コード例 #1
0
ファイル: fas.c プロジェクト: fengyuqi/petsc
/*
Defines the action of the downsmoother
 */
PetscErrorCode SNESFASDownSmooth_Private(SNES snes, Vec B, Vec X, Vec F, PetscReal *fnorm)
{
  PetscErrorCode      ierr = 0;
  SNESConvergedReason reason;
  Vec                 FPC;
  SNES                smoothd;
  SNES_FAS            *fas = (SNES_FAS*) snes->data;

  PetscFunctionBegin;
  ierr = SNESFASCycleGetSmootherDown(snes, &smoothd);CHKERRQ(ierr);
  ierr = SNESSetInitialFunction(smoothd, F);CHKERRQ(ierr);
  if (fas->eventsmoothsolve) {ierr = PetscLogEventBegin(fas->eventsmoothsolve,0,0,0,0);CHKERRQ(ierr);}
  ierr = SNESSolve(smoothd, B, X);CHKERRQ(ierr);
  if (fas->eventsmoothsolve) {ierr = PetscLogEventEnd(fas->eventsmoothsolve,0,0,0,0);CHKERRQ(ierr);}
  /* check convergence reason for the smoother */
  ierr = SNESGetConvergedReason(smoothd,&reason);CHKERRQ(ierr);
  if (reason < 0 && !(reason == SNES_DIVERGED_MAX_IT || reason == SNES_DIVERGED_LOCAL_MIN || reason == SNES_DIVERGED_LINE_SEARCH)) {
    snes->reason = SNES_DIVERGED_INNER;
    PetscFunctionReturn(0);
  }
  ierr = SNESGetFunction(smoothd, &FPC, NULL, NULL);CHKERRQ(ierr);
  ierr = VecCopy(FPC, F);CHKERRQ(ierr);
  if (fnorm) {ierr = VecNorm(F,NORM_2,fnorm);CHKERRQ(ierr);}
  PetscFunctionReturn(0);
}
コード例 #2
0
ファイル: fas.c プロジェクト: fengyuqi/petsc
/*

Performs the FAS coarse correction as:

fine problem:   F(x) = b
coarse problem: F^c(x^c) = b^c

b^c = F^c(Rx) - R(F(x) - b)

 */
PetscErrorCode SNESFASCoarseCorrection(SNES snes, Vec X, Vec F, Vec X_new)
{
  PetscErrorCode      ierr;
  Vec                 X_c, Xo_c, F_c, B_c;
  SNESConvergedReason reason;
  SNES                next;
  Mat                 restrct, interpolate;
  SNES_FAS            *fasc;

  PetscFunctionBegin;
  ierr = SNESFASCycleGetCorrection(snes, &next);CHKERRQ(ierr);
  if (next) {
    fasc = (SNES_FAS*)next->data;

    ierr = SNESFASCycleGetRestriction(snes, &restrct);CHKERRQ(ierr);
    ierr = SNESFASCycleGetInterpolation(snes, &interpolate);CHKERRQ(ierr);

    X_c  = next->vec_sol;
    Xo_c = next->work[0];
    F_c  = next->vec_func;
    B_c  = next->vec_rhs;

    if (fasc->eventinterprestrict) {ierr = PetscLogEventBegin(fasc->eventinterprestrict,0,0,0,0);CHKERRQ(ierr);}
    ierr = SNESFASRestrict(snes,X,Xo_c);CHKERRQ(ierr);
    /* restrict the defect: R(F(x) - b) */
    ierr = MatRestrict(restrct, F, B_c);CHKERRQ(ierr);
    if (fasc->eventinterprestrict) {ierr = PetscLogEventEnd(fasc->eventinterprestrict,0,0,0,0);CHKERRQ(ierr);}

    if (fasc->eventresidual) {ierr = PetscLogEventBegin(fasc->eventresidual,0,0,0,0);CHKERRQ(ierr);}
    /* F_c = F^c(Rx) - R(F(x) - b) since the second term was sitting in next->vec_rhs */
    ierr = SNESComputeFunction(next, Xo_c, F_c);CHKERRQ(ierr);
    if (fasc->eventresidual) {ierr = PetscLogEventEnd(fasc->eventresidual,0,0,0,0);CHKERRQ(ierr);}

