コード例 #1
0
ファイル: wilcox.c プロジェクト: Bgods/r-source
double dwilcox(double x, double m, double n, int give_log)
{
    double d;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(m) || ISNAN(n))
	return(x + m + n);
#endif
    m = R_forceint(m);
    n = R_forceint(n);
    if (m <= 0 || n <= 0)
	ML_ERR_return_NAN;

    if (fabs(x - R_forceint(x)) > 1e-7)
	return(R_D__0);
    x = R_forceint(x);
    if ((x < 0) || (x > m * n))
	return(R_D__0);

    int mm = (int) m, nn = (int) n, xx = (int) x;
    w_init_maybe(mm, nn);
    d = give_log ?
	log(cwilcox(xx, mm, nn)) - lchoose(m + n, n) :
	    cwilcox(xx, mm, nn)  /  choose(m + n, n);

    return(d);
}
コード例 #2
0
ファイル: wilcox.c プロジェクト: Bgods/r-source
double rwilcox(double m, double n)
{
    int i, j, k, *x;
    double r;

#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(m) || ISNAN(n))
	return(m + n);
#endif
    m = R_forceint(m);
    n = R_forceint(n);
    if ((m < 0) || (n < 0))
	ML_ERR_return_NAN;

    if ((m == 0) || (n == 0))
	return(0);

    r = 0.0;
    k = (int) (m + n);
    x = (int *) calloc((size_t) k, sizeof(int));
#ifdef MATHLIB_STANDALONE
    if (!x) MATHLIB_ERROR(_("wilcox allocation error %d"), 4);
#endif
    for (i = 0; i < k; i++)
	x[i] = i;
    for (i = 0; i < n; i++) {
	j = (int) floor(k * unif_rand());
	r += x[j];
	x[j] = x[--k];
    }
    free(x);
    return(r - n * (n - 1) / 2);
}
コード例 #3
0
ファイル: wilcox.c プロジェクト: Bgods/r-source
double qwilcox(double x, double m, double n, int lower_tail, int log_p)
{
    double c, p;

#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(m) || ISNAN(n))
	return(x + m + n);
#endif
    if(!R_FINITE(x) || !R_FINITE(m) || !R_FINITE(n))
	ML_ERR_return_NAN;
    R_Q_P01_check(x);

    m = R_forceint(m);
    n = R_forceint(n);
    if (m <= 0 || n <= 0)
	ML_ERR_return_NAN;

    if (x == R_DT_0)
	return(0);
    if (x == R_DT_1)
	return(m * n);

    if(log_p || !lower_tail)
	x = R_DT_qIv(x); /* lower_tail,non-log "p" */

    int mm = (int) m, nn = (int) n;
    w_init_maybe(mm, nn);
    c = choose(m + n, n);
    p = 0;
    int q = 0;
    if (x <= 0.5) {
	x = x - 10 * DBL_EPSILON;
	for (;;) {
	    p += cwilcox(q, mm, nn) / c;
	    if (p >= x)
		break;
	    q++;
	}
    }
    else {
	x = 1 - x + 10 * DBL_EPSILON;
	for (;;) {
	    p += cwilcox(q, mm, nn) / c;
	    if (p > x) {
		q = (int) (m * n - q);
		break;
	    }
	    q++;
	}
    }

    return(q);
}
コード例 #4
0
ファイル: dbinom.c プロジェクト: Bgods/r-source
double dbinom(double x, double n, double p, int give_log)
{
#ifdef IEEE_754
    /* NaNs propagated correctly */
    if (ISNAN(x) || ISNAN(n) || ISNAN(p)) return x + n + p;
#endif

    if (p < 0 || p > 1 || R_D_negInonint(n))
	ML_ERR_return_NAN;
    R_D_nonint_check(x);
    if (x < 0 || !R_FINITE(x)) return R_D__0;

    n = R_forceint(n);
    x = R_forceint(x);

