コード例 #1
0
ファイル: fetch.c プロジェクト: ui-fetch/ui-fetch
//////////////////////////////////////////////////////////////////////////////////
/// name: ReadPWM
/// params: int pwmSignal
/// return: void
/// desc: handles the detection of incoming pwm signals. if a rising edge
///       is detected, the value on Timer2 is stored in _risetime. if a
///       falling edge is detected, the value on Timer2 is stored in _falltime,
///       and the overall time the signal was high is stored in _hitime.
///       
///       since the duration of the high and low signals are not equal, the
///       _risetime and _falltime should only be stored on the first instance
///       of rising/falling edge. this is done by storing the current risetime
///       on low signal, and storing the falltime on high signal, and only reading
///       the current signal if the stored values are not equal to the current
///       values. this ensures that the signal is only read when transitioning
///       between high and low signals, which means we are only detecting the
///       rising and falling edges of the pwm
void ReadPWM(int pwmSignal)
{
    // signal is high
    if ( (pwmSignal == 1) && (_falltime != _ftore) ) 
	{
	    // store current fall time
	    _ftore = _falltime;
      
	    // read the timer at the first rise
	    _risetime = ReadTimer2();	
	}
  
    // signal is low
    else if ( (pwmSignal == 0) && (_risetime != _store) )
	{
	    // store current rise time
	    _store = _risetime;
      
	    // read the timer at the first fall
	    _falltime = ReadTimer2();
      
	    // calculate how long the signal was high
	    if ( _risetime < _falltime )
		{
		    _hitime = _falltime - _risetime;
		}
	}

    // populated _hitime means we have a full pulse, so set flag that tells motor to go
    if ( _hitime )
	{
	    _motorGo = 1;
	}
}
コード例 #2
0
void _ISR __attribute__((__interrupt__,no_auto_psv)) _IC2Interrupt(void){
    if(PORTBbits.RB11==1){
        restartTimer2();
        IC2BUF=trash;
    }
    else if(PORTBbits.RB11==0){
        ICD.pitchInput=(float)ReadTimer2();
        ICO.pitchTarget=PitchAngleRange*((ICD.pitchInput-PitchMid)/(PitchMax-PitchMin));//<40*1
    }
    restartTimer4();
    IFS0bits.IC2IF = 0; //Clear IC2 interrupt flag
}
コード例 #3
0
void _ISR __attribute__((__interrupt__,no_auto_psv)) _IC1Interrupt(void){
   if(PORTBbits.RB9==1){
       restartTimer2();
       trash=IC1BUF;
   }
   else if(PORTBbits.RB9==0){
       ICD.rollInput=(float)ReadTimer2();
       ICO.rollTarget=RollAngleRange*((ICD.rollInput-RollMid)/(RollMax-RollMin));//<40*1
   }
   restartTimer4();
   IFS0bits.IC1IF=0; //Clear flag
}
コード例 #4
0
void _ISR __attribute__((__interrupt__,no_auto_psv)) _IC8Interrupt(void){
    if(PORTBbits.RB14==1){
        restartTimer2();
        trash=IC8BUF;
    }
    else if(PORTBbits.RB14==0){
        ICD.yawInput=(float)ReadTimer2();
        ICO.yawTarget=YawRateRange*((ICD.yawInput-YawMid)/(YawMax-YawMin));//k<1*180
    }
    restartTimer4();
    IFS1bits.IC8IF=0; //Clear IC8 interrupt flag
}
コード例 #5
0
void  _ISR __attribute__((__interrupt__,no_auto_psv)) _IC7Interrupt(void){
    if(PORTBbits.RB13==1){
        restartTimer2();
        trash=IC7BUF;
    }
    
    else if(PORTBbits.RB13==0){
        ICD.throttleInput=((float)ReadTimer2());
        ICO.throttle=((ICD.throttleInput-ThrottleMin)/(ThrottleMax-ThrottleMin)); //<1
    }
    restartTimer4();
    IFS1bits.IC7IF=0; //Clear IC7 interrupt flag*/
}
// ADC interrupt hdlr
// This interrupt is drivin high every time the ADC conversion is complete
void adc_int_handler()	{
	unsigned char val[3];

	// Read ADC, then store the values into message buffer
	ReadADC();
	val[0] = ADRESH;
	val[1] = ADRESL;	
	
	// Read the timer to determine when the ADC was read
	val[2] = ReadTimer2();

	//LATB = val[1];

	ToMainHigh_sendmsg(3, MSGT_ADC, (void *) val);	// Send ADC value to ToMainHigh MSGQ
	PIR1bits.ADIF = 0;								// Reset the ADC interrupt