    /* solve the coarse problem corresponding to F^c(x^c) = b^c = F^c(Rx) - R(F(x) - b) */
    ierr = VecCopy(B_c, X_c);CHKERRQ(ierr);
    ierr = VecCopy(F_c, B_c);CHKERRQ(ierr);
    ierr = VecCopy(X_c, F_c);CHKERRQ(ierr);
    /* set initial guess of the coarse problem to the projected fine solution */
    ierr = VecCopy(Xo_c, X_c);CHKERRQ(ierr);

    /* recurse to the next level */
    ierr = SNESSetInitialFunction(next, F_c);CHKERRQ(ierr);
    ierr = SNESSolve(next, B_c, X_c);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(next,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
    /* correct as x <- x + I(x^c - Rx)*/
    ierr = VecAXPY(X_c, -1.0, Xo_c);CHKERRQ(ierr);

    if (fasc->eventinterprestrict) {ierr = PetscLogEventBegin(fasc->eventinterprestrict,0,0,0,0);CHKERRQ(ierr);}
    ierr = MatInterpolateAdd(interpolate, X_c, X, X_new);CHKERRQ(ierr);
    if (fasc->eventinterprestrict) {ierr = PetscLogEventEnd(fasc->eventinterprestrict,0,0,0,0);CHKERRQ(ierr);}
  }
  PetscFunctionReturn(0);
}
コード例 #3
0
ファイル: fas.c プロジェクト: erdc-cm/petsc-dev
/*
Defines the action of the downsmoother
 */
PetscErrorCode SNESFASDownSmooth_Private(SNES snes, Vec B, Vec X, Vec F, PetscReal *fnorm)
{
  PetscErrorCode      ierr = 0;
  SNESConvergedReason reason;
  Vec                 FPC;
  SNES                smoothd;
  PetscFunctionBegin;
  ierr = SNESFASCycleGetSmootherDown(snes, &smoothd);CHKERRQ(ierr);
  ierr = SNESSetInitialFunction(smoothd, F);CHKERRQ(ierr);
  ierr = SNESSetInitialFunctionNorm(smoothd, *fnorm);CHKERRQ(ierr);
  ierr = SNESSolve(smoothd, B, X);CHKERRQ(ierr);
  /* check convergence reason for the smoother */
  ierr = SNESGetConvergedReason(smoothd,&reason);CHKERRQ(ierr);
  if (reason < 0 && !(reason == SNES_DIVERGED_MAX_IT || reason == SNES_DIVERGED_LOCAL_MIN)) {
    snes->reason = SNES_DIVERGED_INNER;
    PetscFunctionReturn(0);
  }
  ierr = SNESGetFunction(smoothd, &FPC, PETSC_NULL, PETSC_NULL);CHKERRQ(ierr);
  ierr = VecCopy(FPC, F);CHKERRQ(ierr);
  ierr = SNESGetFunctionNorm(smoothd, fnorm);CHKERRQ(ierr);
  PetscFunctionReturn(0);
}
コード例 #4
0
ファイル: snespc.c プロジェクト: lw4992/petsc
/*@
   SNESApplyNPC - Calls SNESSolve() on preconditioner for the SNES

   Collective on SNES

   Input Parameters:
+  snes - the SNES context
.  x - input vector
-  f - optional; the function evaluation on x

   Output Parameter:
.  y - function vector, as set by SNESSetFunction()

   Notes:
   SNESComputeFunction() should be called on x before SNESApplyNPC() is called, as it is
   with SNESComuteJacobian().

   Level: developer

.keywords: SNES, nonlinear, compute, function

.seealso: SNESGetNPC(),SNESSetNPC(),SNESComputeFunction()
@*/
PetscErrorCode  SNESApplyNPC(SNES snes,Vec x,Vec f,Vec y)
{
  PetscErrorCode ierr;