    return dbinom_raw(x, n, p, 1-p, give_log);
}
コード例 #5
0
ファイル: choose.c プロジェクト: FatManCoding/r-source
/* 30 is somewhat arbitrary: it is on the *safe* side:
 * both speed and precision are clearly improved for k < 30.
*/
double choose(double n, double k)
{
    double r, k0 = k;
    k = R_forceint(k);
#ifdef IEEE_754
    /* NaNs propagated correctly */
    if(ISNAN(n) || ISNAN(k)) return n + k;
#endif
#ifndef MATHLIB_STANDALONE
    R_CheckStack();
#endif
    if (fabs(k - k0) > 1e-7)
	MATHLIB_WARNING2(_("'k' (%.2f) must be integer, rounded to %.0f"), k0, k);
    if (k < k_small_max) {
	int j;
	if(n-k < k && n >= 0 && R_IS_INT(n)) k = n-k; /* <- Symmetry */
	if (k <	 0) return 0.;
	if (k == 0) return 1.;
	/* else: k >= 1 */
	r = n;
	for(j = 2; j <= k; j++)
	    r *= (n-j+1)/j;
	return R_IS_INT(n) ? R_forceint(r) : r;
	/* might have got rounding errors */
    }
    /* else: k >= k_small_max */
    if (n < 0) {
	r = choose(-n+ k-1, k);
	if (ODD(k)) r = -r;
	return r;
    }
    else if (R_IS_INT(n)) {
	n = R_forceint(n);
	if(n < k) return 0.;
	if(n - k < k_small_max) return choose(n, n-k); /* <- Symmetry */
	return R_forceint(exp(lfastchoose(n, k)));
    }
    /* else non-integer n >= 0 : */
    if (n < k-1) {
	int s_choose;
	r = lfastchoose2(n, k, /* -> */ &s_choose);
	return s_choose * exp(r);
    }
    return exp(lfastchoose(n, k));
}
コード例 #6
0
ファイル: wilcox.c プロジェクト: Bgods/r-source
/* args have the same meaning as R function pwilcox */
double pwilcox(double q, double m, double n, int lower_tail, int log_p)
{
    int i;
    double c, p;

#ifdef IEEE_754
    if (ISNAN(q) || ISNAN(m) || ISNAN(n))
	return(q + m + n);
#endif
    if (!R_FINITE(m) || !R_FINITE(n))
	ML_ERR_return_NAN;
    m = R_forceint(m);
    n = R_forceint(n);
    if (m <= 0 || n <= 0)
	ML_ERR_return_NAN;

    q = floor(q + 1e-7);

    if (q < 0.0)
	return(R_DT_0);
    if (q >= m * n)
	return(R_DT_1);

    int mm = (int) m, nn = (int) n;
    w_init_maybe(mm, nn);
    c = choose(m + n, n);
    p = 0;
    /* Use summation of probs over the shorter range */
    if (q <= (m * n / 2)) {
	for (i = 0; i <= q; i++)
	    p += cwilcox(i, mm, nn) / c;
    }
    else {
	q = m * n - q;
	for (i = 0; i < q; i++)
	    p += cwilcox(i, mm, nn) / c;
	lower_tail = !lower_tail; /* p = 1 - p; */
    }

    return(R_DT_val(p));
} /* pwilcox */
コード例 #7
0
ファイル: choose.c プロジェクト: FatManCoding/r-source
double lchoose(double n, double k)
{
    double k0 = k;
    k = R_forceint(k);
#ifdef IEEE_754
    /* NaNs propagated correctly */
    if(ISNAN(n) || ISNAN(k)) return n + k;
#endif
#ifndef MATHLIB_STANDALONE
    R_CheckStack();
#endif
    if (fabs(k - k0) > 1e-7)
	MATHLIB_WARNING2(_("'k' (%.2f) must be integer, rounded to %.0f"), k0, k);
    if (k < 2) {
	if (k <	 0) return ML_NEGINF;
	if (k == 0) return 0.;
	/* else: k == 1 */
	return log(fabs(n));
    }
    /* else: k >= 2 */
    if (n < 0) {
	return lchoose(-n+ k-1, k);
    }
    else if (R_IS_INT(n)) {
	n = R_forceint(n);
	if(n < k) return ML_NEGINF;
	/* k <= n :*/
	if(n - k < 2) return lchoose(n, n-k); /* <- Symmetry */
	/* else: n >= k+2 */
	return lfastchoose(n, k);
    }
    /* else non-integer n >= 0 : */
    if (n < k-1) {
	int s;
	return lfastchoose2(n, k, &s);
    }
    return lfastchoose(n, k);
}
コード例 #8
0
ファイル: dnbinom.c プロジェクト: daleq/RRO
double dnbinom(double x, double size, double prob, int give_log)
{
    double ans, p;

#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(size) || ISNAN(prob))
        return x + size + prob;
#endif

    if (prob <= 0 || prob > 1 || size < 0) ML_ERR_return_NAN;
    R_D_nonint_check(x);
    if (x < 0 || !R_FINITE(x)) return R_D__0;
    /* limiting case as size approaches zero is point mass at zero */
    if (x == 0 && size==0) return R_D__1;
    x = R_forceint(x);

    ans = dbinom_raw(size, x+size, prob, 1-prob, give_log);
    p = ((double)size)/(size+x);
    return((give_log) ? log(p) + ans : p * ans);
}
コード例 #9
0
ファイル: pbinom.c プロジェクト: Bgods/r-source
double pbinom(double x, double n, double p, int lower_tail, int log_p)
{
#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(n) || ISNAN(p))
	return x + n + p;
    if (!R_FINITE(n) || !R_FINITE(p)) ML_ERR_return_NAN;

