/* * This function is responsible for handling all SiP calls from the NS world */ uint64_t sip_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { switch (smc_fid) { case SIP_SVC_CALL_COUNT: /* Return the number of Mediatek SiP Service Calls. */ SMC_RET1(handle, MTK_COMMON_SIP_NUM_CALLS + MTK_PLAT_SIP_NUM_CALLS); case SIP_SVC_UID: /* Return UID to the caller */ SMC_UUID_RET(handle, mtk_sip_svc_uid); case SIP_SVC_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, MTK_SIP_SVC_VERSION_MAJOR, MTK_SIP_SVC_VERSION_MINOR); default: return mediatek_sip_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } }
int imx_otp_handler(uint32_t smc_fid, void *handle, u_register_t x1, u_register_t x2) { int ret; uint32_t fuse; switch (smc_fid) { case IMX_SIP_OTP_READ: ret = sc_misc_otp_fuse_read(ipc_handle, x1, &fuse); SMC_RET2(handle, ret, fuse); break; case IMX_SIP_OTP_WRITE: ret = sc_misc_otp_fuse_write(ipc_handle, x1, x2); SMC_RET1(handle, ret); break; default: ret = SMC_UNK; SMC_RET1(handle, ret); break; } return ret; }
/** * sip_svc_smc_handler() - Top-level SiP Service SMC handler * * Handler for all SiP SMC calls. Handles standard SIP requests * and calls PM SMC handler if the call is for a PM-API function. */ uint64_t sip_svc_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { /* Let PM SMC handler deal with PM-related requests */ if (is_pm_fid(smc_fid)) { return pm_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } switch (smc_fid) { case ZYNQMP_SIP_SVC_CALL_COUNT: /* PM functions + default functions */ SMC_RET1(handle, PM_API_MAX + 2); case ZYNQMP_SIP_SVC_UID: SMC_UUID_RET(handle, zynqmp_sip_uuid); case ZYNQMP_SIP_SVC_VERSION: SMC_RET2(handle, SIP_SVC_VERSION_MAJOR, SIP_SVC_VERSION_MINOR); default: WARN("Unimplemented SiP Service Call: 0x%x\n", smc_fid); SMC_RET1(handle, SMC_UNK); } }
/******************************************************************************* * This function is the handler registered for S-EL1 interrupts by the TSPD. It * validates the interrupt and upon success arranges entry into the TSP at * 'tsp_sel1_intr_entry()' for handling the interrupt. ******************************************************************************/ static uint64_t tspd_sel1_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { uint32_t linear_id; tsp_context_t *tsp_ctx; /* Check the security state when the exception was generated */ assert(get_interrupt_src_ss(flags) == NON_SECURE); /* Sanity check the pointer to this cpu's context */ assert(handle == cm_get_context(NON_SECURE)); /* Save the non-secure context before entering the TSP */ cm_el1_sysregs_context_save(NON_SECURE); /* Get a reference to this cpu's TSP context */ linear_id = plat_my_core_pos(); tsp_ctx = &tspd_sp_context[linear_id]; assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); /* * Determine if the TSP was previously preempted. Its last known * context has to be preserved in this case. * The TSP should return control to the TSPD after handling this * S-EL1 interrupt. Preserve essential EL3 context to allow entry into * the TSP at the S-EL1 interrupt entry point using the 'cpu_context' * structure. There is no need to save the secure system register * context since the TSP is supposed to preserve it during S-EL1 * interrupt handling. */ if (get_std_smc_active_flag(tsp_ctx->state)) { tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, CTX_SPSR_EL3); tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, CTX_ELR_EL3); #if TSP_NS_INTR_ASYNC_PREEMPT /*Need to save the previously interrupted secure context */ memcpy(&tsp_ctx->sp_ctx, &tsp_ctx->cpu_ctx, TSPD_SP_CTX_SIZE); #endif } cm_el1_sysregs_context_restore(SECURE); cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->sel1_intr_entry, SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS)); cm_set_next_eret_context(SECURE); /* * Tell the TSP that it has to handle a S-EL1 interrupt synchronously. * Also the instruction in normal world where the interrupt was * generated is passed for debugging purposes. It is safe to retrieve * this address from ELR_EL3 as the secure context will not take effect * until el3_exit(). */ SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_SEL1_INTR_AND_RETURN, read_elr_el3()); }
