inline R_adjacency_list(SEXP num_verts_in, SEXP num_edges_in, SEXP R_edges_in, SEXP R_weights_in) : Base(Rf_asInteger(num_verts_in)) { if (!Rf_isNumeric(R_weights_in)) error("R_weights_in should be Numeric"); if (!Rf_isInteger(R_edges_in)) error("R_edges_in should be integer"); int NE = Rf_asInteger(num_edges_in); int* edges_in = INTEGER(R_edges_in); if (Rf_isReal(R_weights_in)) { if (boost::is_integral<R_weight_type>::value) error("R_weights_in should be integer"); else { double* weights_in = REAL(R_weights_in); for (int i = 0; i < NE ; i++, edges_in += 2, weights_in++) { boost::add_edge(*edges_in, *(edges_in+1), *weights_in, *this); } } } else { int* weights_in = INTEGER(R_weights_in); for (int i = 0; i < NE ; i++, edges_in += 2, weights_in++) { boost::add_edge(*edges_in, *(edges_in+1), *weights_in, *this); } } }
inline R_adjacency_list(SEXP num_verts_in, SEXP num_edges_in, SEXP R_edges_in) : Base(Rf_asInteger(num_verts_in)) { if (!Rf_isInteger(R_edges_in)) error("R_edges_in should be integer"); int NE = Rf_asInteger(num_edges_in); int* edges_in = INTEGER(R_edges_in); for (int i = 0; i < NE ; i++, edges_in += 2) { boost::add_edge(*edges_in, *(edges_in+1), 1, *this); } }
void AlgebraFitFunction::init() { auto *off = this; omxState *currentState = off->matrix->currentState; AlgebraFitFunction *aff = this; aff->ff = off; ProtectedSEXP Ralg(R_do_slot(rObj, Rf_install("algebra"))); aff->algebra = omxMatrixLookupFromState1(Ralg, currentState); ProtectedSEXP Runit(R_do_slot(rObj, Rf_install("units"))); off->setUnitsFromName(CHAR(STRING_ELT(Runit, 0))); ProtectedSEXP Rgr(R_do_slot(rObj, Rf_install("gradient"))); aff->gradient = omxMatrixLookupFromState1(Rgr, currentState); if (aff->gradient) off->gradientAvailable = TRUE; ProtectedSEXP Rh(R_do_slot(rObj, Rf_install("hessian"))); aff->hessian = omxMatrixLookupFromState1(Rh, currentState); if (aff->hessian) off->hessianAvailable = TRUE; ProtectedSEXP Rverb(R_do_slot(rObj, Rf_install("verbose"))); aff->verbose = Rf_asInteger(Rverb); off->canDuplicate = true; }
static SEXP setNumberOfCores(SEXP num) { omxManageProtectInsanity mpi; #if defined(_OPENMP) GlobalNumberOfCores = Rf_asInteger(num); #endif return num; }
SEXP ocl_get_device_info_char(SEXP device, SEXP item) { cl_device_id device_id = getDeviceID(device); cl_device_info pn = (cl_device_info) Rf_asInteger(item); *infobuf = 0; if ((last_ocl_error = clGetDeviceInfo(device_id, pn, sizeof(infobuf), &infobuf, NULL)) != CL_SUCCESS) ocl_err("clGetDeviceInfo"); return Rf_mkString(infobuf); }
SEXP ocl_get_device_info_char(SEXP device, SEXP item) { char buf[512]; cl_device_id device_id = getDeviceID(device); cl_device_info pn = (cl_device_info) Rf_asInteger(item); buf[0] = 0; if (clGetDeviceInfo(device_id, pn, sizeof(buf), &buf, NULL) != CL_SUCCESS) ocl_err("clGetDeviceInfo"); return Rf_mkString(buf); }
void seed_rng_from_R(SEXP rseed) { if (Rf_isNull(rseed)) { BOOM::GlobalRng::seed_with_timestamp(); } else { int seed = Rf_asInteger(rseed); BOOM::GlobalRng::rng.seed(seed); srand(seed); } }
SEXP cr_connect(SEXP sHost, SEXP sPort, SEXP sTimeout, SEXP sReconnect, SEXP sRetry) { const char *host = "localhost"; double tout = Rf_asReal(sTimeout); int port = Rf_asInteger(sPort), reconnect = (Rf_asInteger(sReconnect) > 0), retry = (Rf_asInteger(sRetry) > 0); redisContext *ctx; rconn_t *c; SEXP res; struct timeval tv; if (TYPEOF(sHost) == STRSXP && LENGTH(sHost) > 0) host = CHAR(STRING_ELT(sHost, 0)); tv.tv_sec = (int) tout; tv.tv_usec = (tout - (double)tv.tv_sec) * 1000000.0; if (port < 1) ctx = redisConnectUnixWithTimeout(host, tv); else ctx = redisConnectWithTimeout(host, port, tv); if (!ctx) Rf_error("connect to redis failed (NULL context)"); if (ctx->err){ SEXP es = Rf_mkChar(ctx->errstr); redisFree(ctx); Rf_error("connect to redis failed: %s", CHAR(es)); } c = malloc(sizeof(rconn_t)); if (!c) { redisFree(ctx); Rf_error("unable to allocate connection context"); } c->rc = ctx; c->flags = (reconnect ? RCF_RECONNECT : 0) | (retry ? RCF_RETRY : 0); c->host = strdup(host); c->port = port; c->timeout = tout; redisSetTimeout(ctx, tv); res = PROTECT(R_MakeExternalPtr(c, R_NilValue, R_NilValue)); Rf_setAttrib(res, R_ClassSymbol, Rf_mkString("redisConnection")); R_RegisterCFinalizer(res, rconn_fin); UNPROTECT(1); return res; }
void omxFillMatrixFromMxFitFunction(omxMatrix* om, int matrixNumber, SEXP rObj) { om->hasMatrixNumber = TRUE; om->matrixNumber = matrixNumber; ProtectedSEXP fitFunctionClass(STRING_ELT(Rf_getAttrib(rObj, R_ClassSymbol), 0)); const char *fitType = CHAR(fitFunctionClass); omxExpectation *expect = NULL; ProtectedSEXP slotValue(R_do_slot(rObj, Rf_install("expectation"))); if (Rf_length(slotValue) == 1) { int expNumber = Rf_asInteger(slotValue); if(expNumber != NA_INTEGER) { expect = omxExpectationFromIndex(expNumber, om->currentState); } } bool rowLik = Rf_asInteger(R_do_slot(rObj, Rf_install("vector"))); omxFitFunction *ff = omxNewInternalFitFunction(om->currentState, fitType, expect, om, rowLik); ff->rObj = rObj; }
void omxFillMatrixFromMxFitFunction(omxMatrix* om, const char *fitType, int matrixNumber, SEXP rObj) { om->hasMatrixNumber = TRUE; om->matrixNumber = matrixNumber; SEXP slotValue; omxExpectation *expect = NULL; { ScopedProtect p1(slotValue, R_do_slot(rObj, Rf_install("expectation"))); if (Rf_length(slotValue) == 1) { int expNumber = Rf_asInteger(slotValue); if(expNumber != NA_INTEGER) { expect = omxExpectationFromIndex(expNumber, om->currentState); } } } bool rowLik = Rf_asInteger(R_do_slot(rObj, Rf_install("vector"))); omxFitFunction *ff = omxNewInternalFitFunction(om->currentState, fitType, expect, om, rowLik); ff->rObj = rObj; }