#endif
    if(R_nonint(n)) {
	MATHLIB_WARNING(_("non-integer n = %f"), n);
	ML_ERR_return_NAN;
    }
    n = R_forceint(n);
    /* PR#8560: n=0 is a valid value */
    if(n < 0 || p < 0 || p > 1) ML_ERR_return_NAN;

    if (x < 0) return R_DT_0;
    x = floor(x + 1e-7);
    if (n <= x) return R_DT_1;
    return pbeta(p, x + 1, n - x, !lower_tail, log_p);
}
コード例 #10
0
ファイル: polygamma.c プロジェクト: FatManCoding/r-source
double psigamma(double x, double deriv)
{
    /* n-th derivative of psi(x);  e.g., psigamma(x,0) == digamma(x) */
    double ans;
    int nz, ierr, k, n;

    if(ISNAN(x))
	return x;
    deriv = R_forceint(deriv);
    n = (int)deriv;
    if(n > n_max) {
	MATHLIB_WARNING2(_("deriv = %d > %d (= n_max)\n"), n, n_max);
	return ML_NAN;
    }
    dpsifn(x, n, 1, 1, &ans, &nz, &ierr);
    ML_TREAT_psigam(ierr);
    /* Now, ans ==  A := (-1)^(n+1) / gamma(n+1) * psi(n, x) */
    ans = -ans; /* = (-1)^(0+1) * gamma(0+1) * A */
    for(k = 1; k <= n; k++)
	ans *= (-k);/* = (-1)^(k+1) * gamma(k+1) * A */
    return ans;/* = psi(n, x) */
}
コード例 #11
0
ファイル: dnbinom.c プロジェクト: Bgods/r-source
double dnbinom_mu(double x, double size, double mu, int give_log)
{
    /* originally, just set  prob :=  size / (size + mu)  and called dbinom_raw(),
     * but that suffers from cancellation when   mu << size  */

#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(size) || ISNAN(mu))
        return x + size + mu;
#endif

    if (mu < 0 || size < 0) ML_ERR_return_NAN;
    R_D_nonint_check(x);
    if (x < 0 || !R_FINITE(x)) return R_D__0;

    /* limiting case as size approaches zero is point mass at zero,
     * even if mu is kept constant. limit distribution does not
     * have mean mu, though.
     */
    if (x == 0 && size == 0) return R_D__1;
    x = R_forceint(x);
    if(!R_FINITE(size)) // limit case: Poisson
	return(dpois_raw(x, mu, give_log));

    if(x == 0)/* be accurate, both for n << mu, and n >> mu :*/
	return R_D_exp(size * (size < mu ? log(size/(size+mu)) : log1p(- mu/(size+mu))));
    if(x < 1e-10 * size) { /* don't use dbinom_raw() but MM's formula: */
	/* FIXME --- 1e-8 shows problem; rather use algdiv() from ./toms708.c */
	double p = (size < mu ? log(size/(1 + size/mu)) : log(mu / (1 + mu/size)));
	return R_D_exp(x * p - mu - lgamma(x+1) +
		       log1p(x*(x-1)/(2*size)));
    } else {
	/* no unnecessary cancellation inside dbinom_raw, when
	 * x_ = size and n_ = x+size are so close that n_ - x_ loses accuracy */
	double p = ((double)size)/(size+x),
	    ans = dbinom_raw(size, x+size, size/(size+mu), mu/(size+mu), give_log);
	return((give_log) ? log(p) + ans : p * ans);
    }
}
コード例 #12
0
ファイル: rhyper.c プロジェクト: Bgods/r-source
//     rhyper(NR, NB, n) -- NR 'red', NB 'blue', n drawn, how many are 'red'
double rhyper(double nn1in, double nn2in, double kkin)
{
    /* extern double afc(int); */

    int nn1, nn2, kk;
    int ix; // return value (coerced to double at the very end)
    Rboolean setup1, setup2;

    /* These should become 'thread_local globals' : */
    static int ks = -1, n1s = -1, n2s = -1;
    static int m, minjx, maxjx;
    static int k, n1, n2; // <- not allowing larger integer par
    static double tn;

    // II :
    static double w;
    // III:
    static double a, d, s, xl, xr, kl, kr, lamdl, lamdr, p1, p2, p3;