/* * Top-level OEM Service SMC handler. This handler will in turn dispatch * calls to related SMC handler */ uintptr_t oem_svc_smc_handler(uint32_t smc_fid, u_register_t x1, u_register_t x2, u_register_t x3, u_register_t x4, void *cookie, void *handle, u_register_t flags) { /* * Dispatch OEM calls to OEM Common handler and return its return value */ if (is_oem_fid(smc_fid)) { return oem_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } switch (smc_fid) { case OEM_SVC_CALL_COUNT: /* * Return the number of OEM Service Calls. */ SMC_RET1(handle, OEM_SVC_NUM_CALLS); case OEM_SVC_UID: /* Return UID to the caller */ SMC_UUID_RET(handle, oem_svc_uid); case OEM_SVC_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, OEM_VERSION_MAJOR, OEM_VERSION_MINOR); default: WARN("Unimplemented OEM Service Call: 0x%x\n", smc_fid); SMC_RET1(handle, SMC_UNK); } }
/******************************************************************************* * This function is responsible for handling all SMCs in the Trusted OS/App * range from the non-secure state as defined in the SMC Calling Convention * Document. It is also responsible for communicating with the Secure payload * to delegate work and return results back to the non-secure state. Lastly it * will also return any information that the secure payload needs to do the * work assigned to it. ******************************************************************************/ uint64_t tlkd_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { cpu_context_t *ns_cpu_context; gp_regs_t *gp_regs; uint32_t ns; uint64_t par; /* Passing a NULL context is a critical programming error */ assert(handle); /* These SMCs are only supported by CPU0 */ if ((read_mpidr() & MPIDR_CPU_MASK) != 0) SMC_RET1(handle, SMC_UNK); /* Determine which security state this SMC originated from */ ns = is_caller_non_secure(flags); switch (smc_fid) { /* * This function ID is used by SP to indicate that it was * preempted by a non-secure world IRQ. */ case TLK_PREEMPTED: if (ns) SMC_RET1(handle, SMC_UNK); assert(handle == cm_get_context(SECURE)); cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* * Restore non-secure state. There is no need to save the * secure system register context since the SP was supposed * to preserve it during S-EL1 interrupt handling. */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET1(ns_cpu_context, x1); /* * Request from non secure world to resume the preempted * Standard SMC call. */ case TLK_RESUME_FID: /* RESUME should be invoked only by normal world */ if (!ns) SMC_RET1(handle, SMC_UNK); /* * This is a resume request from the non-secure client. * save the non-secure state and send the request to * the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted before resume */ if (!get_std_smc_active_flag(tlk_ctx.state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ /* We just need to return to the preempted point in * SP and the execution will resume as normal. */ cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); SMC_RET0(handle); /* * This is a request from the non-secure context to: * * a. register shared memory with the SP for storing it's * activity logs. * b. register shared memory with the SP for passing args * required for maintaining sessions with the Trusted * Applications. * c. open/close sessions * d. issue commands to the Trusted Apps */ case TLK_REGISTER_LOGBUF: case TLK_REGISTER_REQBUF: case TLK_OPEN_TA_SESSION: case TLK_CLOSE_TA_SESSION: case TLK_TA_LAUNCH_OP: case TLK_TA_SEND_EVENT: if (!ns) SMC_RET1(handle, SMC_UNK); /* * This is a fresh request from the non-secure client. * The