  PetscFunctionBegin;
  PetscValidHeaderSpecific(snes,SNES_CLASSID,1);
  PetscValidHeaderSpecific(x,VEC_CLASSID,2);
  PetscValidHeaderSpecific(y,VEC_CLASSID,3);
  PetscCheckSameComm(snes,1,x,2);
  PetscCheckSameComm(snes,1,y,3);
  ierr = VecValidValues(x,2,PETSC_TRUE);CHKERRQ(ierr);
  if (snes->pc) {
    if (f) {
      ierr = SNESSetInitialFunction(snes->pc,f);CHKERRQ(ierr);
    }
    ierr = VecCopy(x,y);CHKERRQ(ierr);
    ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,x,y,0);CHKERRQ(ierr);
    ierr = SNESSolve(snes->pc,snes->vec_rhs,y);CHKERRQ(ierr);
    ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,x,y,0);CHKERRQ(ierr);
    ierr = VecAYPX(y,-1.0,x);CHKERRQ(ierr);
    PetscFunctionReturn(0);
  }
  PetscFunctionReturn(0);
}
コード例 #5
0
ファイル: fas.c プロジェクト: fengyuqi/petsc
/*

The additive cycle looks like:

xhat = x
xhat = dS(x, b)
x = coarsecorrection(xhat, b_d)
x = x + nu*(xhat - x);
(optional) x = uS(x, b)

With the coarse RHS (defect correction) as below.

 */
PetscErrorCode SNESFASCycle_Additive(SNES snes, Vec X)
{
  Vec                 F, B, Xhat;
  Vec                 X_c, Xo_c, F_c, B_c;
  PetscErrorCode      ierr;
  SNESConvergedReason reason;
  PetscReal           xnorm, fnorm, ynorm;
  PetscBool           lssuccess;
  SNES                next;
  Mat                 restrct, interpolate;
  SNES_FAS            *fas = (SNES_FAS*)snes->data,*fasc;

  PetscFunctionBegin;
  ierr = SNESFASCycleGetCorrection(snes, &next);CHKERRQ(ierr);
  F    = snes->vec_func;
  B    = snes->vec_rhs;
  Xhat = snes->work[1];
  ierr = VecCopy(X, Xhat);CHKERRQ(ierr);
  /* recurse first */
  if (next) {
    fasc = (SNES_FAS*)next->data;
    ierr = SNESFASCycleGetRestriction(snes, &restrct);CHKERRQ(ierr);
    ierr = SNESFASCycleGetInterpolation(snes, &interpolate);CHKERRQ(ierr);
    if (fas->eventresidual) {ierr = PetscLogEventBegin(fas->eventresidual,0,0,0,0);CHKERRQ(ierr);}
    ierr = SNESComputeFunction(snes, Xhat, F);CHKERRQ(ierr);
    if (fas->eventresidual) {ierr = PetscLogEventEnd(fas->eventresidual,0,0,0,0);CHKERRQ(ierr);}
    ierr = VecNorm(F, NORM_2, &fnorm);CHKERRQ(ierr);
    X_c  = next->vec_sol;
    Xo_c = next->work[0];
    F_c  = next->vec_func;
    B_c  = next->vec_rhs;

    ierr = SNESFASRestrict(snes,Xhat,Xo_c);CHKERRQ(ierr);
    /* restrict the defect */
    ierr = MatRestrict(restrct, F, B_c);CHKERRQ(ierr);

    /* solve the coarse problem corresponding to F^c(x^c) = b^c = Rb + F^c(Rx) - RF(x) */
    if (fasc->eventresidual) {ierr = PetscLogEventBegin(fasc->eventresidual,0,0,0,0);CHKERRQ(ierr);}
    ierr = SNESComputeFunction(next, Xo_c, F_c);CHKERRQ(ierr);
    if (fasc->eventresidual) {ierr = PetscLogEventEnd(fasc->eventresidual,0,0,0,0);CHKERRQ(ierr);}
    ierr = VecCopy(B_c, X_c);CHKERRQ(ierr);
    ierr = VecCopy(F_c, B_c);CHKERRQ(ierr);
    ierr = VecCopy(X_c, F_c);CHKERRQ(ierr);
    /* set initial guess of the coarse problem to the projected fine solution */
    ierr = VecCopy(Xo_c, X_c);CHKERRQ(ierr);

    /* recurse */
    ierr = SNESSetInitialFunction(next, F_c);CHKERRQ(ierr);
    ierr = SNESSolve(next, B_c, X_c);CHKERRQ(ierr);