    /* check parameter validity */

    if(!R_FINITE(nn1in) || !R_FINITE(nn2in) || !R_FINITE(kkin))
	ML_ERR_return_NAN;

    nn1in = R_forceint(nn1in);
    nn2in = R_forceint(nn2in);
    kkin  = R_forceint(kkin);

    if (nn1in < 0 || nn2in < 0 || kkin < 0 || kkin > nn1in + nn2in)
	ML_ERR_return_NAN;
    if (nn1in >= INT_MAX || nn2in >= INT_MAX || kkin >= INT_MAX) {
	/* large n -- evade integer overflow (and inappropriate algorithms)
	   -------- */
        // FIXME: Much faster to give rbinom() approx when appropriate; -> see Kuensch(1989)
	// Johnson, Kotz,.. p.258 (top) mention the *four* different binomial approximations
	if(kkin == 1.) { // Bernoulli
	    return rbinom(kkin, nn1in / (nn1in + nn2in));
	}
	// Slow, but safe: return  F^{-1}(U)  where F(.) = phyper(.) and  U ~ U[0,1]
	return qhyper(unif_rand(), nn1in, nn2in, kkin, FALSE, FALSE);
    }
    nn1 = (int)nn1in;
    nn2 = (int)nn2in;
    kk  = (int)kkin;

    /* if new parameter values, initialize */
    if (nn1 != n1s || nn2 != n2s) {
	setup1 = TRUE;	setup2 = TRUE;
    } else if (kk != ks) {
	setup1 = FALSE;	setup2 = TRUE;
    } else {
	setup1 = FALSE;	setup2 = FALSE;
    }
    if (setup1) {
	n1s = nn1;
	n2s = nn2;
	tn = nn1 + nn2;
	if (nn1 <= nn2) {
	    n1 = nn1;
	    n2 = nn2;
	} else {
	    n1 = nn2;
	    n2 = nn1;
	}
    }
    if (setup2) {
	ks = kk;
	if (kk + kk >= tn) {
	    k = (int)(tn - kk);
	} else {
	    k = kk;
	}
    }
    if (setup1 || setup2) {
	m = (int) ((k + 1.) * (n1 + 1.) / (tn + 2.));
	minjx = imax2(0, k - n2);
	maxjx = imin2(n1, k);
#ifdef DEBUG_rhyper
	REprintf("rhyper(nn1=%d, nn2=%d, kk=%d), setup: floor(mean)= m=%d, jx in (%d..%d)\n",
		 nn1, nn2, kk, m, minjx, maxjx);
#endif
    }
    /* generate random variate --- Three basic cases */

    if (minjx == maxjx) { /* I: degenerate distribution ---------------- */
#ifdef DEBUG_rhyper
	REprintf("rhyper(), branch I (degenerate)\n");
#endif
	ix = maxjx;
	goto L_finis; // return appropriate variate

    } else if (m - minjx < 10) { // II: (Scaled) algorithm HIN (inverse transformation) ----
	const static double scale = 1e25; // scaling factor against (early) underflow
	const static double con = 57.5646273248511421;
					  // 25*log(10) = log(scale) { <==> exp(con) == scale }
	if (setup1 || setup2) {
	    double lw; // log(w);  w = exp(lw) * scale = exp(lw + log(scale)) = exp(lw + con)
	    if (k < n2) {
		lw = afc(n2) + afc(n1 + n2 - k) - afc(n2 - k) - afc(n1 + n2);
	    } else {
		lw = afc(n1) + afc(     k     ) - afc(k - n2) - afc(n1 + n2);
	    }
	    w = exp(lw + con);
	}
	double p, u;
#ifdef DEBUG_rhyper
	REprintf("rhyper(), branch II; w = %g > 0\n", w);
#endif
      L10:
	p = w;
	ix = minjx;
	u = unif_rand() * scale;
#ifdef DEBUG_rhyper
	REprintf("  _new_ u = %g\n", u);
#endif
	while (u > p) {
	    u -= p;
	    p *= ((double) n1 - ix) * (k - ix);
	    ix++;
	    p = p / ix / (n2 - k + ix);
#ifdef DEBUG_rhyper
	    REprintf("       ix=%3d, u=%11g, p=%20.14g (u-p=%g)\n", ix, u, p, u-p);
#endif
	    if (ix > maxjx)
		goto L10;
	    // FIXME  if(p == 0.)  we also "have lost"  => goto L10
	}
    } else { /* III : H2PE Algorithm --------------------------------------- */

	double u,v;

	if (setup1 || setup2) {
	    s = sqrt((tn - k) * k * n1 * n2 / (tn - 1) / tn / tn);

