コード例 #1
0
// fuse selected position, velocity and height measurements
void NavEKF2_core::FuseVelPosNED()
{
    // start performance timer
    hal.util->perf_begin(_perf_FuseVelPosNED);

    // health is set bad until test passed
    velHealth = false;
    posHealth = false;
    hgtHealth = false;

    // declare variables used to check measurement errors
    Vector3f velInnov;

    // declare variables used to control access to arrays
    bool fuseData[6] = {false,false,false,false,false,false};
    uint8_t stateIndex;
    uint8_t obsIndex;

    // declare variables used by state and covariance update calculations
    float posErr;
    Vector6 R_OBS; // Measurement variances used for fusion
    Vector6 R_OBS_DATA_CHECKS; // Measurement variances used for data checks only
    Vector6 observation;
    float SK;

    // perform sequential fusion of GPS measurements. This assumes that the
    // errors in the different velocity and position components are
    // uncorrelated which is not true, however in the absence of covariance
    // data from the GPS receiver it is the only assumption we can make
    // so we might as well take advantage of the computational efficiencies
    // associated with sequential fusion
    if (fuseVelData || fusePosData || fuseHgtData) {
        // set the GPS data timeout depending on whether airspeed data is present
        uint32_t gpsRetryTime;
        if (useAirspeed()) gpsRetryTime = frontend->gpsRetryTimeUseTAS_ms;
        else gpsRetryTime = frontend->gpsRetryTimeNoTAS_ms;

        // form the observation vector
        observation[0] = gpsDataDelayed.vel.x;
        observation[1] = gpsDataDelayed.vel.y;
        observation[2] = gpsDataDelayed.vel.z;
        observation[3] = gpsDataDelayed.pos.x;
        observation[4] = gpsDataDelayed.pos.y;
        observation[5] = -hgtMea;

        // calculate additional error in GPS position caused by manoeuvring
        posErr = frontend->gpsPosVarAccScale * accNavMag;

        // estimate the GPS Velocity, GPS horiz position and height measurement variances.
        // if the GPS is able to report a speed error, we use it to adjust the observation noise for GPS velocity
        // otherwise we scale it using manoeuvre acceleration
        // Use different errors if flying without GPS using synthetic position and velocity data
        if (PV_AidingMode == AID_NONE && inFlight) {
            // Assume the vehicle will be flown with velocity changes less than 10 m/s in this mode (realistic for indoor use)
            // This is a compromise between corrections for gyro errors and reducing angular errors due to maneouvres
            R_OBS[0] = sq(10.0f);
            R_OBS[1] = R_OBS[0];
            R_OBS[2] = R_OBS[0];
            // Assume a large position uncertainty so as to contrain position states in this mode but minimise angular errors due to manoeuvres
            R_OBS[3] = sq(25.0f);
            R_OBS[4] = R_OBS[3];
        } else {
            if (gpsSpdAccuracy > 0.0f) {
                // use GPS receivers reported speed accuracy if available and floor at value set by gps noise parameter
                R_OBS[0] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsHorizVelNoise, 50.0f));
                R_OBS[2] = sq(constrain_float(gpsSpdAccuracy, frontend->_gpsVertVelNoise, 50.0f));
            } else {
                // calculate additional error in GPS velocity caused by manoeuvring
                R_OBS[0] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
                R_OBS[2] = sq(constrain_float(frontend->_gpsVertVelNoise,  0.05f, 5.0f)) + sq(frontend->gpsDVelVarAccScale  * accNavMag);
            }
            R_OBS[1] = R_OBS[0];
            R_OBS[3] = sq(constrain_float(frontend->_gpsHorizPosNoise, 0.1f, 10.0f)) + sq(posErr);
            R_OBS[4] = R_OBS[3];
        }
        R_OBS[5] = posDownObsNoise;