}
コード例 #7
0
ファイル: main.c プロジェクト: larics/assisi-casu-pic
int main(int argc, char** argv) {

    /*Configuring POSC with PLL, with goal FOSC = 80 MHZ */
    // Configure PLL prescaler, PLL postscaler, PLL divisor
    // Fin = 8 Mhz, 8  * (40/2/2) = 80
    PLLFBD = 18; // M=40          // change to 38 for POSC 80 Mhz - this worked only on a single MCU for uknown reason
    CLKDIVbits.PLLPOST = 0; // N2=2
    CLKDIVbits.PLLPRE = 0; // N1=2

    // Initiate Clock Switch to Primary Oscillator with PLL (NOSC=0b011)
    //__builtin_write_OSCCONH(0x03);

    // tune FRC
    OSCTUN = 23;  // 23 * 0.375 = 8.625 % -> 7.37 Mhz * 1.08625 = 8.005Mhz
    // Initiate Clock Switch to external oscillator NOSC=0b011 (alternative use FRC with PLL (NOSC=0b01)
    __builtin_write_OSCCONH(0b011);
    __builtin_write_OSCCONL(OSCCON | 0x01);

    // Wait for Clock switch to occur
    while (OSCCONbits.COSC!= 0b011);
    // Wait for PLL to lock
    while (OSCCONbits.LOCK!= 1);

     // local variables in main function
    int status = 0;
    int i = 0;
    int ax = 0, ay = 0, az = 0;
    int statusProxi[8];
    int slowLoopControl = 0;
    UINT16 timerVal = 0;
    float timeElapsed = 0.0;
    //extern UINT8 pwmMotor;
    extern UINT16 speakerAmp_ref;
    extern UINT16 speakerFreq_ref;
    extern UINT8 proxyStandby;
    UINT16 dummy = 0x0000;

    setUpPorts();
    delay_t1(50);

    PWMInit();
    delay_t1(50);

    ctlPeltier = 0;
    PeltierVoltageSet(ctlPeltier);
    FanCooler(0);
    diagLED_r[0] = 100;
    diagLED_r[1] = 0;
    diagLED_r[2] = 0;
    LedUser(diagLED_r[0], diagLED_r[1],diagLED_r[2]);

    // Speaker initialization - set to 0,1
    spi1Init(2, 0);
    speakerAmp_ref = 0;
    speakerAmp_ref_old = 10;
    speakerFreq_ref = 1;
    speakerFreq_ref_old = 10;
    int count = 0;
    UINT16 inBuff[2] = {0};
    UINT16 outBuff[2] = {0};

    while (speakerAmp_ref != speakerAmp_ref_old) {
        if (count > 5 ) {
            // Error !
            //LedUser(100, 0, 0);
            break;
        }

        inBuff[0] = (speakerAmp_ref & 0x0FFF) | 0x1000;

        chipSelect(slaveVib);
        status = spi1TransferWord(inBuff[0], outBuff);
        chipDeselect(slaveVib);

        chipSelect(slaveVib);
        status = spi1TransferWord(inBuff[0], &speakerAmp_ref_old);
        chipDeselect(slaveVib);

        count++;
    }

    count = 0;

    while (speakerFreq_ref != speakerFreq_ref_old) {
        if (count > 5 ) {
            // Error !
            //LedUser(0, 100, 0);
            break;
        }

        inBuff[0] = (speakerFreq_ref & 0x0FFF) | 0x2000;

        chipSelect(slaveVib);
        status = spi1TransferWord(inBuff[0], outBuff);
        chipDeselect(slaveVib);

        chipSelect(slaveVib);
        status = spi1TransferWord(inBuff[0], &speakerFreq_ref_old);
        chipDeselect(slaveVib);

        count++;
    }

    accPin = aSlaveR;
    accPeriod = 1.0 / ACC_RATE * 1000000.0;  // in us; for ACC_RATE = 3200 Hz it should equal 312.5 us
    status = adxl345Init(accPin);
    ax = status;
    delay_t1(5);

    /* Init FFT coefficients */
    TwidFactorInit(LOG2_FFT_BUFF, &Twiddles_array[0],0);
    delta_freq = (float)ACC_RATE / FFT_BUFF;

    // read 100 values to calculate bias
    int m;
    int n = 0;
    for (m = 0; m < 100; m++) {

        status = readAccXYZ(accPin, &ax, &ay, &az);
        if (status <= 0) {
            //
        }
        else {
            ax_b_l += ax;
            ay_b_l += ay;
            az_b_l += az;
            n++;
        }
        delay_t1(1);
    }

    ax_b_l /= n;
    ay_b_l /= n;
    az_b_l /= n;