	    /* remark: d is defined in reference without int. */
	    /* the truncation centers the cell boundaries at 0.5 */

	    d = (int) (1.5 * s) + .5;
	    xl = m - d + .5;
	    xr = m + d + .5;
	    a = afc(m) + afc(n1 - m) + afc(k - m) + afc(n2 - k + m);
	    kl = exp(a - afc((int) (xl)) - afc((int) (n1 - xl))
		     - afc((int) (k - xl))
		     - afc((int) (n2 - k + xl)));
	    kr = exp(a - afc((int) (xr - 1))
		     - afc((int) (n1 - xr + 1))
		     - afc((int) (k - xr + 1))
		     - afc((int) (n2 - k + xr - 1)));
	    lamdl = -log(xl * (n2 - k + xl) / (n1 - xl + 1) / (k - xl + 1));
	    lamdr = -log((n1 - xr + 1) * (k - xr + 1) / xr / (n2 - k + xr));
	    p1 = d + d;
	    p2 = p1 + kl / lamdl;
	    p3 = p2 + kr / lamdr;
	}
#ifdef DEBUG_rhyper
	REprintf("rhyper(), branch III {accept/reject}: (xl,xr)= (%g,%g); (lamdl,lamdr)= (%g,%g)\n",
		 xl, xr, lamdl,lamdr);
	REprintf("-------- p123= c(%g,%g,%g)\n", p1,p2, p3);
#endif
	int n_uv = 0;
      L30:
	u = unif_rand() * p3;
	v = unif_rand();
	n_uv++;
	if(n_uv >= 10000) {
	    REprintf("rhyper() branch III: giving up after %d rejections", n_uv);
	    ML_ERR_return_NAN;
        }
#ifdef DEBUG_rhyper
	REprintf(" ... L30: new (u=%g, v ~ U[0,1])[%d]\n", u, n_uv);
#endif

	if (u < p1) {		/* rectangular region */
	    ix = (int) (xl + u);
	} else if (u <= p2) {	/* left tail */
	    ix = (int) (xl + log(v) / lamdl);
	    if (ix < minjx)
		goto L30;
	    v = v * (u - p1) * lamdl;
	} else {		/* right tail */
	    ix = (int) (xr - log(v) / lamdr);
	    if (ix > maxjx)
		goto L30;
	    v = v * (u - p2) * lamdr;
	}

	/* acceptance/rejection test */
	Rboolean reject = TRUE;

	if (m < 100 || ix <= 50) {
	    /* explicit evaluation */
	    /* The original algorithm (and TOMS 668) have
		   f = f * i * (n2 - k + i) / (n1 - i) / (k - i);
	       in the (m > ix) case, but the definition of the
	       recurrence relation on p134 shows that the +1 is
	       needed. */
	    int i;
	    double f = 1.0;
	    if (m < ix) {
		for (i = m + 1; i <= ix; i++)
		    f = f * (n1 - i + 1) * (k - i + 1) / (n2 - k + i) / i;
	    } else if (m > ix) {
		for (i = ix + 1; i <= m; i++)
		    f = f * i * (n2 - k + i) / (n1 - i + 1) / (k - i + 1);
	    }
	    if (v <= f) {
		reject = FALSE;
	    }
	} else {

	    const static double deltal = 0.0078;
	    const static double deltau = 0.0034;

	    double e, g, r, t, y;
	    double de, dg, dr, ds, dt, gl, gu, nk, nm, ub;
	    double xk, xm, xn, y1, ym, yn, yk, alv;

#ifdef DEBUG_rhyper
	    REprintf(" ... accept/reject 'large' case v=%g\n", v);
#endif
	    /* squeeze using upper and lower bounds */
	    y = ix;
	    y1 = y + 1.0;
	    ym = y - m;
	    yn = n1 - y + 1.0;
	    yk = k - y + 1.0;
	    nk = n2 - k + y1;
	    r = -ym / y1;
	    s = ym / yn;
	    t = ym / yk;
	    e = -ym / nk;
	    g = yn * yk / (y1 * nk) - 1.0;
	    dg = 1.0;
	    if (g < 0.0)
		dg = 1.0 + g;
	    gu = g * (1.0 + g * (-0.5 + g / 3.0));
	    gl = gu - .25 * (g * g * g * g) / dg;
	    xm = m + 0.5;
	    xn = n1 - m + 0.5;
	    xk = k - m + 0.5;
	    nm = n2 - k + xm;
	    ub = y * gu - m * gl + deltau
		+ xm * r * (1. + r * (-0.5 + r / 3.0))
		+ xn * s * (1. + s * (-0.5 + s / 3.0))
		+ xk * t * (1. + t * (-0.5 + t / 3.0))
		+ nm * e * (1. + e * (-0.5 + e / 3.0));
	    /* test against upper bound */
	    alv = log(v);
	    if (alv > ub) {
		reject = TRUE;
	    } else {
				/* test against lower bound */
		dr = xm * (r * r * r * r);
		if (r < 0.0)
		    dr /= (1.0 + r);
		ds = xn * (s * s * s * s);
		if (s < 0.0)
		    ds /= (1.0 + s);
		dt = xk * (t * t * t * t);
		if (t < 0.0)
		    dt /= (1.0 + t);
		de = nm * (e * e * e * e);
		if (e < 0.0)
		    de /= (1.0 + e);
		if (alv < ub - 0.25 * (dr + ds + dt + de)
		    + (y + m) * (gl - gu) - deltal) {
		    reject = FALSE;
		}
		else {
		    /* * Stirling's formula to machine accuracy
		     */
		    if (alv <= (a - afc(ix) - afc(n1 - ix)
				- afc(k - ix) - afc(n2 - k + ix))) {
			reject = FALSE;
		    } else {
			reject = TRUE;
		    }
		}
	    }
	} // else
	if (reject)
	    goto L30;
    }