        // For data integrity checks we use the same measurement variances as used to calculate the Kalman gains for all measurements except GPS horizontal velocity
        // For horizontal GPs velocity we don't want the acceptance radius to increase with reported GPS accuracy so we use a value based on best GPs perfomrance
        // plus a margin for manoeuvres. It is better to reject GPS horizontal velocity errors early
        for (uint8_t i=0; i<=1; i++) R_OBS_DATA_CHECKS[i] = sq(constrain_float(frontend->_gpsHorizVelNoise, 0.05f, 5.0f)) + sq(frontend->gpsNEVelVarAccScale * accNavMag);
        for (uint8_t i=2; i<=5; i++) R_OBS_DATA_CHECKS[i] = R_OBS[i];

        // if vertical GPS velocity data and an independant height source is being used, check to see if the GPS vertical velocity and altimeter
        // innovations have the same sign and are outside limits. If so, then it is likely aliasing is affecting
        // the accelerometers and we should disable the GPS and barometer innovation consistency checks.
        if (useGpsVertVel && fuseVelData && (frontend->_altSource != 2)) {
            // calculate innovations for height and vertical GPS vel measurements
            float hgtErr  = stateStruct.position.z - observation[5];
            float velDErr = stateStruct.velocity.z - observation[2];
            // check if they are the same sign and both more than 3-sigma out of bounds
            if ((hgtErr*velDErr > 0.0f) && (sq(hgtErr) > 9.0f * (P[8][8] + R_OBS_DATA_CHECKS[5])) && (sq(velDErr) > 9.0f * (P[5][5] + R_OBS_DATA_CHECKS[2]))) {
                badIMUdata = true;
            } else {
                badIMUdata = false;
            }
        }

        // calculate innovations and check GPS data validity using an innovation consistency check
        // test position measurements
        if (fusePosData) {
            // test horizontal position measurements
            innovVelPos[3] = stateStruct.position.x - observation[3];
            innovVelPos[4] = stateStruct.position.y - observation[4];
            varInnovVelPos[3] = P[6][6] + R_OBS_DATA_CHECKS[3];
            varInnovVelPos[4] = P[7][7] + R_OBS_DATA_CHECKS[4];
            // apply an innovation consistency threshold test, but don't fail if bad IMU data
            float maxPosInnov2 = sq(max(0.01f * (float)frontend->_gpsPosInnovGate, 1.0f))*(varInnovVelPos[3] + varInnovVelPos[4]);
            posTestRatio = (sq(innovVelPos[3]) + sq(innovVelPos[4])) / maxPosInnov2;
            posHealth = ((posTestRatio < 1.0f) || badIMUdata);
            // declare a timeout condition if we have been too long without data or not aiding
            posTimeout = (((imuSampleTime_ms - lastPosPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
            // use position data if healthy, timed out, or in constant position mode
            if (posHealth || posTimeout || (PV_AidingMode == AID_NONE)) {
                posHealth = true;
                // only reset the failed time and do glitch timeout checks if we are doing full aiding
                if (PV_AidingMode == AID_ABSOLUTE) {
                    lastPosPassTime_ms = imuSampleTime_ms;
                    // if timed out or outside the specified uncertainty radius, reset to the GPS
                    if (posTimeout || ((P[6][6] + P[7][7]) > sq(float(frontend->_gpsGlitchRadiusMax)))) {
                        // reset the position to the current GPS position
                        ResetPosition();
                        // reset the velocity to the GPS velocity
                        ResetVelocity();
                        // don't fuse GPS data on this time step
                        fusePosData = false;
                        fuseVelData = false;
                        // Reset the position variances and corresponding covariances to a value that will pass the checks
                        zeroRows(P,6,7);
                        zeroCols(P,6,7);
                        P[6][6] = sq(float(0.5f*frontend->_gpsGlitchRadiusMax));
                        P[7][7] = P[6][6];
                        // Reset the normalised innovation to avoid failing the bad fusion tests
                        posTestRatio = 0.0f;
                        velTestRatio = 0.0f;
                    }
                }
            } else {
                posHealth = false;
            }
        }