parameters are in x1 and x2. Figure out which * registers need to be preserved, save the non-secure * state and send the request to the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted */ if (get_std_smc_active_flag(tlk_ctx.state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* * Verify if there is a valid context to use. */ assert(&tlk_ctx.cpu_ctx == cm_get_context(SECURE)); /* * Mark the SP state as active. */ set_std_smc_active_flag(tlk_ctx.state); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); /* * TLK is a 32-bit Trusted OS and so expects the SMC * arguments via r0-r7. TLK expects the monitor frame * registers to be 64-bits long. Hence, we pass x0 in * r0-r1, x1 in r2-r3, x3 in r4-r5 and x4 in r6-r7. * * As smc_fid is a uint32 value, r1 contains 0. */ gp_regs = get_gpregs_ctx(&tlk_ctx.cpu_ctx); write_ctx_reg(gp_regs, CTX_GPREG_X4, (uint32_t)x2); write_ctx_reg(gp_regs, CTX_GPREG_X5, (uint32_t)(x2 >> 32)); write_ctx_reg(gp_regs, CTX_GPREG_X6, (uint32_t)x3); write_ctx_reg(gp_regs, CTX_GPREG_X7, (uint32_t)(x3 >> 32)); SMC_RET4(&tlk_ctx.cpu_ctx, smc_fid, 0, (uint32_t)x1, (uint32_t)(x1 >> 32)); /* * Translate NS/EL1-S virtual addresses. * * x1 = virtual address * x3 = type (NS/S) * * Returns PA:lo in r0, PA:hi in r1. */ case TLK_VA_TRANSLATE: /* Should be invoked only by secure world */ if (ns) SMC_RET1(handle, SMC_UNK); /* NS virtual addresses are 64-bit long */ if (x3 & TLK_TRANSLATE_NS_VADDR) x1 = (uint32_t)x1 | (x2 << 32); if (!x1) SMC_RET1(handle, SMC_UNK); /* * TODO: Sanity check x1. This would require platform * support. */ /* virtual address and type: ns/s */ par = tlkd_va_translate(x1, x3); /* return physical address in r0-r1 */ SMC_RET4(handle, (uint32_t)par, (uint32_t)(par >> 32), 0, 0); /* * This is a request from the SP to mark completion of * a standard function ID. */ case TLK_REQUEST_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * Mark the SP state as inactive. */ clr_std_smc_active_flag(tlk_ctx.state); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* * This is a request completion SMC and we must switch to * the non-secure world to pass the result. */ cm_el1_sysregs_context_save(SECURE); /* * We are done stashing the secure context. Switch to the * non-secure context and return the result. */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET1(ns_cpu_context, x1); /* * This function ID is used only by the SP to indicate it has * finished initialising itself after a cold boot */ case TLK_ENTRY_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * SP has been successfully initialized. Register power * managemnt hooks with PSCI */ psci_register_spd_pm_hook(&tlkd_pm_ops); /* * TLK reports completion. The SPD must have initiated * the original request through a synchronous entry * into the SP. Jump back to the original C runtime * context. */ tlkd_synchronous_sp_exit(&tlk_ctx, x1); /* * Return the number of service function IDs implemented to * provide service to non-secure */ case TOS_CALL_COUNT: SMC_RET1(handle, TLK_NUM_FID); /* * Return TLK's UID to the caller */ case TOS_UID: SMC_UUID_RET(handle, tlk_uuid); /* * Return the version of current implementation */ case TOS_CALL_VERSION: SMC_RET2(handle, TLK_VERSION_MAJOR, TLK_VERSION_MINOR); default: break; } SMC_RET1(handle, SMC_UNK); }
/* * Handle SMC from a lower exception level to switch its execution state * (either from AArch64 to AArch32, or vice versa). * * smc_fid: * SMC function ID - either ARM_SIP_SVC_STATE_SWITCH_64 or * ARM_SIP_SVC_STATE_SWITCH_32. * pc_hi, pc_lo: * PC upon re-entry to the calling exception level; width dependent on the * calling exception level. * cookie_hi, cookie_lo: * Opaque pointer pairs received from the caller to pass it back, upon * re-entry. * handle: * Handle to saved context. */ int arm_execution_state_switch(unsigned int smc_fid, uint32_t pc_hi, uint32_t pc_lo, uint32_t cookie_hi, uint32_t cookie_lo, void *handle) { /* Execution state can be switched only if EL3 is AArch64 */ #ifdef AARCH64 int caller_64, from_el2, el, endianness, thumb = 0; u_register_t spsr, pc, scr, sctlr; entry_point_info_t ep; cpu_context_t *ctx = (cpu_context_t *) handle; el3_state_t *el3_ctx = get_el3state_ctx(ctx); /* That the SMC originated from NS is already validated by the caller */ /* * Disallow state switch if any of the secondaries have been brought up. */ if (psci_secondaries_brought_up()) goto exec_denied; spsr = read_ctx_reg(el3_ctx, CTX_SPSR_EL3); caller_64 = (GET_RW(spsr) == MODE_RW_64); if (caller_64) { /* * If the call originated from AArch64, expect 32-bit pointers when * switching to AArch32. */ if ((pc_hi != 0) || (cookie_hi != 0)) goto invalid_param; pc = pc_lo; /* Instruction state when entering AArch32 */ thumb = pc & 1; } else { /* Construct AArch64 PC */ pc = (((u_register_t) pc_hi) << 32) | pc_lo; } /* Make sure PC is 4-byte aligned, except for Thumb */ if ((pc & 0x3) && !thumb) goto invalid_param; /* * EL3 controls register width of the immediate lower EL only. Expect * this request from EL2/Hyp unless: * * - EL2 is not implemented; * - EL2 is implemented, but was disabled. This can be inferred from * SCR_EL3.HCE. */ from_el2 = caller_64 ? (GET_EL(spsr) == MODE_EL2) : (GET_M32(spsr) == MODE32_hyp); scr = read_ctx_reg(el3_ctx, CTX_SCR_EL3); if (!from_el2) { /* The call is from NS privilege level other than HYP */ /* * Disallow switching state if there's a Hypervisor in place; * this request must be taken up with the Hypervisor instead. */ if (scr & SCR_HCE_BIT) goto exec_denied; } /* * Return to the caller using the same endianness. Extract * endianness bit from the respective system control register * directly. */ sctlr = from_el2 ? read_sctlr_el2() : read_sctlr_el1(); endianness = !!(sctlr & SCTLR_EE_BIT); /* Construct SPSR for the exception state we're about to switch to */ if (caller_64) { int impl; /* * Switching from AArch64 to AArch32. Ensure this CPU implements * the target EL in AArch32. */ impl = from_el2 ? EL_IMPLEMENTED(2) : EL_IMPLEMENTED(1); if (impl != EL_IMPL_A64_A32) goto exec_denied; /* Return to the equivalent AArch32 privilege level */ el = from_el2 ? MODE32_hyp : MODE32_svc; spsr = SPSR_MODE32(el, thumb ? SPSR_T_THUMB : SPSR_T_ARM, endianness, DISABLE_ALL_EXCEPTIONS); } else { /* * Switching from AArch32 to AArch64. Since it's not possible to * implement an EL as AArch32-only (from which this call was * raised), it's safe to assume AArch64 is also implemented. */ el = from_el2 ? MODE_EL2 : MODE_EL1; spsr = SPSR_64(el, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS); } /* * Use the context management library to re-initialize the existing * context with the execution state flipped. Since the library takes * entry_point_info_t pointer as the argument, construct a dummy one * with PC, state width, endianness, security etc. appropriately set. * Other entries in the entry point structure are irrelevant for * purpose. */ zeromem(&ep, sizeof(ep)); ep.pc = pc; ep.spsr = spsr; SET_PARAM_HEAD(&ep, PARAM_EP, VERSION_1, ((endianness ? EP_EE_BIG : EP_EE_LITTLE) | NON_SECURE | EP_ST_DISABLE)); /* * Re-initialize the system register context, and exit EL3 as if for the * first time. State switch is effectively a soft reset of the * calling EL. */ cm_init_my_context(&ep); cm_prepare_el3_exit(NON_SECURE); /* * State switch success. The caller of SMC wouldn't see the SMC * returning. Instead, execution starts at the supplied entry point, * with context pointers populated in registers 0 and 1. */ SMC_RET2(handle, cookie_hi, cookie_lo); invalid_param: SMC_RET1(handle, STATE_SW_E_PARAM); exec_denied: #endif /* State switch denied */ SMC_RET1(handle, STATE_SW_E_DENIED); }