L_finis:
    /* return appropriate variate */

    if (kk + kk >= tn) {
	if (nn1 > nn2) {
	    ix = kk - nn2 + ix;
	} else {
	    ix = nn1 - ix;
	}
    } else {
	if (nn1 > nn2)
	    ix = kk - ix;
    }
    return ix;
}
コード例 #13
0
ファイル: dnorm.c プロジェクト: Bgods/r-source
double dnorm4(double x, double mu, double sigma, int give_log)
{
#ifdef IEEE_754
    if (ISNAN(x) || ISNAN(mu) || ISNAN(sigma))
	return x + mu + sigma;
#endif
    if(!R_FINITE(sigma)) return R_D__0;
    if(!R_FINITE(x) && mu == x) return ML_NAN;/* x-mu is NaN */
    if (sigma <= 0) {
	if (sigma < 0) ML_ERR_return_NAN;
	/* sigma == 0 */
	return (x == mu) ? ML_POSINF : R_D__0;
    }
    x = (x - mu) / sigma;

    if(!R_FINITE(x)) return R_D__0;

    x = fabs (x);
    if (x >= 2 * sqrt(DBL_MAX)) return R_D__0;
    if (give_log)
	return -(M_LN_SQRT_2PI + 0.5 * x * x + log(sigma));
    //  M_1_SQRT_2PI = 1 / sqrt(2 * pi)
#ifdef MATHLIB_FAST_dnorm
    // and for R <= 3.0.x and R-devel upto 2014-01-01:
    return M_1_SQRT_2PI * exp(-0.5 * x * x) / sigma;
#else
    // more accurate, less fast :
    if (x < 5)    return M_1_SQRT_2PI * exp(-0.5 * x * x) / sigma;

    /* ELSE:

     * x*x  may lose upto about two digits accuracy for "large" x
     * Morten Welinder's proposal for PR#15620
     * https://bugs.r-project.org/bugzilla/show_bug.cgi?id=15620

     * -- 1 --  No hoop jumping when we underflow to zero anyway:

     *  -x^2/2 <         log(2)*.Machine$double.min.exp  <==>
     *     x   > sqrt(-2*log(2)*.Machine$double.min.exp) =IEEE= 37.64031
     * but "thanks" to denormalized numbers, underflow happens a bit later,
     *  effective.D.MIN.EXP <- with(.Machine, double.min.exp + double.ulp.digits)
     * for IEEE, DBL_MIN_EXP is -1022 but "effective" is -1074
     * ==> boundary = sqrt(-2*log(2)*(.Machine$double.min.exp + .Machine$double.ulp.digits))
     *              =IEEE=  38.58601
     * [on one x86_64 platform, effective boundary a bit lower: 38.56804]
     */
    if (x > sqrt(-2*M_LN2*(DBL_MIN_EXP + 1-DBL_MANT_DIG))) return 0.;

    /* Now, to get full accurary, split x into two parts,
     *  x = x1+x2, such that |x2| <= 2^-16.
     * Assuming that we are using IEEE doubles, that means that
     * x1*x1 is error free for x<1024 (but we have x < 38.6 anyway).