// Does vector=TRUE mean something sensible? Mixture of mixtures? void state::init() { auto *oo = this; auto *ms = this; if (!oo->expectation) { mxThrow("%s requires an expectation", oo->fitType); } oo->units = FIT_UNITS_MINUS2LL; oo->canDuplicate = true; omxState *currentState = oo->matrix->currentState; const char *myex1 = "MxExpectationHiddenMarkov"; const char *myex2 = "MxExpectationMixture"; if (!expectation || !(strEQ(expectation->expType, myex1) || strEQ(expectation->expType, myex2))) mxThrow("%s must be paired with %s or %s", oo->name(), myex1, myex2); ProtectedSEXP Rverbose(R_do_slot(oo->rObj, Rf_install("verbose"))); ms->verbose = Rf_asInteger(Rverbose); ProtectedSEXP Rcomponents(R_do_slot(oo->rObj, Rf_install("components"))); int nc = Rf_length(Rcomponents); int *cvec = INTEGER(Rcomponents); componentUnits = FIT_UNITS_UNINITIALIZED; for (int cx=0; cx < nc; ++cx) { omxMatrix *fmat = currentState->algebraList[ cvec[cx] ]; if (fmat->fitFunction) { omxCompleteFitFunction(fmat); auto ff = fmat->fitFunction; if (ff->units != FIT_UNITS_PROBABILITY) { omxRaiseErrorf("%s: component %s must be in probability units", oo->name(), ff->name()); return; } if (componentUnits == FIT_UNITS_UNINITIALIZED) { componentUnits = ff->units; } else if (ff->units != componentUnits) { omxRaiseErrorf("%s: components with heterogenous units %s and %s in same mixture", oo->name(), fitUnitsToName(ff->units), fitUnitsToName(componentUnits)); } } ms->components.push_back(fmat); } if (componentUnits == FIT_UNITS_UNINITIALIZED) componentUnits = FIT_UNITS_PROBABILITY; ms->initial = expectation->getComponent("initial"); ms->transition = expectation->getComponent("transition"); }
/* set the length ofthe clFloat object, effectively resizing it */ SEXP clFloat_length_set(SEXP fObject, SEXP value) { SEXP res; int newLen = Rf_asInteger(value), cpy; if (newLen == LENGTH(fObject)) return fObject; if (newLen < 0) Rf_error("invalid length"); if (newLen > 536870912) Rf_error("clFloat length cannot exceed 512Mb due to R vector length limitations"); newLen *= sizeof(float); res = PROTECT(Rf_allocVector(RAWSXP, newLen)); cpy = (newLen > LENGTH(fObject)) ? LENGTH(fObject) : newLen; memcpy(RAW(res), RAW(fObject), cpy); if (newLen > cpy) /* FIXME: we initialize to 0.0 - maybe we need NAs ? */ memset(RAW(res) + cpy, 0, newLen - cpy); Rf_setAttrib(res, R_ClassSymbol, Rf_mkString("clFloat")); UNPROTECT(1); return res; }
void FitMultigroup::init() { auto *oo = this; FitMultigroup *mg =this; SEXP rObj = oo->rObj; if (!rObj) return; if (mg->fits.size()) return; // hack to prevent double initialization, remove TOOD oo->units = FIT_UNITS_UNINITIALIZED; oo->gradientAvailable = TRUE; oo->hessianAvailable = TRUE; oo->canDuplicate = true; omxState *os = oo->matrix->currentState; ProtectedSEXP Rverb(R_do_slot(rObj, Rf_install("verbose"))); mg->verbose = Rf_asInteger(Rverb); ProtectedSEXP Rgroups(R_do_slot(rObj, Rf_install("groups"))); int *fits = INTEGER(Rgroups); for(int gx = 0; gx < Rf_length(Rgroups); gx++) { if (isErrorRaised()) break; omxMatrix *mat; if (fits[gx] >= 0) { mat = os->algebraList[fits[gx]]; } else { mxThrow("Can only add algebra and fitfunction"); } if (mat == oo->matrix) mxThrow("Cannot add multigroup to itself"); mg->fits.push_back(mat); if (mat->fitFunction) { omxCompleteFitFunction(mat); oo->gradientAvailable = (oo->gradientAvailable && mat->fitFunction->gradientAvailable); oo->hessianAvailable = (oo->hessianAvailable && mat->fitFunction->hessianAvailable); } else { oo->gradientAvailable = FALSE; oo->hessianAvailable = FALSE; } } }
SEXP audio_recorder(SEXP source, SEXP rate, SEXP channels) { float fRate = -1.0; int chs = Rf_asInteger(channels); if (!current_driver) load_default_audio_driver(0); if (TYPEOF(rate) == INTSXP || TYPEOF(rate) == REALSXP) fRate = (float) Rf_asReal(rate); if (chs < 1) chs = 1; if (!current_driver->create_recorder) Rf_error("the currently used audio driver doesn't support recording"); audio_instance_t *p = current_driver->create_recorder(source, fRate, chs, 0); if (!p) Rf_error("cannot start audio driver"); p->driver = current_driver; p->kind = AI_RECORDER; SEXP ptr = R_MakeExternalPtr(p, R_NilValue, R_NilValue); Rf_protect(ptr); R_RegisterCFinalizer(ptr, audio_instance_destructor); Rf_setAttrib(ptr, Rf_install("class"), Rf_mkString("audioInstance")); Rf_unprotect(1); return ptr; }
void MarkovExpectation::init() { ProtectedSEXP Rverbose(R_do_slot(rObj, Rf_install("verbose"))); verbose = Rf_asInteger(Rverbose); ProtectedSEXP Rcomponents(R_do_slot(rObj, Rf_install("components"))); int *cvec = INTEGER(Rcomponents); int nc = Rf_length(Rcomponents); for (int cx=0; cx < nc; ++cx) { components.push_back(omxExpectationFromIndex(cvec[cx], currentState)); } if (isMixtureInterface) { initial = omxNewMatrixFromSlot(rObj, currentState, "weights"); transition = 0; } else { initial = omxNewMatrixFromSlot(rObj, currentState, "initial"); transition = omxNewMatrixFromSlot(rObj, currentState, "transition"); } ProtectedSEXP Rscale(R_do_slot(rObj, Rf_install("scale"))); auto scaleName = CHAR(STRING_ELT(Rscale, 0)); if (strEQ(scaleName, "softmax")) { scale = SCALE_SOFTMAX; } else if (strEQ(scaleName, "sum")) { scale = SCALE_SUM; } else if (strEQ(scaleName, "none")) { scale = SCALE_NONE; } else { Rf_error("%s: unknown scale '%s'", name, scaleName); } scaledInitial = omxInitMatrix(1, 1, TRUE, currentState); scaledTransition = 0; if (transition) { scaledTransition = omxInitMatrix(1, 1, TRUE, currentState); } }
void omxInitFitFunctionBA81(omxFitFunction* oo) { if (!oo->argStruct) { // ugh! BA81FitState *state = new BA81FitState; oo->argStruct = state; } omxState *currentState = oo->matrix->currentState; BA81FitState *state = (BA81FitState*) oo->argStruct; omxExpectation *expectation = oo->expectation; BA81Expect *estate = (BA81Expect*) expectation->argStruct; estate->fit = oo; oo->computeFun = ba81Compute; oo->setVarGroup = ba81SetFreeVarGroup; oo->destructFun = ba81Destroy; oo->gradientAvailable = TRUE; oo->hessianAvailable = TRUE; int maxParam = estate->itemParam->rows; state->itemDerivPadSize = maxParam + triangleLoc1(maxParam); int numItems = estate->itemParam->cols; for (int ix=0; ix < numItems; ix++) { const double *spec = estate->itemSpec(ix); int id = spec[RPF_ISpecID]; if (id < 0 || id >= Glibrpf_numModels) { Rf_error("ItemSpec %d has unknown item model %d", ix, id); } } state->itemParam = omxInitMatrix(0, 0, TRUE, currentState); state->latentMean = omxInitMatrix(0, 0, TRUE, currentState); state->latentCov = omxInitMatrix(0, 0, TRUE, currentState); state->copyEstimates(estate); state->returnRowLikelihoods = Rf_asInteger(R_do_slot(oo->rObj, Rf_install("vector"))); }