        // test velocity measurements
        if (fuseVelData) {
            // test velocity measurements
            uint8_t imax = 2;
            // Don't fuse vertical velocity observations if inhibited by the user or if we are using synthetic data
            if (frontend->_fusionModeGPS >= 1 || PV_AidingMode != AID_ABSOLUTE) {
                imax = 1;
            }
            float innovVelSumSq = 0; // sum of squares of velocity innovations
            float varVelSum = 0; // sum of velocity innovation variances
            for (uint8_t i = 0; i<=imax; i++) {
                // velocity states start at index 3
                stateIndex   = i + 3;
                // calculate innovations using blended and single IMU predicted states
                velInnov[i]  = stateStruct.velocity[i] - observation[i]; // blended
                // calculate innovation variance
                varInnovVelPos[i] = P[stateIndex][stateIndex] + R_OBS_DATA_CHECKS[i];
                // sum the innovation and innovation variances
                innovVelSumSq += sq(velInnov[i]);
                varVelSum += varInnovVelPos[i];
            }
            // apply an innovation consistency threshold test, but don't fail if bad IMU data
            // calculate the test ratio
            velTestRatio = innovVelSumSq / (varVelSum * sq(max(0.01f * (float)frontend->_gpsVelInnovGate, 1.0f)));
            // fail if the ratio is greater than 1
            velHealth = ((velTestRatio < 1.0f)  || badIMUdata);
            // declare a timeout if we have not fused velocity data for too long or not aiding
            velTimeout = (((imuSampleTime_ms - lastVelPassTime_ms) > gpsRetryTime) || PV_AidingMode == AID_NONE);
            // use velocity data if healthy, timed out, or in constant position mode
            if (velHealth || velTimeout) {
                velHealth = true;
                // restart the timeout count
                lastVelPassTime_ms = imuSampleTime_ms;
                // If we are doing full aiding and velocity fusion times out, reset to the GPS velocity
                if (PV_AidingMode == AID_ABSOLUTE && velTimeout) {
                    // reset the velocity to the GPS velocity
                    ResetVelocity();
                    // don't fuse GPS velocity data on this time step
                    fuseVelData = false;
                    // Reset the normalised innovation to avoid failing the bad fusion tests
                    velTestRatio = 0.0f;
                }
            } else {
                velHealth = false;
            }
        }

        // test height measurements
        if (fuseHgtData) {
            // calculate height innovations
            innovVelPos[5] = stateStruct.position.z - observation[5];
            varInnovVelPos[5] = P[8][8] + R_OBS_DATA_CHECKS[5];
            // calculate the innovation consistency test ratio
            hgtTestRatio = sq(innovVelPos[5]) / (sq(max(0.01f * (float)frontend->_hgtInnovGate, 1.0f)) * varInnovVelPos[5]);
            // fail if the ratio is > 1, but don't fail if bad IMU data
            hgtHealth = ((hgtTestRatio < 1.0f) || badIMUdata);
            // Fuse height data if healthy or timed out or in constant position mode
            if (hgtHealth || hgtTimeout || (PV_AidingMode == AID_NONE && onGround)) {
                // Calculate a filtered value to be used by pre-flight health checks
                // We need to filter because wind gusts can generate significant baro noise and we want to be able to detect bias errors in the inertial solution
                if (onGround) {
                    float dtBaro = (imuSampleTime_ms - lastHgtPassTime_ms)*1.0e-3f;
                    const float hgtInnovFiltTC = 2.0f;
                    float alpha = constrain_float(dtBaro/(dtBaro+hgtInnovFiltTC),0.0f,1.0f);
                    hgtInnovFiltState += (innovVelPos[5]-hgtInnovFiltState)*alpha;
                } else {
                    hgtInnovFiltState = 0.0f;
                }

                // if timed out, reset the height
                if (hgtTimeout) {
                    ResetHeight();
                    hgtTimeout = false;
                }

                // If we have got this far then declare the height data as healthy and reset the timeout counter
                hgtHealth = true;
                lastHgtPassTime_ms = imuSampleTime_ms;
            }
        }