/******************************************************************************* * This function is responsible for handling all SMCs in the Trusted OS/App * range from the non-secure state as defined in the SMC Calling Convention * Document. It is also responsible for communicating with the Secure payload * to delegate work and return results back to the non-secure state. Lastly it * will also return any information that the secure payload needs to do the * work assigned to it. ******************************************************************************/ uint64_t tspd_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3, uint64_t x4, void *cookie, void *handle, uint64_t flags) { cpu_context_t *ns_cpu_context; uint32_t linear_id = plat_my_core_pos(), ns; tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; uint64_t rc; #if TSP_INIT_ASYNC entry_point_info_t *next_image_info; #endif /* Determine which security state this SMC originated from */ ns = is_caller_non_secure(flags); switch (smc_fid) { /* * This function ID is used by TSP to indicate that it was * preempted by a normal world IRQ. * */ case TSP_PREEMPTED: if (ns) SMC_RET1(handle, SMC_UNK); return tspd_handle_sp_preemption(handle); /* * This function ID is used only by the TSP to indicate that it has * finished handling a S-EL1 FIQ interrupt. Execution should resume * in the normal world. */ case TSP_HANDLED_S_EL1_FIQ: if (ns) SMC_RET1(handle, SMC_UNK); assert(handle == cm_get_context(SECURE)); /* * Restore the relevant EL3 state which saved to service * this SMC. */ if (get_std_smc_active_flag(tsp_ctx->state)) { SMC_SET_EL3(&tsp_ctx->cpu_ctx, CTX_SPSR_EL3, tsp_ctx->saved_spsr_el3); SMC_SET_EL3(&tsp_ctx->cpu_ctx, CTX_ELR_EL3, tsp_ctx->saved_elr_el3); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Need to restore the previously interrupted * secure context. */ memcpy(&tsp_ctx->cpu_ctx, &tsp_ctx->sp_ctx, TSPD_SP_CTX_SIZE); #endif } /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* * Restore non-secure state. There is no need to save the * secure system register context since the TSP was supposed * to preserve it during S-EL1 interrupt handling. */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET0((uint64_t) ns_cpu_context); /* * This function ID is used only by the TSP to indicate that it was * interrupted due to a EL3 FIQ interrupt. Execution should resume * in the normal world. */ case TSP_EL3_FIQ: if (ns) SMC_RET1(handle, SMC_UNK); assert(handle == cm_get_context(SECURE)); /* Assert that standard SMC execution has been preempted */ assert(get_std_smc_active_flag(tsp_ctx->state)); /* Save the secure system register state */ cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); SMC_RET1(ns_cpu_context, TSP_EL3_FIQ); /* * This function ID is used only by the SP to indicate it has * finished initialising itself after a cold boot */ case TSP_ENTRY_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * Stash the SP entry points information. This is done * only once on the primary cpu */ assert(tsp_vectors == NULL); tsp_vectors = (tsp_vectors_t *) x1; if (tsp_vectors) { set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); /* * TSP has been successfully initialized. Register power * managemnt hooks with PSCI */ psci_register_spd_pm_hook(&tspd_pm); /* * Register an interrupt handler for S-EL1 interrupts * when generated during code executing in the * non-secure state. */ flags = 0; set_interrupt_rm_flag(flags, NON_SECURE); rc = register_interrupt_type_handler(INTR_TYPE_S_EL1, tspd_sel1_interrupt_handler, flags); if (rc) panic(); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Register an interrupt handler for NS interrupts when * generated during code executing in secure state are * routed to EL3. */ flags = 0; set_interrupt_rm_flag(flags, SECURE); rc = register_interrupt_type_handler(INTR_TYPE_NS, tspd_ns_interrupt_handler, flags); if (rc) panic(); /* * Disable the interrupt NS locally since it will be enabled globally * within cm_init_my_context. */ disable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } #if TSP_INIT_ASYNC /* Save