SEXP makeVector(SEXP ans, int len, int type, SEXP nullValue) { SEXP tmp; int ctr; if(type == REALSXP) { PROTECT(tmp = NEW_NUMERIC(len)); for(ctr = 0; ctr < len; ctr++) { SEXP el = VECTOR_ELT(ans, ctr); REAL(tmp)[ctr] = TYPEOF(el) == LGLSXP && LOGICAL(el)[0] == NA_INTEGER ? NA_REAL : (TYPEOF(el) == REALSXP ? REAL(el)[0] : Rf_asReal(el)); } } else if(type == LGLSXP) { PROTECT(tmp = NEW_LOGICAL(len)); for(ctr = 0; ctr < len; ctr++) { SEXP el = VECTOR_ELT(ans, ctr); LOGICAL(tmp)[ctr] = TYPEOF(el) == LGLSXP ? LOGICAL(el)[0] : Rf_asInteger(el); } } else if(type == STRSXP) { PROTECT(tmp = NEW_CHARACTER(len)); for(ctr = 0; ctr < len; ctr++) { SEXP el = VECTOR_ELT(ans, ctr); if(TYPEOF(el) == STRSXP) SET_STRING_ELT(tmp, ctr, STRING_ELT(el, 0)); else if(TYPEOF(el) == LGLSXP) { SET_STRING_ELT(tmp, ctr, LOGICAL(el)[0] == NA_INTEGER ? NA_STRING : mkChar(LOGICAL(el)[0] ? "TRUE" : "FALSE")); } else if(TYPEOF(el) == REALSXP) { char buf[70]; sprintf(buf, "%lf", REAL(el)[0]); SET_STRING_ELT(tmp, ctr, mkChar(buf)); } } } else return(ans); UNPROTECT(1); return(tmp); }
static SEXP rpf_paramInfo_wrapper(SEXP r_spec, SEXP r_paramNum) { if (Rf_length(r_spec) < RPF_ISpecCount) Rf_error("Item spec must be of length %d, not %d", RPF_ISpecCount, Rf_length(r_spec)); double *spec = REAL(r_spec); int id = spec[RPF_ISpecID]; if (id < 0 || id >= Glibrpf_numModels) Rf_error("Item model %d out of range", id); int pnum = Rf_asInteger(r_paramNum); int numParam = (*Glibrpf_model[id].numParam)(spec); if (pnum < 0 || pnum >= numParam) Rf_error("Item model %d has %d parameters", id, numParam); const char *type; double upper, lower; (*Glibrpf_model[id].paramInfo)(spec, pnum, &type, &upper, &lower); int len = 3; SEXP names, ans; Rf_protect(names = Rf_allocVector(STRSXP, len)); Rf_protect(ans = Rf_allocVector(VECSXP, len)); int lx = 0; SET_STRING_ELT(names, lx, Rf_mkChar("type")); SET_VECTOR_ELT(ans, lx, Rf_ScalarString(Rf_mkChar(type))); SET_STRING_ELT(names, ++lx, Rf_mkChar("upper")); SET_VECTOR_ELT(ans, lx, Rf_ScalarReal(std::isfinite(upper)? upper : NA_REAL)); SET_STRING_ELT(names, ++lx, Rf_mkChar("lower")); SET_VECTOR_ELT(ans, lx, Rf_ScalarReal(std::isfinite(lower)? lower : NA_REAL)); Rf_namesgets(ans, names); UNPROTECT(2); return ans; }
SEXP newJavaGD(SEXP sName, SEXP sWidth, SEXP sHeight, SEXP sSizeUnit, SEXP sXpinch, SEXP sYpinch, SEXP sCanvasColor, SEXP sPointsize, SEXP sGamma) { double width = Rf_asReal(sWidth); double height = Rf_asReal(sHeight); if (!R_FINITE(width) || width < 0.0) { error("Illegal argument: width"); } if (!R_FINITE(height) || height < 0.0) { error("Illegal argument: height"); } int sizeUnit = Rf_asInteger(sSizeUnit); double xpinch = Rf_asReal(sXpinch); double ypinch = Rf_asReal(sYpinch); if (!R_FINITE(xpinch) || xpinch <= 0.0) { xpinch = 0.0; ypinch = 0.0; } else if (!R_FINITE(ypinch)) { ypinch = xpinch; } int canvas = Rf_RGBpar(sCanvasColor, 0); double pointsize = Rf_asReal(sPointsize); double gamma = Rf_asReal(sGamma); if (!R_FINITE(gamma)) { gamma = 1.0; } addJavaGDDevice("", width, height, sizeUnit, xpinch, ypinch, canvas, pointsize, gamma ); return R_NilValue; }
SEXP R_NewHashedEnv(SEXP parent, SEXP size) { JNIEnv *thisenv = getEnv(); int sizeAsInt = Rf_asInteger(size); SEXP result = (*thisenv)->CallStaticObjectMethod(thisenv, RDataFactoryClass, Rf_NewHashedEnvMethodID, parent, NULL, JNI_TRUE, sizeAsInt); return checkRef(thisenv, result); }
Rconnection get_connection(SEXP con) { if (!Rf_inherits(con, "connection")) Rcpp::stop("invalid connection"); return getConnection(Rf_asInteger(con)); }
SEXP find_password(SEXP svc, SEXP usr, SEXP new_pwd, SEXP quiet, SEXP del) { SEXP res; OSStatus status; SecKeychainRef kc = NULL; /* default */ SecKeychainItemRef kci; const char *un, *sn; char *svc_name; void *pwd; UInt32 pwd_len = 0; int l; int silent = Rf_asInteger(quiet) == 1; int do_rm = Rf_asInteger(del) == 1; int modify = 0; if (TYPEOF(svc) != STRSXP || LENGTH(svc) != 1) Rf_error("Invalid service name"); if (new_pwd != R_NilValue && (TYPEOF(new_pwd) != STRSXP || LENGTH(new_pwd) != 1)) Rf_error("Invalid password"); if (new_pwd != R_NilValue || do_rm) modify = 1; if (usr == R_NilValue) { un = getlogin(); if (!un) Rf_error("Unable to get current user name via getlogin()"); } else { if (TYPEOF(usr) != STRSXP || LENGTH(usr) != 1) Rf_error("Invalid user name (must be a character vector of length one)"); un = Rf_translateCharUTF8(STRING_ELT(usr, 0)); } sn = Rf_translateCharUTF8(STRING_ELT(svc, 0)); l = strlen(sn); if (l > sizeof(buf) - 16) { svc_name = (char*) malloc(l + 16); if (!svc_name) Rf_error("Cannot allocate memory for service name"); } else svc_name = buf; /* we are enforcing R.keychain. prefix to avoid abuse to access other system keys */ strcpy(svc_name, SEC_PREFIX); strcat(svc_name, sn); status = SecKeychainFindGenericPassword(kc, strlen(svc_name), svc_name, strlen(un), un, &pwd_len, &pwd, modify ? &kci : NULL); if (svc_name != buf) free(svc_name); if (silent && status == errSecItemNotFound) return R_NilValue; chk_status(status, "find"); res = PROTECT(Rf_ScalarString(Rf_mkCharLenCE(pwd, pwd_len, CE_UTF8))); /* FIXME: we'll leak if the above fails in R */ SecKeychainItemFreeContent(NULL, pwd); if (do_rm) { status = SecKeychainItemDelete(kci); chk_status(status, "delete"); } else if (new_pwd != R_NilValue) { /* set a new one */ const char *np = Rf_translateCharUTF8(STRING_ELT(new_pwd, 0)); status = SecKeychainItemModifyContent(kci, NULL, strlen(np), np); chk_status(status, "modify"); } UNPROTECT(1); return res; }