        // set range for sequential fusion of velocity and position measurements depending on which data is available and its health
        if (fuseVelData && velHealth) {
            fuseData[0] = true;
            fuseData[1] = true;
            if (useGpsVertVel) {
                fuseData[2] = true;
            }
            tiltErrVec.zero();
        }
        if (fusePosData && posHealth) {
            fuseData[3] = true;
            fuseData[4] = true;
            tiltErrVec.zero();
        }
        if (fuseHgtData && hgtHealth) {
            fuseData[5] = true;
        }

        // fuse measurements sequentially
        for (obsIndex=0; obsIndex<=5; obsIndex++) {
            if (fuseData[obsIndex]) {
                stateIndex = 3 + obsIndex;
                // calculate the measurement innovation, using states from a different time coordinate if fusing height data
                // adjust scaling on GPS measurement noise variances if not enough satellites
                if (obsIndex <= 2)
                {
                    innovVelPos[obsIndex] = stateStruct.velocity[obsIndex] - observation[obsIndex];
                    R_OBS[obsIndex] *= sq(gpsNoiseScaler);
                }
                else if (obsIndex == 3 || obsIndex == 4) {
                    innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
                    R_OBS[obsIndex] *= sq(gpsNoiseScaler);
                } else if (obsIndex == 5) {
                    innovVelPos[obsIndex] = stateStruct.position[obsIndex-3] - observation[obsIndex];
                    const float gndMaxBaroErr = 4.0f;
                    const float gndBaroInnovFloor = -0.5f;

                    if(getTouchdownExpected()) {
                        // when a touchdown is expected, floor the barometer innovation at gndBaroInnovFloor
                        // constrain the correction between 0 and gndBaroInnovFloor+gndMaxBaroErr
                        // this function looks like this:
                        //         |/
                        //---------|---------
                        //    ____/|
                        //   /     |
                        //  /      |
                        innovVelPos[5] += constrain_float(-innovVelPos[5]+gndBaroInnovFloor, 0.0f, gndBaroInnovFloor+gndMaxBaroErr);
                    }
                }

                // calculate the Kalman gain and calculate innovation variances
                varInnovVelPos[obsIndex] = P[stateIndex][stateIndex] + R_OBS[obsIndex];
                SK = 1.0f/varInnovVelPos[obsIndex];
                for (uint8_t i= 0; i<=15; i++) {
                    Kfusion[i] = P[i][stateIndex]*SK;
                }

                // inhibit magnetic field state estimation by setting Kalman gains to zero
                if (!inhibitMagStates) {
                    for (uint8_t i = 16; i<=21; i++) {
                        Kfusion[i] = P[i][stateIndex]*SK;
                    }
                } else {
                    for (uint8_t i = 16; i<=21; i++) {
                        Kfusion[i] = 0.0f;
                    }
                }

                // inhibit wind state estimation by setting Kalman gains to zero
                if (!inhibitWindStates) {
                    Kfusion[22] = P[22][stateIndex]*SK;
                    Kfusion[23] = P[23][stateIndex]*SK;
                } else {
                    Kfusion[22] = 0.0f;
                    Kfusion[23] = 0.0f;
                }

                // zero the attitude error state - by definition it is assumed to be zero before each observaton fusion
                stateStruct.angErr.zero();

                // calculate state corrections and re-normalise the quaternions for states predicted using the blended IMU data
                for (uint8_t i = 0; i<=stateIndexLim; i++) {
                    statesArray[i] = statesArray[i] - Kfusion[i] * innovVelPos[obsIndex];
                }

                // the first 3 states represent the angular misalignment vector. This is
                // is used to correct the estimated quaternion
                stateStruct.quat.rotate(stateStruct.angErr);

                // sum the attitude error from velocity and position fusion only
                // used as a metric for convergence monitoring
                if (obsIndex != 5) {
                    tiltErrVec += stateStruct.angErr;
                }