the Secure EL1 system register context */ assert(cm_get_context(SECURE) == &tsp_ctx->cpu_ctx); cm_el1_sysregs_context_save(SECURE); /* Program EL3 registers to enable entry into the next EL */ next_image_info = bl31_plat_get_next_image_ep_info(NON_SECURE); assert(next_image_info); assert(NON_SECURE == GET_SECURITY_STATE(next_image_info->h.attr)); cm_init_my_context(next_image_info); cm_prepare_el3_exit(NON_SECURE); SMC_RET0(cm_get_context(NON_SECURE)); #else /* * SP reports completion. The SPD must have initiated * the original request through a synchronous entry * into the SP. Jump back to the original C runtime * context. */ tspd_synchronous_sp_exit(tsp_ctx, x1); #endif /* * These function IDs is used only by the SP to indicate it has * finished: * 1. turning itself on in response to an earlier psci * cpu_on request * 2. resuming itself after an earlier psci cpu_suspend * request. */ case TSP_ON_DONE: case TSP_RESUME_DONE: /* * These function IDs is used only by the SP to indicate it has * finished: * 1. suspending itself after an earlier psci cpu_suspend * request. * 2. turning itself off in response to an earlier psci * cpu_off request. */ case TSP_OFF_DONE: case TSP_SUSPEND_DONE: case TSP_SYSTEM_OFF_DONE: case TSP_SYSTEM_RESET_DONE: if (ns) SMC_RET1(handle, SMC_UNK); /* * SP reports completion. The SPD must have initiated the * original request through a synchronous entry into the SP. * Jump back to the original C runtime context, and pass x1 as * return value to the caller */ tspd_synchronous_sp_exit(tsp_ctx, x1); /* * Request from non-secure client to perform an * arithmetic operation or response from secure * payload to an earlier request. */ case TSP_FAST_FID(TSP_ADD): case TSP_FAST_FID(TSP_SUB): case TSP_FAST_FID(TSP_MUL): case TSP_FAST_FID(TSP_DIV): case TSP_STD_FID(TSP_ADD): case TSP_STD_FID(TSP_SUB): case TSP_STD_FID(TSP_MUL): case TSP_STD_FID(TSP_DIV): if (ns) { /* * This is a fresh request from the non-secure client. * The parameters are in x1 and x2. Figure out which * registers need to be preserved, save the non-secure * state and send the request to the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted */ if (get_std_smc_active_flag(tsp_ctx->state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* Save x1 and x2 for use by TSP_GET_ARGS call below */ store_tsp_args(tsp_ctx, x1, x2); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ /* * Verify if there is a valid context to use, copy the * operation type and parameters to the secure context * and jump to the fast smc entry point in the secure * payload. Entry into S-EL1 will take place upon exit * from this function. */ assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); /* Set appropriate entry for SMC. * We expect the TSP to manage the PSTATE.I and PSTATE.F * flags as appropriate. */ if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) { cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->fast_smc_entry); } else { set_std_smc_active_flag(tsp_ctx->state); cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->std_smc_entry); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Enable the routing of NS interrupts to EL3 * during STD SMC processing on this core. */ enable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); SMC_RET3(&tsp_ctx->cpu_ctx, smc_fid, x1, x2); } else { /* * This is the result from the secure client of an * earlier request. The results are in x1-x3. Copy it * into the non-secure context, save the secure state * and return to the non-secure state. */ assert(handle == cm_get_context(SECURE)); cm_el1_sysregs_context_save(SECURE); /* Get a reference to the non-secure context */ ns_cpu_context = cm_get_context(NON_SECURE); assert(ns_cpu_context); /* Restore non-secure state */ cm_el1_sysregs_context_restore(NON_SECURE); cm_set_next_eret_context(NON_SECURE); if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_STD) { clr_std_smc_active_flag(tsp_ctx->state); #if