    _SI2C2IE = 0;
    _SI2C2IF = 0;

    // Proximity sensors initalization
    I2C1MasterInit();
    status = VCNL4000Init();

    // Cooler temperature sensors initalization
    status = adt7420Init(0, ADT74_I2C_ADD_mainBoard);
    delay_t1(1);
    muxCh = I2C1ChSelect(1, 6);
    status = adt7420Init(0, ADT74_I2C_ADD_flexPCB);

    // Temperature sensors initialization
    statusTemp[0] = adt7320Init(tSlaveF, ADT_CONT_MODE | ADT_16_BIT);
    delay_t1(5);
    statusTemp[1] = adt7320Init(tSlaveR, ADT_CONT_MODE | ADT_16_BIT);
    delay_t1(5);
    statusTemp[2] = adt7320Init(tSlaveB, ADT_CONT_MODE | ADT_16_BIT);
    delay_t1(5);
    statusTemp[3] = adt7320Init(tSlaveL, ADT_CONT_MODE | ADT_16_BIT);
    delay_t1(5);

    // Temperature estimation initialization
    for (i = 0; i < 50; i++) {
        adt7320ReadTemp(tSlaveF, &temp_f);
        delay_t1(1);
        adt7320ReadTemp(tSlaveL, &temp_l);
        delay_t1(1);
        adt7320ReadTemp(tSlaveB, &temp_b);
        delay_t1(1);
        adt7320ReadTemp(tSlaveR, &temp_r);
        delay_t1(1);
    }

    tempBridge[0] = temp_f;
    tempBridge[1] = temp_r;
    tempBridge[2] = temp_b;
    tempBridge[3] = temp_l;

    if (statusTemp[0] != 1)
        temp_f = -1;
    if (statusTemp[1] != 1)
        temp_r = -1;
    if (statusTemp[2] != 1)
        temp_b = -1;
    if (statusTemp[3] != 1)
        temp_l = -1;

    // CASU ring average temperature
    temp_casu = 0;
    tempNum = 0;
    tempSensors = 0;

    for (i = 0; i < 4; i++) {
        if (statusTemp[i] == 1 && tempBridge[i] > 20 && tempBridge[i] < 60) {
            tempNum++;
            temp_casu += tempBridge[i];
            tempSensors++;
        }
    }

    if (tempNum > 0)
        temp_casu /= tempNum;
    else
        temp_casu = -1;

    temp_casu1 = temp_casu;
    temp_wax = temp_casu;
    temp_wax1 = temp_casu;
    temp_model = temp_wax;

    temp_old[0] = temp_f;
    temp_old[1] = temp_r;
    temp_old[2] = temp_b;
    temp_old[3] = temp_l;
    temp_old[4] = temp_flexPCB;
    temp_old[5] = temp_pcb;
    temp_old[6] = temp_casu;
    temp_old[7] = temp_wax;

    for (i = 0; i < 4; i++) {
        uref_m[i] = temp_wax;
    }

    // Configure i2c2 as a slave device and interrupt priority 5
    I2C2SlaveInit(I2C2_CASU_ADD, BB_I2C_INT_PRIORITY);

    // delay for 2 sec
    for(i = 0; i < 4; i ++) {
        delay_t1(500);
        ClrWdt();
    }

    while (i2cStarted == 0) {
        delay_t1(200);
        ClrWdt();
    }

    dma0Init();
    dma1Init();

    CloseTimer4();
    ConfigIntTimer4(T4_INT_ON | TEMP_LOOP_PRIORITY);
    OpenTimer4(T4_ON | T4_PS_1_256, ticks_from_ms(2000, 256));

    CloseTimer5();
    ConfigIntTimer5(T5_INT_ON | FFT_LOOP_PRIORITY);
    OpenTimer5(T5_ON | T5_PS_1_256, ticks_from_ms(1000, 256));

    diagLED_r[0] = 0;
    diagLED_r[1] = 0;
    diagLED_r[2] = 0;
    LedUser(diagLED_r[0], diagLED_r[1],diagLED_r[2]);

    start_acc_acquisition();

    while(1) {

        ConfigIntTimer2(T2_INT_OFF);    // Disable timer interrupt
        IFS0bits.T2IF = 0;              // Clear interrupt flag
        OpenTimer2(T2_ON | T2_PS_1_256, 65535); // Configure timer