                // update the covariance - take advantage of direct observation of a single state at index = stateIndex to reduce computations
                // this is a numerically optimised implementation of standard equation P = (I - K*H)*P;
                for (uint8_t i= 0; i<=stateIndexLim; i++) {
                    for (uint8_t j= 0; j<=stateIndexLim; j++)
                    {
                        KHP[i][j] = Kfusion[i] * P[stateIndex][j];
                    }
                }
                for (uint8_t i= 0; i<=stateIndexLim; i++) {
                    for (uint8_t j= 0; j<=stateIndexLim; j++) {
                        P[i][j] = P[i][j] - KHP[i][j];
                    }
                }
            }
        }
    }

    // force the covariance matrix to be symmetrical and limit the variances to prevent ill-condiioning.
    ForceSymmetry();
    ConstrainVariances();

    // stop performance timer
    hal.util->perf_end(_perf_FuseVelPosNED);
}
コード例 #2
0
/* Event handler for the details form */
Boolean DetailsFormHandleEvent
    (
    EventType* event  /* pointer to an EventType structure */
    )
{
    Boolean handled;
    Boolean update;

    handled     = false;
    update      = false;

    switch ( event->eType ) {
        case ctlSelectEvent:
            if ( event->data.ctlEnter.controlID == frmDetailsOK ) {
                UInt16  reference;
                Boolean oldStatus;
                Boolean newStatus;

                reference = GetHistoryCurrent();
                oldStatus = ShowImages( reference );
                newStatus = CtlGetValue( GetObjectPtr( frmDetailsShowImages ) );
                update    = oldStatus ^ newStatus;

                if ( newStatus )
                    ShowImagesOn( reference );
                else
                    ShowImagesOff( reference );

                if ( CtlGetValue( GetObjectPtr( frmDetailsStatusRead ) ) )
                    SetVisitedLink( reference );
                else
                    UnsetVisitedLink( reference );

            }
            else if ( event->data.ctlEnter.controlID == frmDetailsCopy ) {
                FieldType* field;

                field = GetObjectPtr( frmDetailsLink );
                WriteTextFieldToMemo( field );
            }
            else if ( event->data.ctlEnter.controlID != frmDetailsCancel ) {
                break;
            }
            FrmReturnToForm( PREVIOUS_FORM );
            if ( update ) {
                ResetHeight();
                FrmUpdateForm( GetMainFormId(), frmRedrawUpdateCode );
            }
            handled = true;
            break;

        case winEnterEvent:
            handled = ResizeHandleWinEnterEvent();
            break;

        case winDisplayChangedEvent:
            handled = ResizeHandleWinDisplayChangedEvent();
            break;

        case winExitEvent:
            handled = ResizeHandleWinExitEvent();
            break;

        case frmOpenEvent:
#ifdef HAVE_SILKSCREEN
            ResizeHandleFrmOpenEvent();
#endif
            DetailsFormInit();
            handled = true;
            break;

        case frmCloseEvent:
#ifdef HAVE_SILKSCREEN
            ResizeHandleFrmCloseEvent();
#endif
            handled = false;
            break;

        default:
            handled = false;
    }

    return handled;
}
コード例 #3
0
// Set inertial navigation aiding mode
void NavEKF2_core::setAidingMode()
{
    // Save the previous status so we can detect when it has changed
    PV_AidingModePrev = PV_AidingMode;

    // Determine if we should change aiding mode
    switch (PV_AidingMode) {
    case AID_NONE: {
        // Don't allow filter to start position or velocity aiding until the tilt and yaw alignment is complete
        // and IMU gyro bias estimates have stabilised
        bool filterIsStable = tiltAlignComplete && yawAlignComplete && checkGyroCalStatus();
        // If GPS usage has been prohiited then we use flow aiding provided optical flow data is present
        // GPS aiding is the preferred option unless excluded by the user
        bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && filterIsStable && !gpsInhibit);
        bool canUseRangeBeacon = readyToUseRangeBeacon() && filterIsStable;
        bool canUseExtNav = readyToUseExtNav();
        if(canUseGPS || canUseRangeBeacon || canUseExtNav) {
            PV_AidingMode = AID_ABSOLUTE;
        } else if (optFlowDataPresent() && filterIsStable) {
            PV_AidingMode = AID_RELATIVE;
        }
        }
        break;