TSPD_ROUTE_IRQ_TO_EL3 /* * Disable the routing of NS interrupts to EL3 * after STD SMC processing is finished on this * core. */ disable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif } SMC_RET3(ns_cpu_context, x1, x2, x3); } break; /* * Request from non secure world to resume the preempted * Standard SMC call. */ case TSP_FID_RESUME: /* RESUME should be invoked only by normal world */ if (!ns) { assert(0); break; } /* * This is a resume request from the non-secure client. * save the non-secure state and send the request to * the secure payload. */ assert(handle == cm_get_context(NON_SECURE)); /* Check if we are already preempted before resume */ if (!get_std_smc_active_flag(tsp_ctx->state)) SMC_RET1(handle, SMC_UNK); cm_el1_sysregs_context_save(NON_SECURE); /* * We are done stashing the non-secure context. Ask the * secure payload to do the work now. */ #if TSPD_ROUTE_IRQ_TO_EL3 /* * Enable the routing of NS interrupts to EL3 during resumption * of STD SMC call on this core. */ enable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif /* We just need to return to the preempted point in * TSP and the execution will resume as normal. */ cm_el1_sysregs_context_restore(SECURE); cm_set_next_eret_context(SECURE); SMC_RET0(&tsp_ctx->cpu_ctx); /* * This is a request from the secure payload for more arguments * for an ongoing arithmetic operation requested by the * non-secure world. Simply return the arguments from the non- * secure client in the original call. */ case TSP_GET_ARGS: if (ns) SMC_RET1(handle, SMC_UNK); get_tsp_args(tsp_ctx, x1, x2); SMC_RET2(handle, x1, x2); case TOS_CALL_COUNT: /* * Return the number of service function IDs implemented to * provide service to non-secure */ SMC_RET1(handle, TSP_NUM_FID); case TOS_UID: /* Return TSP UID to the caller */ SMC_UUID_RET(handle, tsp_uuid); case TOS_CALL_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, TSP_VERSION_MAJOR, TSP_VERSION_MINOR); default: break; } SMC_RET1(handle, SMC_UNK); }
/* * Top-level Standard Service SMC handler. This handler will in turn dispatch * calls to PSCI SMC handler */ static uintptr_t std_svc_smc_handler(uint32_t smc_fid, u_register_t x1, u_register_t x2, u_register_t x3, u_register_t x4, void *cookie, void *handle, u_register_t flags) { /* * Dispatch PSCI calls to PSCI SMC handler and return its return * value */ if (is_psci_fid(smc_fid)) { uint64_t ret; #if ENABLE_RUNTIME_INSTRUMENTATION /* * Flush cache line so that even if CPU power down happens * the timestamp update is reflected in memory. */ PMF_WRITE_TIMESTAMP(rt_instr_svc, RT_INSTR_ENTER_PSCI, PMF_CACHE_MAINT, get_cpu_data(cpu_data_pmf_ts[CPU_DATA_PMF_TS0_IDX])); #endif ret = psci_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); #if ENABLE_RUNTIME_INSTRUMENTATION PMF_CAPTURE_TIMESTAMP(rt_instr_svc, RT_INSTR_EXIT_PSCI, PMF_NO_CACHE_MAINT); #endif SMC_RET1(handle, ret); } #if ENABLE_SPM && SPM_DEPRECATED /* * Dispatch SPM calls to SPM SMC handler and return its return * value */ if (is_spm_fid(smc_fid)) { return spm_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } #endif #if SDEI_SUPPORT if (is_sdei_fid(smc_fid)) { return sdei_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } #endif switch (smc_fid) { case ARM_STD_SVC_CALL_COUNT: /* * Return the number of Standard Service Calls. PSCI is the only * standard service implemented; so return number of PSCI calls */ SMC_RET1(handle, PSCI_NUM_CALLS); case ARM_STD_SVC_UID: /* Return UID to the caller */ SMC_UUID_RET(handle, arm_svc_uid); case ARM_STD_SVC_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, STD_SVC_VERSION_MAJOR, STD_SVC_VERSION_MINOR); default: WARN("Unimplemented Standard Service Call: 0x%x \n", smc_fid); SMC_RET1(handle, SMC_UNK); } }