        if (!proxyStandby) {
            statusProxi[0] = I2C1ChSelect(1, 2);            // Front
            proxy_f = VCNL4000ReadProxi();
            delay_t1(1);
            statusProxi[1] = I2C1ChSelect(1, 4);            // Back right
            proxy_br = VCNL4000ReadProxi();
            delay_t1(1);
            statusProxi[2] = I2C1ChSelect(1, 3);            // Front right
            proxy_fr = VCNL4000ReadProxi();
            delay_t1(1);
            statusProxi[3] = I2C1ChSelect(1, 5);            // Back
            proxy_b = VCNL4000ReadProxi();
            delay_t1(1);
            statusProxi[4] = I2C1ChSelect(1, 0);            // Back left
            proxy_bl = VCNL4000ReadProxi();
            delay_t1(1);
            statusProxi[5] = I2C1ChSelect(1, 1);            // Front left
            proxy_fl = VCNL4000ReadProxi();
            delay_t1(1);
        }
        else {
            proxy_f = 0;            // Front
            proxy_br = 0;            // Back right
            proxy_fr = 0;            // Front right
            proxy_b = 0;            // Back
            proxy_bl = 0;            // Back left
            proxy_fl = 0;            // Front left
        }

        if (timer4_flag == 1) {
            // every 2 seconds
            CloseTimer4();
            ConfigIntTimer4(T4_INT_ON | TEMP_LOOP_PRIORITY);
            timer4_flag = 0;

            if (dma_spi2_started == 0) {
                OpenTimer4(T4_ON | T4_PS_1_256, ticks_from_ms(2000, 256));
                skip_temp_filter++;
                tempLoop();
            }
            else {
                OpenTimer4(T4_ON | T4_PS_1_256, ticks_from_ms(50, 256));
            }
        }

        if (dma_spi2_done == 1) {
            fftLoop();
            dma_spi2_done = 0;
        }
        if ((timer5_flag == 1) || (new_vibration_reference == 1)) {
            // every 1 seconds
            CloseTimer5();
            ConfigIntTimer5(T5_INT_ON | FFT_LOOP_PRIORITY);
            OpenTimer5(T5_ON | T5_PS_1_256, ticks_from_ms(1000, 256));

            timer5_flag = 0;
            if (new_vibration_reference == 1) {
            //if(1){
                CloseTimer3();
                dma0Stop();
                dma1Stop();
                spi2Init(2, 0);
                dma0Init();
                dma1Init();
                chipDeselect(aSlaveR);
                IFS0bits.DMA0IF = 0;
                delay_t1(30); // transient response
            }
            new_vibration_reference = 0;

            start_acc_acquisition();
        }

        // Cooler fan control
        if (fanCtlOn == 1) {
            if (temp_pcb >= 25 && fanCooler == FAN_COOLER_OFF)
                fanCooler = FAN_COOLER_ON;
            else if (temp_pcb <= 24 && fanCooler == FAN_COOLER_ON)
                fanCooler = FAN_COOLER_OFF;
            // In case of I2C1 fail turn on the fan
            if ((proxy_f == 0xFFFF) && (proxy_fr == 0xFFFF) && (proxy_br == 0xFFFF) && (proxy_b == 0xFFFF) && (proxy_bl == 0xFFFF) && (proxy_fl == 0xFFFF))
                fanCooler = FAN_COOLER_ON;
        }
        else if (fanCtlOn == 2)
            fanCooler = FAN_COOLER_ON;
        else
            fanCooler = FAN_COOLER_OFF;

        //TEST
//        temp_f = temp_model;
//        if (temp_ref < 30) {
//            temp_r = smc_parameters[0] * 10;
//        }
//        else {
//            temp_r = smc_parameters[0] / 2.0 * 10.0;
//        }
//        temp_r = alpha*10;
//        temp_b = sigma_m * 10;
//        temp_l = sigma * 10;
        //temp_flexPCB = temp_ref_ramp;
/*
        proxy_f = dma_spi2_started;
        proxy_fl = dma_spi2_done;
        proxy_bl = new_vibration_reference;
        proxy_b = timer5_flag;
        proxy_br = timer4_flag;
*/
        int dummy_filt = 0;
        for (i = 0; i < 8; i++) {
            if (index_filter[i] > 0){
                dummy_filt++;
            }
        }

        if (dummy_filt > 0) {
            filtered_glitch = dummy_filt;
            //for (i = 0; i< 8; index_filter[i++] = 0);
        }
        else {
            filtered_glitch = 0;
        }

        updateMeasurements();

        timerVal = ReadTimer2();
        CloseTimer2();
        timeElapsed = ms_from_ticks(timerVal, 256);
        //if (timeElapsed < MAIN_LOOP_DUR)
        //    delay_t1(MAIN_LOOP_DUR - timeElapsed);

        ClrWdt(); //Clear watchdog timer

    } // end while(1)
    return (EXIT_SUCCESS);
}