    case AID_RELATIVE: {
        // Check if the optical flow sensor has timed out
        bool flowSensorTimeout = ((imuSampleTime_ms - flowValidMeaTime_ms) > 5000);
        // Check if the fusion has timed out (flow measurements have been rejected for too long)
        bool flowFusionTimeout = ((imuSampleTime_ms - prevFlowFuseTime_ms) > 5000);
        // Enable switch to absolute position mode if GPS is available
        // If GPS is not available and flow fusion has timed out, then fall-back to no-aiding
        if((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit) {
            PV_AidingMode = AID_ABSOLUTE;
        } else if (flowSensorTimeout || flowFusionTimeout) {
            PV_AidingMode = AID_NONE;
        }
        }
        break;

    case AID_ABSOLUTE: {
        // Find the minimum time without data required to trigger any check
        uint16_t minTestTime_ms = MIN(frontend->tiltDriftTimeMax_ms, MIN(frontend->posRetryTimeNoVel_ms,frontend->posRetryTimeUseVel_ms));

        // Check if optical flow data is being used
        bool optFlowUsed = (imuSampleTime_ms - prevFlowFuseTime_ms <= minTestTime_ms);

        // Check if airspeed data is being used
        bool airSpdUsed = (imuSampleTime_ms - lastTasPassTime_ms <= minTestTime_ms);

        // Check if range beacon data is being used
        bool rngBcnUsed = (imuSampleTime_ms - lastRngBcnPassTime_ms <= minTestTime_ms);

        // Check if GPS is being used
        bool posUsed = (imuSampleTime_ms - lastPosPassTime_ms <= minTestTime_ms);
        bool gpsVelUsed = (imuSampleTime_ms - lastVelPassTime_ms <= minTestTime_ms);

        // Check if attitude drift has been constrained by a measurement source
        bool attAiding = posUsed || gpsVelUsed || optFlowUsed || airSpdUsed || rngBcnUsed;

        // check if velocity drift has been constrained by a measurement source
        bool velAiding = gpsVelUsed || airSpdUsed || optFlowUsed;

        // check if position drift has been constrained by a measurement source
        bool posAiding = posUsed || rngBcnUsed;

        // Check if the loss of attitude aiding has become critical
        bool attAidLossCritical = false;
        if (!attAiding) {
            attAidLossCritical = (imuSampleTime_ms - prevFlowFuseTime_ms > frontend->tiltDriftTimeMax_ms) &&
                   (imuSampleTime_ms - lastTasPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
                   (imuSampleTime_ms - lastRngBcnPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
                   (imuSampleTime_ms - lastPosPassTime_ms > frontend->tiltDriftTimeMax_ms) &&
                   (imuSampleTime_ms - lastVelPassTime_ms > frontend->tiltDriftTimeMax_ms);
        }

        // Check if the loss of position accuracy has become critical
        bool posAidLossCritical = false;
        if (!posAiding ) {
            uint16_t maxLossTime_ms;
            if (!velAiding) {
                maxLossTime_ms = frontend->posRetryTimeNoVel_ms;
            } else {
                maxLossTime_ms = frontend->posRetryTimeUseVel_ms;
            }
            posAidLossCritical = (imuSampleTime_ms - lastRngBcnPassTime_ms > maxLossTime_ms) &&
                   (imuSampleTime_ms - lastPosPassTime_ms > maxLossTime_ms);
        }

        if (attAidLossCritical) {
            // if the loss of attitude data is critical, then put the filter into a constant position mode
            PV_AidingMode = AID_NONE;
            posTimeout = true;
            velTimeout = true;
            rngBcnTimeout = true;
            tasTimeout = true;
            gpsNotAvailable = true;
        } else if (posAidLossCritical) {
            // if the loss of position is critical, declare all sources of position aiding as being timed out
            posTimeout = true;
            velTimeout = true;
            rngBcnTimeout = true;
            gpsNotAvailable = true;
        }
        break;
    }
    }