    /* smooth on this level */
    ierr = SNESFASDownSmooth_Private(snes, B, X, F, &fnorm);CHKERRQ(ierr);

    ierr = SNESGetConvergedReason(next,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }

    /* correct as x <- x + I(x^c - Rx)*/
    ierr = VecAYPX(X_c, -1.0, Xo_c);CHKERRQ(ierr);
    ierr = MatInterpolate(interpolate, X_c, Xhat);CHKERRQ(ierr);

    /* additive correction of the coarse direction*/
    ierr = SNESLineSearchApply(snes->linesearch, X, F, &fnorm, Xhat);CHKERRQ(ierr);
    ierr = SNESLineSearchGetSuccess(snes->linesearch, &lssuccess);CHKERRQ(ierr);
    if (!lssuccess) {
      if (++snes->numFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        PetscFunctionReturn(0);
      }
    }
    ierr = SNESLineSearchGetNorms(snes->linesearch, &xnorm, &snes->norm, &ynorm);CHKERRQ(ierr);
  } else {
    ierr = SNESFASDownSmooth_Private(snes, B, X, F, &snes->norm);CHKERRQ(ierr);
  }
  PetscFunctionReturn(0);
}
コード例 #6
0
static PetscErrorCode SNESCompositeApply_Multiplicative(SNES snes,Vec X,Vec B,Vec F,PetscReal *fnorm)
{
  PetscErrorCode      ierr;
  SNES_Composite      *jac = (SNES_Composite*)snes->data;
  SNES_CompositeLink  next = jac->head;
  Vec                 FSub;
  SNESConvergedReason reason;

  PetscFunctionBegin;
  if (!next) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE,"No composite SNESes supplied via SNESCompositeAddSNES() or -snes_composite_sneses");
  if (snes->normschedule == SNES_NORM_ALWAYS) {
    ierr = SNESSetInitialFunction(next->snes,F);CHKERRQ(ierr);
  }
  ierr = SNESSolve(next->snes,B,X);CHKERRQ(ierr);
  ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
  if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
    jac->innerFailures++;
    if (jac->innerFailures >= snes->maxFailures) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
  }

  while (next->next) {
    /* only copy the function over in the case where the functions correspond */
    if (next->snes->pcside == PC_RIGHT && next->snes->normschedule != SNES_NORM_NONE) {
      ierr = SNESGetFunction(next->snes,&FSub,NULL,NULL);CHKERRQ(ierr);
      next = next->next;
      ierr = SNESSetInitialFunction(next->snes,FSub);CHKERRQ(ierr);
    } else {
      next = next->next;
    }
    ierr = SNESSolve(next->snes,B,X);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      jac->innerFailures++;
      if (jac->innerFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
    }
  }
  if (next->snes->pcside == PC_RIGHT) {
    ierr = SNESGetFunction(next->snes,&FSub,NULL,NULL);CHKERRQ(ierr);
    ierr = VecCopy(FSub,F);CHKERRQ(ierr);
    if (fnorm) {
      if (snes->xl && snes->xu) {
        ierr = SNESVIComputeInactiveSetFnorm(snes, F, X, fnorm);CHKERRQ(ierr);
      } else {
        ierr = VecNorm(F, NORM_2, fnorm);CHKERRQ(ierr);
      }
      SNESCheckFunctionNorm(snes,*fnorm);
    }
  } else if (snes->normschedule == SNES_NORM_ALWAYS) {
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    if (fnorm) {
      if (snes->xl && snes->xu) {
        ierr = SNESVIComputeInactiveSetFnorm(snes, F, X, fnorm);CHKERRQ(ierr);
      } else {
        ierr = VecNorm(F, NORM_2, fnorm);CHKERRQ(ierr);
      }
      SNESCheckFunctionNorm(snes,*fnorm);
    }
  }
  PetscFunctionReturn(0);
}
コード例 #7
0
/* approximately solve the overdetermined system:

 2*F(x_i)\cdot F(\x_j)\alpha_i = 0
 \alpha_i                      = 1

 Which minimizes the L2 norm of the linearization of:
 ||F(\sum_i \alpha_i*x_i)||^2