     * If we do not have IEEE this is still an improvement over the naive formula.
     */
    double x1 = //  R_forceint(x * 65536) / 65536 =
	ldexp( R_forceint(ldexp(x, 16)), -16);
    double x2 = x - x1;
    return M_1_SQRT_2PI / sigma *
	(exp(-0.5 * x1 * x1) * exp( (-0.5 * x2 - x1) * x2 ) );
#endif
}
コード例 #14
0
ファイル: rhyper.c プロジェクト: Maxsl/r-source
double rhyper(double nn1in, double nn2in, double kkin)
{
    const static double deltal = 0.0078;
    const static double deltau = 0.0034;

    /* extern double afc(int); */

    int nn1, nn2, kk;
    int i, ix;
    Rboolean reject, setup1, setup2;

    double e, f, g, r, t, y;

    /* These should become 'thread_local globals' : */
    static int ks = -1, n1s = -1, n2s = -1;
    static int k, m, minjx, maxjx, n1, n2;
    static double tn;
    // II :
    static double w;
    // III:
    static double a, d, s, xl, xr, kl, kr, lamdl, lamdr, p1, p2, p3;

    /* check parameter validity */

    if(!R_FINITE(nn1in) || !R_FINITE(nn2in) || !R_FINITE(kkin))
	ML_ERR_return_NAN;

    // Disabling large (nn1, nn2, kk) { =^= rhyper (m,n,k) }:
    nn1 = (int) R_forceint(nn1in);
    nn2 = (int) R_forceint(nn2in);
    kk	= (int) R_forceint(kkin);

    if (nn1 < 0 || nn2 < 0 || kk < 0 || kk > nn1 + nn2)
	ML_ERR_return_NAN;

    /* if new parameter values, initialize */
    reject = TRUE;
    if (nn1 != n1s || nn2 != n2s) {
	setup1 = TRUE;	setup2 = TRUE;
    } else if (kk != ks) {
	setup1 = FALSE;	setup2 = TRUE;
    } else {
	setup1 = FALSE;	setup2 = FALSE;
    }
    if (setup1) {
	n1s = nn1;
	n2s = nn2;
	tn = nn1 + nn2;
	if (nn1 <= nn2) {
	    n1 = nn1;
	    n2 = nn2;
	} else {
	    n1 = nn2;
	    n2 = nn1;
	}
    }
    if (setup2) {
	ks = kk;
	if (kk + kk >= tn) {
	    k = (int)(tn - kk);
	} else {
	    k = kk;
	}
    }
    if (setup1 || setup2) {
	m = (int) ((k + 1.0) * (n1 + 1.0) / (tn + 2.0));
	minjx = imax2(0, k - n2);
	maxjx = imin2(n1, k);
    }
    /* generate random variate --- Three basic cases */

    if (minjx == maxjx) { /* I: degenerate distribution ---------------- */
	ix = maxjx;
	/* return ix;
	   No, need to unmangle <TSL>*/
	/* return appropriate variate */

	if (kk + kk >= tn) {
	  if (nn1 > nn2) {
	    ix = kk - nn2 + ix;
	  } else {
	    ix = nn1 - ix;
	  }
	} else {
	  if (nn1 > nn2)
	    ix = kk - ix;
	}
	return ix;

    } else if (m - minjx < 10) { // II: (Scaled) algorithm HIN (inverse transformation) ----
	const static double scale = 1e25; // scaling factor against (early) underflow
	const static double con = 57.5646273248511421;
                                          // 25*log(10) = log(scale) { <==> exp(con) == scale }
	if (setup1 || setup2) {
	    double lw; // log(w);  w = exp(lw) * scale = exp(lw + log(scale)) = exp(lw + con)
	    if (k < n2) {
		lw = afc(n2) + afc(n1 + n2 - k) - afc(n2 - k) - afc(n1 + n2);
	    } else {
		lw = afc(n1) + afc(     k     ) - afc(k - n2) - afc(n1 + n2);
	    }
	    w = exp(lw + con);
	}
	double p, u;
      L10:
	p = w;
	ix = minjx;
	u = unif_rand() * scale;
	while (u > p) {
	    u -= p;
	    p *= ((double) n1 - ix) * (k - ix);
	    ix++;
	    p = p / ix / (n2 - k + ix);
	    if (ix > maxjx)
		goto L10;
	}
    } else { /* III : H2PE Algorithm --------------------------------------- */

	double u,v;

	if (setup1 || setup2) {
	    s = sqrt((tn - k) * k * n1 * n2 / (tn - 1) / tn / tn);

