vtxMat[ 3];
		(*outXYZ)[1] =
			vtxMat[ 4] * data->positions[3*vtx+0] +
			vtxMat[ 5] * data->positions[3*vtx+1] +
			vtxMat[ 6] * data->positions[3*vtx+2] +
			vtxMat[ 7];
		(*outXYZ)[2] =
			vtxMat[ 8] * data->positions[3*vtx+0] +
			vtxMat[ 9] * data->positions[3*vtx+1] +
			vtxMat[10] * data->positions[3*vtx+2] +
			vtxMat[11];
		(*outXYZ)[3] = 1.0f;

		{
			vec3_t normal;
			vec4_t tangent;

			normal[0] = DotProduct(&nrmMat[0], &data->normals[3*vtx]);
			normal[1] = DotProduct(&nrmMat[3], &data->normals[3*vtx]);
			normal[2] = DotProduct(&nrmMat[6], &data->normals[3*vtx]);

			*outNormal = R_VboPackNormal(normal);

#ifdef USE_VERT_TANGENT_SPACE
			tangent[0] = DotProduct(&nrmMat[0], &data->tangents[4*vtx]);
			tangent[1] = DotProduct(&nrmMat[3], &data->tangents[4*vtx]);
			tangent[2] = DotProduct(&nrmMat[6], &data->tangents[4*vtx]);
			tangent[3] = data->tangents[4*vtx+3];

			*outTangent++ = R_VboPackTangent(tangent);
#endif
		}

		(*outColor)[0] = data->colors[4*vtx+0] / 255.0f;
		(*outColor)[1] = data->colors[4*vtx+1] / 255.0f;
		(*outColor)[2] = data->colors[4*vtx+2] / 255.0f;
		(*outColor)[3] = data->colors[4*vtx+3] / 255.0f;
	}

	tri = data->triangles + 3 * surf->first_triangle;
	ptr = &tess.indexes[tess.numIndexes];
	base = tess.numVertexes;

	for( i = 0; i < surf->num_triangles; i++ ) {
		*ptr++ = base + (*tri++ - surf->first_vertex);
		*ptr++ = base + (*tri++ - surf->first_vertex);
		*ptr++ = base + (*tri++ - surf->first_vertex);
	}

	tess.numIndexes += 3 * surf->num_triangles;
	tess.numVertexes += surf->num_vertexes;
}