    // check to see if we are starting or stopping aiding and set states and modes as required
    if (PV_AidingMode != PV_AidingModePrev) {
        // set various  usage modes based on the condition when we start aiding. These are then held until aiding is stopped.
        switch (PV_AidingMode) {
        case AID_NONE:
            // We have ceased aiding
            gcs().send_text(MAV_SEVERITY_WARNING, "EKF2 IMU%u has stopped aiding",(unsigned)imu_index);
            // When not aiding, estimate orientation & height fusing synthetic constant position and zero velocity measurement to constrain tilt errors
            posTimeout = true;
            velTimeout = true;            
            // Reset the normalised innovation to avoid false failing bad fusion tests
            velTestRatio = 0.0f;
            posTestRatio = 0.0f;
             // store the current position to be used to keep reporting the last known position
            lastKnownPositionNE.x = stateStruct.position.x;
            lastKnownPositionNE.y = stateStruct.position.y;
            // initialise filtered altitude used to provide a takeoff reference to current baro on disarm
            // this reduces the time required for the baro noise filter to settle before the filtered baro data can be used
            meaHgtAtTakeOff = baroDataDelayed.hgt;
            // reset the vertical position state to faster recover from baro errors experienced during touchdown
            stateStruct.position.z = -meaHgtAtTakeOff;
            break;

        case AID_RELATIVE:
            // We have commenced aiding, but GPS usage has been prohibited so use optical flow only
            gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u is using optical flow",(unsigned)imu_index);
            posTimeout = true;
            velTimeout = true;
            // Reset the last valid flow measurement time
            flowValidMeaTime_ms = imuSampleTime_ms;
            // Reset the last valid flow fusion time
            prevFlowFuseTime_ms = imuSampleTime_ms;
            break;

        case AID_ABSOLUTE: {
            bool canUseGPS = ((frontend->_fusionModeGPS) != 3 && readyToUseGPS() && !gpsInhibit);
            bool canUseRangeBeacon = readyToUseRangeBeacon();
            bool canUseExtNav = readyToUseExtNav();
            // We have commenced aiding and GPS usage is allowed
            if (canUseGPS) {
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u is using GPS",(unsigned)imu_index);
            }
            posTimeout = false;
            velTimeout = false;
            // We have commenced aiding and range beacon usage is allowed
            if (canUseRangeBeacon) {
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u is using range beacons",(unsigned)imu_index);
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u initial pos NE = %3.1f,%3.1f (m)",(unsigned)imu_index,(double)receiverPos.x,(double)receiverPos.y);
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u initial beacon pos D offset = %3.1f (m)",(unsigned)imu_index,(double)bcnPosOffset);
            }
            // We have commenced aiding and external nav usage is allowed
            if (canUseExtNav) {
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u is using external nav data",(unsigned)imu_index);
                gcs().send_text(MAV_SEVERITY_INFO, "EKF2 IMU%u initial pos NED = %3.1f,%3.1f,%3.1f (m)",(unsigned)imu_index,(double)extNavDataDelayed.pos.x,(double)extNavDataDelayed.pos.y,(double)extNavDataDelayed.pos.z);
                // handle yaw reset as special case
                extNavYawResetRequest = true;
                controlMagYawReset();
                // handle height reset as special case
                hgtMea = -extNavDataDelayed.pos.z;
                posDownObsNoise = sq(constrain_float(extNavDataDelayed.posErr, 0.1f, 10.0f));
                ResetHeight();
            }
            // reset the last fusion accepted times to prevent unwanted activation of timeout logic
            lastPosPassTime_ms = imuSampleTime_ms;
            lastVelPassTime_ms = imuSampleTime_ms;
            lastRngBcnPassTime_ms = imuSampleTime_ms;
            }
            break;
        }

        // Always reset the position and velocity when changing mode
        ResetVelocity();
        ResetPosition();
    }
}