 With the constraint that \sum_i\alpha_i = 1
 Where x_i is the solution from the ith subsolver.
 */
static PetscErrorCode SNESCompositeApply_AdditiveOptimal(SNES snes,Vec X,Vec B,Vec F,PetscReal *fnorm)
{
  PetscErrorCode      ierr;
  SNES_Composite      *jac = (SNES_Composite*)snes->data;
  SNES_CompositeLink  next = jac->head;
  Vec                 *Xes = jac->Xes,*Fes = jac->Fes;
  PetscInt            i,j;
  PetscScalar         tot,total,ftf;
  PetscReal           min_fnorm;
  PetscInt            min_i;
  SNESConvergedReason reason;

  PetscFunctionBegin;
  if (!next) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE,"No composite SNESes supplied via SNESCompositeAddSNES() or -snes_composite_sneses");

  if (snes->normschedule == SNES_NORM_ALWAYS) {
    next = jac->head;
    ierr = SNESSetInitialFunction(next->snes,F);CHKERRQ(ierr);
    while (next->next) {
      next = next->next;
      ierr = SNESSetInitialFunction(next->snes,F);CHKERRQ(ierr);
    }
  }

  next = jac->head;
  i = 0;
  ierr = VecCopy(X,Xes[i]);CHKERRQ(ierr);
  ierr = SNESSolve(next->snes,B,Xes[i]);CHKERRQ(ierr);
  ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
  if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
    jac->innerFailures++;
    if (jac->innerFailures >= snes->maxFailures) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
  }
  while (next->next) {
    i++;
    next = next->next;
    ierr = VecCopy(X,Xes[i]);CHKERRQ(ierr);
    ierr = SNESSolve(next->snes,B,Xes[i]);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      jac->innerFailures++;
      if (jac->innerFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
    }
  }

  /* all the solutions are collected; combine optimally */
  for (i=0;i<jac->n;i++) {
    for (j=0;j<i+1;j++) {
      ierr = VecDotBegin(Fes[i],Fes[j],&jac->h[i + j*jac->n]);CHKERRQ(ierr);
    }
    ierr = VecDotBegin(Fes[i],F,&jac->g[i]);CHKERRQ(ierr);
  }

  for (i=0;i<jac->n;i++) {
    for (j=0;j<i+1;j++) {
      ierr = VecDotEnd(Fes[i],Fes[j],&jac->h[i + j*jac->n]);CHKERRQ(ierr);
      if (i == j) jac->fnorms[i] = PetscSqrtReal(PetscRealPart(jac->h[i + j*jac->n]));
    }
    ierr = VecDotEnd(Fes[i],F,&jac->g[i]);CHKERRQ(ierr);
  }

  ftf = (*fnorm)*(*fnorm);

  for (i=0; i<jac->n; i++) {
    for (j=i+1;j<jac->n;j++) {
      jac->h[i + j*jac->n] = jac->h[j + i*jac->n];
    }
  }

  for (i=0; i<jac->n; i++) {
    for (j=0; j<jac->n; j++) {
      jac->h[i + j*jac->n] = jac->h[i + j*jac->n] - jac->g[j] - jac->g[i] + ftf;
    }
    jac->beta[i] = ftf - jac->g[i];
  }

#if defined(PETSC_MISSING_LAPACK_GELSS)
  SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_SUP,"SNESCOMPOSITE with ADDITIVEOPTIMAL requires the LAPACK GELSS routine.");
#else
  jac->info  = 0;
  jac->rcond = -1.;
  ierr          = PetscFPTrapPush(PETSC_FP_TRAP_OFF);CHKERRQ(ierr);
#if defined(PETSC_USE_COMPLEX)
  PetscStackCall("LAPACKgelss",LAPACKgelss_(&jac->n,&jac->n,&jac->nrhs,jac->h,&jac->lda,jac->beta,&jac->lda,jac->s,&jac->rcond,&jac->rank,jac->work,&jac->lwork,jac->rwork,&jac->info));
#else
  PetscStackCall("LAPACKgelss",LAPACKgelss_(&jac->n,&jac->n,&jac->nrhs,jac->h,&jac->lda,jac->beta,&jac->lda,jac->s,&jac->rcond,&jac->rank,jac->work,&jac->lwork,&jac->info));
#endif
  ierr = PetscFPTrapPop();CHKERRQ(ierr);
  if (jac->info < 0) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_LIB,"Bad argument to GELSS");
  if (jac->info > 0) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_LIB,"SVD failed to converge");
#endif
  tot = 0.;
  total = 0.;
  for (i=0; i<jac->n; i++) {
    if (snes->errorifnotconverged && PetscIsInfOrNanScalar(jac->beta[i])) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_LIB,"SVD generated inconsistent output");
    ierr = PetscInfo2(snes,"%D: %g\n",i,(double)PetscRealPart(jac->beta[i]));CHKERRQ(ierr);
    tot += jac->beta[i];
    total += PetscAbsScalar(jac->beta[i]);
  }
  ierr = VecScale(X,(1. - tot));CHKERRQ(ierr);
  ierr = VecMAXPY(X,jac->n,jac->beta,Xes);CHKERRQ(ierr);
  ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);