	    /* remark: d is defined in reference without int. */
	    /* the truncation centers the cell boundaries at 0.5 */

	    d = (int) (1.5 * s) + .5;
	    xl = m - d + .5;
	    xr = m + d + .5;
	    a = afc(m) + afc(n1 - m) + afc(k - m) + afc(n2 - k + m);
	    kl = exp(a - afc((int) (xl)) - afc((int) (n1 - xl))
		     - afc((int) (k - xl))
		     - afc((int) (n2 - k + xl)));
	    kr = exp(a - afc((int) (xr - 1))
		     - afc((int) (n1 - xr + 1))
		     - afc((int) (k - xr + 1))
		     - afc((int) (n2 - k + xr - 1)));
	    lamdl = -log(xl * (n2 - k + xl) / (n1 - xl + 1) / (k - xl + 1));
	    lamdr = -log((n1 - xr + 1) * (k - xr + 1) / xr / (n2 - k + xr));
	    p1 = d + d;
	    p2 = p1 + kl / lamdl;
	    p3 = p2 + kr / lamdr;
	}
      L30:
	u = unif_rand() * p3;
	v = unif_rand();
	if (u < p1) {		/* rectangular region */
	    ix = (int) (xl + u);
	} else if (u <= p2) {	/* left tail */
	    ix = (int) (xl + log(v) / lamdl);
	    if (ix < minjx)
		goto L30;
	    v = v * (u - p1) * lamdl;
	} else {		/* right tail */
	    ix = (int) (xr - log(v) / lamdr);
	    if (ix > maxjx)
		goto L30;
	    v = v * (u - p2) * lamdr;
	}

	/* acceptance/rejection test */

	if (m < 100 || ix <= 50) {
	    /* explicit evaluation */
	    /* The original algorithm (and TOMS 668) have
		   f = f * i * (n2 - k + i) / (n1 - i) / (k - i);
	       in the (m > ix) case, but the definition of the
	       recurrence relation on p134 shows that the +1 is
	       needed. */
	    f = 1.0;
	    if (m < ix) {
		for (i = m + 1; i <= ix; i++)
		    f = f * (n1 - i + 1) * (k - i + 1) / (n2 - k + i) / i;
	    } else if (m > ix) {
		for (i = ix + 1; i <= m; i++)
		    f = f * i * (n2 - k + i) / (n1 - i + 1) / (k - i + 1);
	    }
	    if (v <= f) {
		reject = FALSE;
	    }
	} else {
	    double de, dg, dr, ds, dt, gl, gu, nk, nm, ub;
	    double xk, xm, xn, y1, ym, yn, yk, alv;
	    /* squeeze using upper and lower bounds */
	    y = ix;
	    y1 = y + 1.0;
	    ym = y - m;
	    yn = n1 - y + 1.0;
	    yk = k - y + 1.0;
	    nk = n2 - k + y1;
	    r = -ym / y1;
	    s = ym / yn;
	    t = ym / yk;
	    e = -ym / nk;
	    g = yn * yk / (y1 * nk) - 1.0;
	    dg = 1.0;
	    if (g < 0.0)
		dg = 1.0 + g;
	    gu = g * (1.0 + g * (-0.5 + g / 3.0));
	    gl = gu - .25 * (g * g * g * g) / dg;
	    xm = m + 0.5;
	    xn = n1 - m + 0.5;
	    xk = k - m + 0.5;
	    nm = n2 - k + xm;
	    ub = y * gu - m * gl + deltau
		+ xm * r * (1. + r * (-0.5 + r / 3.0))
		+ xn * s * (1. + s * (-0.5 + s / 3.0))
		+ xk * t * (1. + t * (-0.5 + t / 3.0))
		+ nm * e * (1. + e * (-0.5 + e / 3.0));
	    /* test against upper bound */
	    alv = log(v);
	    if (alv > ub) {
		reject = TRUE;
	    } else {
				/* test against lower bound */
		dr = xm * (r * r * r * r);
		if (r < 0.0)
		    dr /= (1.0 + r);
		ds = xn * (s * s * s * s);
		if (s < 0.0)
		    ds /= (1.0 + s);
		dt = xk * (t * t * t * t);
		if (t < 0.0)
		    dt /= (1.0 + t);
		de = nm * (e * e * e * e);
		if (e < 0.0)
		    de /= (1.0 + e);
		if (alv < ub - 0.25 * (dr + ds + dt + de)
		    + (y + m) * (gl - gu) - deltal) {
		    reject = FALSE;
		}
		else {
		    /* * Stirling's formula to machine accuracy
		     */
		    if (alv <= (a - afc(ix) - afc(n1 - ix)
				- afc(k - ix) - afc(n2 - k + ix))) {
			reject = FALSE;
		    } else {
			reject = TRUE;
		    }
		}
	    }
	} // else
	if (reject)
	    goto L30;
    }

    /* return appropriate variate */

    if (kk + kk >= tn) {
	if (nn1 > nn2) {
	    ix = kk - nn2 + ix;
	} else {
	    ix = nn1 - ix;
	}
    } else {
	if (nn1 > nn2)
	    ix = kk - ix;
    }
    return ix;
}