void omxComputeNumericDeriv::initFromFrontend(omxState *state, SEXP rObj) { super::initFromFrontend(state, rObj); /*if (state->conListX.size()) { mxThrow("%s: cannot proceed with constraints (%d constraints found)", name, int(state->conListX.size())); }*/ fitMat = omxNewMatrixFromSlot(rObj, state, "fitfunction"); SEXP slotValue; Rf_protect(slotValue = R_do_slot(rObj, Rf_install("iterations"))); numIter = INTEGER(slotValue)[0]; if (numIter < 2) mxThrow("stepSize must be 2 or greater"); Rf_protect(slotValue = R_do_slot(rObj, Rf_install("parallel"))); parallel = Rf_asLogical(slotValue); Rf_protect(slotValue = R_do_slot(rObj, Rf_install("checkGradient"))); checkGradient = Rf_asLogical(slotValue); Rf_protect(slotValue = R_do_slot(rObj, Rf_install("verbose"))); verbose = Rf_asInteger(slotValue); { ProtectedSEXP Rhessian(R_do_slot(rObj, Rf_install("hessian"))); wantHessian = Rf_asLogical(Rhessian); } Rf_protect(slotValue = R_do_slot(rObj, Rf_install("stepSize"))); stepSize = GRADIENT_FUDGE_FACTOR(3.0) * REAL(slotValue)[0]; if (stepSize <= 0) mxThrow("stepSize must be positive"); knownHessian = NULL; { ScopedProtect(slotValue, R_do_slot(rObj, Rf_install("knownHessian"))); if (!Rf_isNull(slotValue)) { knownHessian = REAL(slotValue); SEXP dimnames; ScopedProtect pdn(dimnames, Rf_getAttrib(slotValue, R_DimNamesSymbol)); { SEXP names; ScopedProtect p1(names, VECTOR_ELT(dimnames, 0)); { int nlen = Rf_length(names); khMap.assign(nlen, -1); for (int nx=0; nx < nlen; ++nx) { const char *vname = CHAR(STRING_ELT(names, nx)); for (int vx=0; vx < int(varGroup->vars.size()); ++vx) { if (strEQ(vname, varGroup->vars[vx]->name)) { khMap[nx] = vx; if (verbose >= 1) mxLog("%s: knownHessian[%d] '%s' mapped to %d", name, nx, vname, vx); break; } } } } } } } numParams = 0; totalProbeCount = 0; numParams = 0; recordDetail = true; detail = 0; }
void ifaGroup::import(SEXP Rlist) { SEXP argNames; Rf_protect(argNames = Rf_getAttrib(Rlist, R_NamesSymbol)); if (Rf_length(Rlist) != Rf_length(argNames)) { mxThrow("All list elements must be named"); } std::vector<const char *> dataColNames; paramRows = -1; int pmatCols=-1; int mips = 1; int dataRows = 0; SEXP Rmean=0, Rcov=0; for (int ax=0; ax < Rf_length(Rlist); ++ax) { const char *key = R_CHAR(STRING_ELT(argNames, ax)); SEXP slotValue = VECTOR_ELT(Rlist, ax); if (strEQ(key, "spec")) { importSpec(slotValue); } else if (strEQ(key, "param")) { if (!Rf_isReal(slotValue)) mxThrow("'param' must be a numeric matrix of item parameters"); param = REAL(slotValue); getMatrixDims(slotValue, ¶mRows, &pmatCols); SEXP dimnames; Rf_protect(dimnames = Rf_getAttrib(slotValue, R_DimNamesSymbol)); if (!Rf_isNull(dimnames) && Rf_length(dimnames) == 2) { SEXP names; Rf_protect(names = VECTOR_ELT(dimnames, 0)); int nlen = Rf_length(names); factorNames.resize(nlen); for (int nx=0; nx < nlen; ++nx) { factorNames[nx] = CHAR(STRING_ELT(names, nx)); } Rf_protect(names = VECTOR_ELT(dimnames, 1)); nlen = Rf_length(names); itemNames.resize(nlen); for (int nx=0; nx < nlen; ++nx) { itemNames[nx] = CHAR(STRING_ELT(names, nx)); } } } else if (strEQ(key, "mean")) { Rmean = slotValue; if (!Rf_isReal(slotValue)) mxThrow("'mean' must be a numeric vector or matrix"); mean = REAL(slotValue); } else if (strEQ(key, "cov")) { Rcov = slotValue; if (!Rf_isReal(slotValue)) mxThrow("'cov' must be a numeric matrix"); cov = REAL(slotValue); } else if (strEQ(key, "data")) { Rdata = slotValue; dataRows = Rf_length(VECTOR_ELT(Rdata, 0)); SEXP names; Rf_protect(names = Rf_getAttrib(Rdata, R_NamesSymbol)); int nlen = Rf_length(names); dataColNames.reserve(nlen); for (int nx=0; nx < nlen; ++nx) { dataColNames.push_back(CHAR(STRING_ELT(names, nx))); } Rf_protect(dataRowNames = Rf_getAttrib(Rdata, R_RowNamesSymbol)); } else if (strEQ(key, "weightColumn")) { if (Rf_length(slotValue) != 1) { mxThrow("You can only have one %s", key); } weightColumnName = CHAR(STRING_ELT(slotValue, 0)); } else if (strEQ(key, "freqColumn")) { if (Rf_length(slotValue) != 1) { mxThrow("You can only have one %s", key); } freqColumnName = CHAR(STRING_ELT(slotValue, 0)); } else if (strEQ(key, "qwidth")) { qwidth = Rf_asReal(slotValue); } else if (strEQ(key, "qpoints")) { qpoints = Rf_asInteger(slotValue); } else if (strEQ(key, "minItemsPerScore")) { mips = Rf_asInteger(slotValue); } else { // ignore } } learnMaxAbilities(); if (itemDims < (int) factorNames.size()) factorNames.resize(itemDims); if (int(factorNames.size()) < itemDims) { factorNames.reserve(itemDims); const int SMALLBUF = 24; char buf[SMALLBUF]; while (int(factorNames.size()) < itemDims) { snprintf(buf, SMALLBUF, "s%d", int(factorNames.size()) + 1); factorNames.push_back(CHAR(Rf_mkChar(buf))); } } if (Rmean) { if (Rf_isMatrix(Rmean)) { int nrow, ncol; getMatrixDims(Rmean, &nrow, &ncol); if (!(nrow * ncol == itemDims && (nrow==1 || ncol==1))) { mxThrow("mean must be a column or row matrix of length %d", itemDims); } } else { if (Rf_length(Rmean) != itemDims) { mxThrow("mean must be a vector of length %d", itemDims); } } verifyFactorNames(Rmean, "mean"); } if (Rcov) { if (Rf_isMatrix(Rcov)) { int nrow, ncol; getMatrixDims(Rcov, &nrow, &ncol); if (nrow != itemDims || ncol != itemDims) { mxThrow("cov must be %dx%d matrix", itemDims, itemDims); } } else { if (Rf_length(Rcov) != 1) { mxThrow("cov must be %dx%d matrix", itemDims, itemDims); } } verifyFactorNames(Rcov, "cov"); } setLatentDistribution(mean, cov); setMinItemsPerScore(mips); if (numItems() != pmatCols) { mxThrow("item matrix implies %d items but spec is length %d", pmatCols, numItems()); } if (Rdata) { if (itemNames.size() == 0) mxThrow("Item matrix must have colnames"); for (int ix=0; ix < numItems(); ++ix) { bool found=false; for (int dc=0; dc < int(dataColNames.size()); ++dc) { if (strEQ(itemNames[ix], dataColNames[dc])) { SEXP col = VECTOR_ELT(Rdata, dc); if (!Rf_isFactor(col)) { if (TYPEOF(col) == INTSXP) { mxThrow("Column '%s' is an integer but " "not an ordered factor", dataColNames[dc]); } else { mxThrow("Column '%s' is of type %s; expecting an " "ordered factor (integer)", dataColNames[dc], Rf_type2char(TYPEOF(col))); } } dataColumns.push_back(INTEGER(col)); found=true; break; } } if (!found) { mxThrow("Cannot find item '%s' in data", itemNames[ix]); } } if (weightColumnName) { for (int dc=0; dc < int(dataColNames.size()); ++dc) { if (strEQ(weightColumnName, dataColNames[dc])) { SEXP col = VECTOR_ELT(Rdata, dc); if (TYPEOF(col) != REALSXP) { mxThrow("Column '%s' is of type %s; expecting type numeric (double)", dataColNames[dc], Rf_type2char(TYPEOF(col))); } rowWeight = REAL(col); break; } } if (!rowWeight) { mxThrow("Cannot find weight column '%s'", weightColumnName); } } if (freqColumnName) { for (int dc=0; dc < int(dataColNames.size()); ++dc) { if (strEQ(freqColumnName, dataColNames[dc])) { SEXP col = VECTOR_ELT(Rdata, dc); if (TYPEOF(col) != INTSXP) { mxThrow("Column '%s' is of type %s; expecting type integer", dataColNames[dc], Rf_type2char(TYPEOF(col))); } rowFreq = INTEGER(col); break; } } if (!rowFreq) { mxThrow("Cannot find frequency column '%s'", freqColumnName); } } rowMap.reserve(dataRows); for (int rx=0; rx < dataRows; ++rx) rowMap.push_back(rx); } Eigen::Map< Eigen::ArrayXXd > Eparam(param, paramRows, numItems()); Eigen::Map< Eigen::VectorXd > meanVec(mean, itemDims); Eigen::Map< Eigen::MatrixXd > covMat(cov, itemDims, itemDims); quad.setStructure(qwidth, qpoints, Eparam, meanVec, covMat); if (paramRows < impliedParamRows) { mxThrow("At least %d rows are required in the item parameter matrix, only %d found", impliedParamRows, paramRows); } quad.refresh(meanVec, covMat); }
void omxInitExpectationBA81(omxExpectation* oo) { omxState* currentState = oo->currentState; SEXP rObj = oo->rObj; SEXP tmp; if(OMX_DEBUG) { mxLog("Initializing %s.", oo->name); } if (!Glibrpf_model) { #if USE_EXTERNAL_LIBRPF get_librpf_t get_librpf = (get_librpf_t) R_GetCCallable("rpf", "get_librpf_model_GPL"); (*get_librpf)(LIBIFA_RPF_API_VERSION, &Glibrpf_numModels, &Glibrpf_model); #else // if linking against included source code Glibrpf_numModels = librpf_numModels; Glibrpf_model = librpf_model; #endif } BA81Expect *state = new BA81Expect; // These two constants should be as identical as possible state->name = oo->name; if (0) { state->LogLargestDouble = 0.0; state->LargestDouble = 1.0; } else { state->LogLargestDouble = log(std::numeric_limits<double>::max()) - 1; state->LargestDouble = exp(state->LogLargestDouble); ba81NormalQuad &quad = state->getQuad(); quad.setOne(state->LargestDouble); } state->expectedUsed = false; state->estLatentMean = NULL; state->estLatentCov = NULL; state->type = EXPECTATION_OBSERVED; state->itemParam = NULL; state->EitemParam = NULL; state->itemParamVersion = 0; state->latentParamVersion = 0; oo->argStruct = (void*) state; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("data"))); state->data = omxDataLookupFromState(tmp, currentState); } if (strcmp(omxDataType(state->data), "raw") != 0) { omxRaiseErrorf("%s unable to handle data type %s", oo->name, omxDataType(state->data)); return; } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("verbose"))); state->verbose = Rf_asInteger(tmp); } int targetQpoints; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qpoints"))); targetQpoints = Rf_asInteger(tmp); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("qwidth"))); state->grp.setGridFineness(Rf_asReal(tmp), targetQpoints); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("ItemSpec"))); state->grp.importSpec(tmp); if (state->verbose >= 2) mxLog("%s: found %d item specs", oo->name, state->numItems()); } state->_latentMeanOut = omxNewMatrixFromSlot(rObj, currentState, "mean"); state->_latentCovOut = omxNewMatrixFromSlot(rObj, currentState, "cov"); state->itemParam = omxNewMatrixFromSlot(rObj, currentState, "item"); state->grp.param = state->itemParam->data; // algebra not allowed yet TODO const int numItems = state->itemParam->cols; if (state->numItems() != numItems) { omxRaiseErrorf("ItemSpec length %d must match the number of item columns (%d)", state->numItems(), numItems); return; } if (state->itemParam->rows != state->grp.impliedParamRows) { omxRaiseErrorf("item matrix must have %d rows", state->grp.impliedParamRows); return; } state->grp.paramRows = state->itemParam->rows; // for algebra item param, will need to defer until later? state->grp.learnMaxAbilities(); int maxAbilities = state->grp.itemDims; state->grp.setFactorNames(state->itemParam->rownames); { ProtectedSEXP tmp2(R_do_slot(rObj, Rf_install(".detectIndependence"))); state->grp.detectIndependence = Rf_asLogical(tmp2); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("EstepItem"))); if (!Rf_isNull(tmp)) { int rows, cols; getMatrixDims(tmp, &rows, &cols); if (rows != state->itemParam->rows || cols != state->itemParam->cols) { Rf_error("EstepItem must have the same dimensions as the item MxMatrix"); } state->EitemParam = REAL(tmp); } } oo->computeFun = ba81compute; oo->setVarGroup = ignoreSetVarGroup; oo->destructFun = ba81Destroy; oo->populateAttrFun = ba81PopulateAttributes; oo->componentFun = getComponent; oo->canDuplicate = false; // TODO: Exactly identical rows do not contribute any information. // The sorting algorithm ought to remove them so we get better cache behavior. // The following summary stats would be cheaper to calculate too. omxData *data = state->data; if (data->hasDefinitionVariables()) Rf_error("%s: not implemented yet", oo->name); std::vector<int> &rowMap = state->grp.rowMap; int weightCol; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("weightColumn"))); weightCol = INTEGER(tmp)[0]; } if (weightCol == NA_INTEGER) { // Should rowMap be part of omxData? This is essentially a // generic compression step that shouldn't be specific to IFA models. state->grp.rowWeight = (double*) R_alloc(data->rows, sizeof(double)); rowMap.resize(data->rows); int numUnique = 0; for (int rx=0; rx < data->rows; ) { int rw = 1; state->grp.rowWeight[numUnique] = rw; rowMap[numUnique] = rx; rx += rw; ++numUnique; } rowMap.resize(numUnique); state->weightSum = state->data->rows; } else { if (omxDataColumnIsFactor(data, weightCol)) { omxRaiseErrorf("%s: weightColumn %d is a factor", oo->name, 1 + weightCol); return; } state->grp.rowWeight = omxDoubleDataColumn(data, weightCol); state->weightSum = 0; for (int rx=0; rx < data->rows; ++rx) { state->weightSum += state->grp.rowWeight[rx]; } rowMap.resize(data->rows); for (size_t rx=0; rx < rowMap.size(); ++rx) { rowMap[rx] = rx; } } // complain about non-integral rowWeights (EAP can't work) TODO auto colMap = oo->getDataColumns(); for (int cx = 0; cx < numItems; cx++) { int *col = omxIntDataColumnUnsafe(data, colMap[cx]); state->grp.dataColumns.push_back(col); } // sanity check data for (int cx = 0; cx < numItems; cx++) { if (!omxDataColumnIsFactor(data, colMap[cx])) { data->omxPrintData("diagnostic", 3); omxRaiseErrorf("%s: column %d is not a factor", oo->name, int(1 + colMap[cx])); return; } } // TODO the max outcome should be available from omxData for (int rx=0; rx < data->rows; rx++) { int cols = 0; for (int cx = 0; cx < numItems; cx++) { const int *col = state->grp.dataColumns[cx]; int pick = col[rx]; if (pick == NA_INTEGER) continue; ++cols; const int no = state->grp.itemOutcomes[cx]; if (pick > no) { Rf_error("Data for item '%s' has at least %d outcomes, not %d", state->itemParam->colnames[cx], pick, no); } } if (cols == 0) { Rf_error("Row %d has all NAs", 1+rx); } } if (state->_latentMeanOut && state->_latentMeanOut->rows * state->_latentMeanOut->cols != maxAbilities) { Rf_error("The mean matrix '%s' must be a row or column vector of size %d", state->_latentMeanOut->name(), maxAbilities); } if (state->_latentCovOut && (state->_latentCovOut->rows != maxAbilities || state->_latentCovOut->cols != maxAbilities)) { Rf_error("The cov matrix '%s' must be %dx%d", state->_latentCovOut->name(), maxAbilities, maxAbilities); } state->grp.setLatentDistribution(state->_latentMeanOut? state->_latentMeanOut->data : NULL, state->_latentCovOut? state->_latentCovOut->data : NULL); { EigenArrayAdaptor Eparam(state->itemParam); Eigen::Map< Eigen::VectorXd > meanVec(state->grp.mean, maxAbilities); Eigen::Map< Eigen::MatrixXd > covMat(state->grp.cov, maxAbilities, maxAbilities); state->grp.quad.setStructure(state->grp.qwidth, state->grp.qpoints, Eparam, meanVec, covMat); } {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("minItemsPerScore"))); state->grp.setMinItemsPerScore(Rf_asInteger(tmp)); } state->grp.buildRowSkip(); if (isErrorRaised()) return; {ScopedProtect p1(tmp, R_do_slot(rObj, Rf_install("debugInternal"))); state->debugInternal = Rf_asLogical(tmp); } state->ElatentVersion = 0; if (state->_latentMeanOut) { state->estLatentMean = omxInitMatrix(maxAbilities, 1, TRUE, currentState); omxCopyMatrix(state->estLatentMean, state->_latentMeanOut); // rename matrices TODO } if (state->_latentCovOut) { state->estLatentCov = omxInitMatrix(maxAbilities, maxAbilities, TRUE, currentState); omxCopyMatrix(state->estLatentCov, state->_latentCovOut); } }
void omxInitFIMLFitFunction(omxFitFunction* off) { if(OMX_DEBUG) { mxLog("Initializing FIML fit function function."); } off->canDuplicate = TRUE; SEXP rObj = off->rObj; int numOrdinal = 0, numContinuous = 0; omxMatrix *cov, *means; omxFIMLFitFunction *newObj = new omxFIMLFitFunction; omxExpectation* expectation = off->expectation; if(expectation == NULL) { omxRaiseError("FIML cannot fit without model expectations."); return; } cov = omxGetExpectationComponent(expectation, "cov"); if(cov == NULL) { omxRaiseError("No covariance expectation in FIML evaluation."); return; } means = omxGetExpectationComponent(expectation, "means"); if(OMX_DEBUG) { mxLog("FIML Initialization Completed."); } newObj->cov = cov; newObj->means = means; newObj->smallMeans = NULL; newObj->ordMeans = NULL; newObj->contRow = NULL; newObj->ordRow = NULL; newObj->ordCov = NULL; newObj->ordContCov = NULL; newObj->halfCov = NULL; newObj->reduceCov = NULL; off->computeFun = CallFIMLFitFunction; newObj->corList = NULL; newObj->weights = NULL; newObj->SingleIterFn = omxFIMLSingleIterationJoint; off->destructFun = omxDestroyFIMLFitFunction; off->populateAttrFun = omxPopulateFIMLAttributes; if(OMX_DEBUG) { mxLog("Accessing data source."); } newObj->data = off->expectation->data; if(OMX_DEBUG) { mxLog("Accessing row likelihood option."); } newObj->returnRowLikelihoods = Rf_asInteger(R_do_slot(rObj, Rf_install("vector"))); newObj->rowLikelihoods = omxInitMatrix(newObj->data->rows, 1, TRUE, off->matrix->currentState); newObj->rowLogLikelihoods = omxInitMatrix(newObj->data->rows, 1, TRUE, off->matrix->currentState); if(OMX_DEBUG) { mxLog("Accessing row likelihood population option."); } newObj->populateRowDiagnostics = Rf_asInteger(R_do_slot(rObj, Rf_install("rowDiagnostics"))); if(OMX_DEBUG) { mxLog("Accessing variable mapping structure."); } newObj->dataColumns = off->expectation->dataColumns; if(OMX_DEBUG) { mxLog("Accessing Threshold matrix."); } numOrdinal = off->expectation->numOrdinal; numContinuous = newObj->dataColumns->cols - numOrdinal; omxSetContiguousDataColumns(&(newObj->contiguous), newObj->data, newObj->dataColumns); /* Temporary storage for calculation */ int covCols = newObj->cov->cols; if(OMX_DEBUG){mxLog("Number of columns found is %d", covCols);} // int ordCols = omxDataNumFactor(newObj->data); // Unneeded, since we don't use it. // int contCols = omxDataNumNumeric(newObj->data); newObj->smallRow = omxInitMatrix(1, covCols, TRUE, off->matrix->currentState); newObj->smallCov = omxInitMatrix(covCols, covCols, TRUE, off->matrix->currentState); newObj->RCX = omxInitMatrix(1, covCols, TRUE, off->matrix->currentState); // newObj->zeros = omxInitMatrix(1, newObj->cov->cols, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->smallCov, newObj->cov); // Will keep its aliased state from here on. if (means) { newObj->smallMeans = omxInitMatrix(covCols, 1, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->smallMeans, newObj->means); newObj->ordMeans = omxInitMatrix(covCols, 1, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->ordMeans, newObj->means); } newObj->contRow = omxInitMatrix(covCols, 1, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->contRow, newObj->smallRow ); newObj->ordCov = omxInitMatrix(covCols, covCols, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->ordCov, newObj->cov); newObj->ordRow = omxInitMatrix(covCols, 1, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->ordRow, newObj->smallRow ); newObj->Infin = (int*) R_alloc(covCols, sizeof(int)); off->argStruct = (void*)newObj; //if (strEQ(expectation->expType, "MxExpectationStateSpace")) { // newObj->SingleIterFn = omxFIMLSingleIteration; // remove this TODO //} if(numOrdinal > 0 && numContinuous <= 0) { if(OMX_DEBUG) { mxLog("Ordinal Data detected. Using Ordinal FIML."); } newObj->weights = (double*) R_alloc(covCols, sizeof(double)); newObj->corList = (double*) R_alloc(covCols * (covCols + 1) / 2, sizeof(double)); newObj->smallCor = (double*) R_alloc(covCols * (covCols + 1) / 2, sizeof(double)); newObj->lThresh = (double*) R_alloc(covCols, sizeof(double)); newObj->uThresh = (double*) R_alloc(covCols, sizeof(double)); } else if(numOrdinal > 0) { if(OMX_DEBUG) { mxLog("Ordinal and Continuous Data detected. Using Joint Ordinal/Continuous FIML."); } newObj->weights = (double*) R_alloc(covCols, sizeof(double)); newObj->ordContCov = omxInitMatrix(covCols, covCols, TRUE, off->matrix->currentState); newObj->halfCov = omxInitMatrix(covCols, covCols, TRUE, off->matrix->currentState); newObj->reduceCov = omxInitMatrix(covCols, covCols, TRUE, off->matrix->currentState); omxCopyMatrix(newObj->ordContCov, newObj->cov); newObj->corList = (double*) R_alloc(covCols * (covCols + 1) / 2, sizeof(double)); newObj->lThresh = (double*) R_alloc(covCols, sizeof(double)); newObj->uThresh = (double*) R_alloc(covCols, sizeof(double)); } }
SEXP jsClientLib_jsclient_device_resize_(SEXP deviceSEXP, SEXP widthSEXP, SEXP heightSEXP, SEXP replaySEXP) { jsclient_device_resize_( Rf_asInteger( deviceSEXP ), Rf_asInteger( widthSEXP ), Rf_asInteger( heightSEXP ), Rf_asInteger( replaySEXP )); return R_NilValue; }
SEXP ocl_collect_call(SEXP octx, SEXP wait) { SEXP res = R_NilValue; ocl_call_context_t *occ; int on; cl_int err; if (!Rf_inherits(octx, "clCallContext")) Rf_error("Invalid call context"); occ = (ocl_call_context_t*) R_ExternalPtrAddr(octx); if (!occ || occ->finished) Rf_error("The call results have already been collected, they cannot be retrieved twice"); if (Rf_asInteger(wait) == 0 && occ->event) { cl_int status; if ((err = clGetEventInfo(occ->event, CL_EVENT_COMMAND_EXECUTION_STATUS, sizeof(status), &status, NULL)) != CL_SUCCESS) Rf_error("OpenCL error 0x%x while querying event object for the supplied context", (int) err); if (status < 0) Rf_error("Asynchronous call failed with error code 0x%x", (int) -status); if (status != CL_COMPLETE) return R_NilValue; } clFinish(occ->commands); occ->finished = 1; /* we can release input memory objects now */ if (occ->mem_objects) { arg_free(occ->mem_objects, (afin_t) clReleaseMemObject); occ->mem_objects = 0; } if (occ->float_args) { arg_free(occ->float_args, 0); occ->float_args = 0; } on = occ->on; res = occ->ftres ? Rf_allocVector(RAWSXP, on * sizeof(float)) : Rf_allocVector(REALSXP, on); if (occ->ftype == FT_SINGLE) { if (occ->ftres) { if ((err = clEnqueueReadBuffer( occ->commands, occ->output, CL_TRUE, 0, sizeof(float) * on, RAW(res), 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d float elements, oclError %d)", on, err); PROTECT(res); Rf_setAttrib(res, R_ClassSymbol, mkString("clFloat")); UNPROTECT(1); } else { /* float - need a temporary buffer */ float *fr = (float*) malloc(sizeof(float) * on); double *r = REAL(res); int i; if (!fr) Rf_error("unable to allocate memory for temporary single-precision output buffer"); occ->float_out = fr; if ((err = clEnqueueReadBuffer( occ->commands, occ->output, CL_TRUE, 0, sizeof(float) * on, fr, 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d float elements, oclError %d)", on, err); for (i = 0; i < on; i++) r[i] = fr[i]; } } else if ((err = clEnqueueReadBuffer( occ->commands, occ->output, CL_TRUE, 0, sizeof(double) * on, REAL(res), 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d double elements, oclError %d)", on, err); ocl_call_context_fin(octx); return res; }
/* .External */ SEXP ocl_call(SEXP args) { struct arg_chain *float_args = 0; ocl_call_context_t *occ; int on, an = 0, ftype = FT_DOUBLE, ftsize, ftres, async; SEXP ker = CADR(args), olen, arg, res, octx, dimVec; cl_kernel kernel = getKernel(ker); cl_context context; cl_command_queue commands; cl_device_id device_id = getDeviceID(getAttrib(ker, Rf_install("device"))); cl_mem output; cl_int err; size_t wdims[3] = {0, 0, 0}; int wdim = 1; if (clGetKernelInfo(kernel, CL_KERNEL_CONTEXT, sizeof(context), &context, NULL) != CL_SUCCESS || !context) Rf_error("cannot obtain kernel context via clGetKernelInfo"); args = CDDR(args); res = Rf_getAttrib(ker, install("precision")); if (TYPEOF(res) == STRSXP && LENGTH(res) == 1 && CHAR(STRING_ELT(res, 0))[0] != 'd') ftype = FT_SINGLE; ftsize = (ftype == FT_DOUBLE) ? sizeof(double) : sizeof(float); olen = CAR(args); /* size */ args = CDR(args); on = Rf_asInteger(olen); if (on < 0) Rf_error("invalid output length"); ftres = (Rf_asInteger(CAR(args)) == 1) ? 