/******************************************************************************* * This function is the handler registered for S-EL1 interrupts by the FIQD. It * validates the interrupt and upon success arranges entry into the TSP at * 'tsp_fiq_entry()' for handling the interrupt. ******************************************************************************/ static uint64_t fiqd_sel1_interrupt_handler(uint32_t id, uint32_t flags, void *handle, void *cookie) { unsigned int iar; /* Check the security state when the exception was generated */ assert(get_interrupt_src_ss(flags) == NON_SECURE); #if IMF_READ_INTERRUPT_ID /* Check the security status of the interrupt */ assert(plat_ic_get_interrupt_type(id) == INTR_TYPE_S_EL1); #endif /* Sanity check the pointer to this cpu's context */ assert(handle == cm_get_context(NON_SECURE)); /* Save the non-secure context before entering the TSP */ cm_el1_sysregs_context_save(NON_SECURE); iar = get_ack_info(); ack_sgi(iar); if(id == WDT_IRQ_BIT_ID) { /* FIX-ME : change 0xFE to the kernel online CPU mask */ fiq_smp_call_function(0xFE, aee_wdt_dump, 0, 0); aee_wdt_dump(); } if(id == FIQ_SMP_CALL_SGI) { fiq_icc_isr(); } SMC_RET0(handle); #if 0 /* Get a reference to this cpu's TSP context */ linear_id = platform_get_core_pos(mpidr); tsp_ctx = &fiqd_sp_context[linear_id]; assert(&tsp_ctx->cpu_ctx == cm_get_context(SECURE)); /* * Determine if the TSP was previously preempted. Its last known * context has to be preserved in this case. * The TSP should return control to the FIQD after handling this * FIQ. Preserve essential EL3 context to allow entry into the * TSP at the FIQ entry point using the 'cpu_context' structure. * There is no need to save the secure system register context * since the TSP is supposed to preserve it during S-EL1 interrupt * handling. */ if (get_std_smc_active_flag(tsp_ctx->state)) { tsp_ctx->saved_spsr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, CTX_SPSR_EL3); tsp_ctx->saved_elr_el3 = SMC_GET_EL3(&tsp_ctx->cpu_ctx, CTX_ELR_EL3); } cm_el1_sysregs_context_restore(SECURE); cm_set_elr_spsr_el3(SECURE, (uint64_t) &tsp_vectors->fiq_entry, SPSR_64(MODE_EL1, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS)); cm_set_next_eret_context(SECURE); /* * Tell the TSP that it has to handle an FIQ synchronously. Also the * instruction in normal world where the interrupt was generated is * passed for debugging purposes. It is safe to retrieve this address * from ELR_EL3 as the secure context will not take effect until * el3_exit(). */ SMC_RET2(&tsp_ctx->cpu_ctx, TSP_HANDLE_FIQ_AND_RETURN, read_elr_el3()); #endif }
/* * This function handles ARM defined SiP Calls */ static uintptr_t arm_sip_handler(unsigned int smc_fid, u_register_t x1, u_register_t x2, u_register_t x3, u_register_t x4, void *cookie, void *handle, u_register_t flags) { int call_count = 0; /* * Dispatch PMF calls to PMF SMC handler and return its return * value */ if (is_pmf_fid(smc_fid)) { return pmf_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags); } switch (smc_fid) { case ARM_SIP_SVC_EXE_STATE_SWITCH: { u_register_t pc; /* Allow calls from non-secure only */ if (!is_caller_non_secure(flags)) SMC_RET1(handle, STATE_SW_E_DENIED); /* Validate supplied entry point */ pc = (u_register_t) ((x1 << 32) | (uint32_t) x2); if (arm_validate_ns_entrypoint(pc) != 0) SMC_RET1(handle, STATE_SW_E_PARAM); /* * Pointers used in execution state switch are all 32 bits wide */ return (uintptr_t) arm_execution_state_switch(smc_fid, (uint32_t) x1, (uint32_t) x2, (uint32_t) x3, (uint32_t) x4, handle); } case ARM_SIP_SVC_CALL_COUNT: /* PMF calls */ call_count += PMF_NUM_SMC_CALLS; /* State switch call */ call_count += 1; SMC_RET1(handle, call_count); case ARM_SIP_SVC_UID: /* Return UID to the caller */ SMC_UUID_RET(handle, arm_sip_svc_uid); case ARM_SIP_SVC_VERSION: /* Return the version of current implementation */ SMC_RET2(handle, ARM_SIP_SVC_VERSION_MAJOR, ARM_SIP_SVC_VERSION_MINOR); default: WARN("Unimplemented ARM SiP Service Call: 0x%x \n", smc_fid); SMC_RET1(handle, SMC_UNK); } }