1 : 0; /* native.result */ if (ftype != FT_SINGLE) ftres = 0; args = CDR(args); async = (Rf_asInteger(CAR(args)) == 1) ? 0 : 1; /* wait */ args = CDR(args); dimVec = coerceVector(CAR(args), INTSXP); /* dim */ wdim = LENGTH(dimVec); if (wdim > 3) Rf_error("OpenCL standard only supports up to three work item dimensions - use index vectors for higher dimensions"); if (wdim) { int i; /* we don't use memcpy in case int and size_t are different */ for (i = 0; i < wdim; i++) wdims[i] = INTEGER(dimVec)[i]; } if (wdim < 1 || wdims[0] < 1 || (wdim > 1 && wdims[1] < 1) || (wdim > 2 && wdims[2] < 1)) Rf_error("invalid dimensions - muse be a numeric vector with positive values"); args = CDR(args); occ = (ocl_call_context_t*) calloc(1, sizeof(ocl_call_context_t)); if (!occ) Rf_error("unable to allocate ocl_call context"); octx = PROTECT(R_MakeExternalPtr(occ, R_NilValue, R_NilValue)); R_RegisterCFinalizerEx(octx, ocl_call_context_fin, TRUE); occ->output = output = clCreateBuffer(context, CL_MEM_WRITE_ONLY, ftsize * on, NULL, &err); if (!output) Rf_error("failed to create output buffer of %d elements via clCreateBuffer (%d)", on, err); if (clSetKernelArg(kernel, an++, sizeof(cl_mem), &output) != CL_SUCCESS) Rf_error("failed to set first kernel argument as output in clSetKernelArg"); if (clSetKernelArg(kernel, an++, sizeof(on), &on) != CL_SUCCESS) Rf_error("failed to set second kernel argument as output length in clSetKernelArg"); occ->commands = commands = clCreateCommandQueue(context, device_id, 0, &err); if (!commands) ocl_err("clCreateCommandQueue"); if (ftype == FT_SINGLE) /* need conversions, create floats buffer */ occ->float_args = float_args = arg_alloc(0, 32); while ((arg = CAR(args)) != R_NilValue) { int n, ndiv = 1; void *ptr; size_t al; switch (TYPEOF(arg)) { case REALSXP: if (ftype == FT_SINGLE) { int i; float *f; double *d = REAL(arg); n = LENGTH(arg); f = (float*) malloc(sizeof(float) * n); if (!f) Rf_error("unable to allocate temporary single-precision memory for conversion from a double-precision argument vector of length %d", n); for (i = 0; i < n; i++) f[i] = d[i]; ptr = f; al = sizeof(float); arg_add(float_args, ptr); } else { ptr = REAL(arg); al = sizeof(double); } break; case INTSXP: ptr = INTEGER(arg); al = sizeof(int); break; case LGLSXP: ptr = LOGICAL(arg); al = sizeof(int); break; case RAWSXP: if (inherits(arg, "clFloat")) { ptr = RAW(arg); ndiv = al = sizeof(float); break; } default: Rf_error("only numeric or logical kernel arguments are supported"); /* no-ops but needed to make the compiler happy */ ptr = 0; al = 0; } n = LENGTH(arg); if (ndiv != 1) n /= ndiv; if (n == 1) {/* scalar */ if (clSetKernelArg(kernel, an++, al, ptr) != CL_SUCCESS) Rf_error("Failed to set scalar kernel argument %d (size=%d)", an, al); } else { cl_mem input = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, al * n, ptr, &err); if (!input) Rf_error("Unable to create buffer (%d elements, %d bytes each) for vector argument %d (oclError %d)", n, al, an, err); if (!occ->mem_objects) occ->mem_objects = arg_alloc(0, 32); arg_add(occ->mem_objects, input); #if 0 /* we used this before CL_MEM_USE_HOST_PTR */ if (clEnqueueWriteBuffer(commands, input, CL_TRUE, 0, al * n, ptr, 0, NULL, NULL) != CL_SUCCESS) Rf_error("Failed to transfer data (%d elements) for vector argument %d", n, an); #endif if (clSetKernelArg(kernel, an++, sizeof(cl_mem), &input) != CL_SUCCESS) Rf_error("Failed to set vector kernel argument %d (size=%d, length=%d)", an, al, n); /* clReleaseMemObject(input); */ } args = CDR(args); } if (clEnqueueNDRangeKernel(commands, kernel, wdim, NULL, wdims, NULL, 0, NULL, async ? &occ->event : NULL) != CL_SUCCESS) Rf_error("Error during kernel execution"); if (async) { /* asynchronous call -> get out and return the context */ #if USE_OCL_COMPLETE_CALLBACK clSetEventCallback(occ->event, CL_COMPLETE, ocl_complete_callback, occ); #endif clFlush(commands); /* the specs don't guarantee execution unless clFlush is called */ occ->ftres = ftres; occ->ftype = ftype; occ->on = on; Rf_setAttrib(octx, R_ClassSymbol, mkString("clCallContext")); UNPROTECT(1); return octx; } clFinish(commands); occ->finished = 1; /* we can release input memory objects now */ if (occ->mem_objects) { arg_free(occ->mem_objects, (afin_t) clReleaseMemObject); occ->mem_objects = 0; } if (float_args) { arg_free(float_args, 0); float_args = occ->float_args = 0; } res = ftres ? Rf_allocVector(RAWSXP, on * sizeof(float)) : Rf_allocVector(REALSXP, on); if (ftype == FT_SINGLE) { if (ftres) { if ((err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * on, RAW(res), 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d float elements, oclError %d)", on, err); PROTECT(res); Rf_setAttrib(res, R_ClassSymbol, mkString("clFloat")); UNPROTECT(1); } else { /* float - need a temporary buffer */ float *fr = (float*) malloc(sizeof(float) * on); double *r = REAL(res); int i; if (!fr) Rf_error("unable to allocate memory for temporary single-precision output buffer"); occ->float_out = fr; if ((err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(float) * on, fr, 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d float elements, oclError %d)", on, err); for (i = 0; i < on; i++) r[i] = fr[i]; } } else if ((err = clEnqueueReadBuffer( commands, output, CL_TRUE, 0, sizeof(double) * on, REAL(res), 0, NULL, NULL )) != CL_SUCCESS) Rf_error("Unable to transfer result vector (%d double elements, oclError %d)", on, err); ocl_call_context_fin(octx); UNPROTECT(1); return res; }
SEXP jsClientLib_jsclient_device_(SEXP nameSEXP, SEXP backgroundSEXP, SEXP widthSEXP, SEXP heightSEXP, SEXP pointsizeSEXP) { const char *name = CHAR(STRING_ELT(nameSEXP, 0)); const char *background = CHAR(STRING_ELT(backgroundSEXP, 0)); int rslt = jsclient_device_( name, background, Rf_asInteger( widthSEXP ), Rf_asInteger( heightSEXP ), Rf_asInteger( pointsizeSEXP )); return Rf_ScalarReal(rslt); }