  if (snes->xl && snes->xu) {
    ierr = SNESVIComputeInactiveSetFnorm(snes, F, X, fnorm);CHKERRQ(ierr);
  } else {
    ierr = VecNorm(F, NORM_2, fnorm);CHKERRQ(ierr);
  }

  /* take the minimum-normed candidate if it beats the combination by a factor of rtol or the combination has stagnated */
  min_fnorm = jac->fnorms[0];
  min_i     = 0;
  for (i=0; i<jac->n; i++) {
    if (jac->fnorms[i] < min_fnorm) {
      min_fnorm = jac->fnorms[i];
      min_i     = i;
    }
  }

  /* stagnation or divergence restart to the solution of the solver that failed the least */
  if (PetscRealPart(total) < jac->stol || min_fnorm*jac->rtol < *fnorm) {
    ierr = VecCopy(jac->Xes[min_i],X);CHKERRQ(ierr);
    ierr = VecCopy(jac->Fes[min_i],F);CHKERRQ(ierr);
    *fnorm = min_fnorm;
  }
  PetscFunctionReturn(0);
}
コード例 #8
0
static PetscErrorCode SNESCompositeApply_Additive(SNES snes,Vec X,Vec B,Vec F,PetscReal *fnorm)
{
  PetscErrorCode      ierr;
  SNES_Composite      *jac = (SNES_Composite*)snes->data;
  SNES_CompositeLink  next = jac->head;
  Vec                 Y,Xorig;
  SNESConvergedReason reason;

  PetscFunctionBegin;
  Y = snes->vec_sol_update;
  if (!jac->Xorig) {ierr = VecDuplicate(X,&jac->Xorig);CHKERRQ(ierr);}
  Xorig = jac->Xorig;
  ierr = VecCopy(X,Xorig);CHKERRQ(ierr);
  if (!next) SETERRQ(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE,"No composite SNESes supplied via SNESCompositeAddSNES() or -snes_composite_sneses");
  if (snes->normschedule == SNES_NORM_ALWAYS) {
    ierr = SNESSetInitialFunction(next->snes,F);CHKERRQ(ierr);
    while (next->next) {
      next = next->next;
      ierr = SNESSetInitialFunction(next->snes,F);CHKERRQ(ierr);
    }
  }
  next = jac->head;
  ierr = VecCopy(Xorig,Y);CHKERRQ(ierr);
  ierr = SNESSolve(next->snes,B,Y);CHKERRQ(ierr);
  ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
  if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
    jac->innerFailures++;
    if (jac->innerFailures >= snes->maxFailures) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
  }
  ierr = VecAXPY(Y,-1.0,Xorig);CHKERRQ(ierr);
  ierr = VecAXPY(X,next->dmp,Y);CHKERRQ(ierr);
  while (next->next) {
    next = next->next;
    ierr = VecCopy(Xorig,Y);CHKERRQ(ierr);
    ierr = SNESSolve(next->snes,B,Y);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(next->snes,&reason);CHKERRQ(ierr);
    if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
      jac->innerFailures++;
      if (jac->innerFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
    }
    ierr = VecAXPY(Y,-1.0,Xorig);CHKERRQ(ierr);
    ierr = VecAXPY(X,next->dmp,Y);CHKERRQ(ierr);
  }
  if (snes->normschedule == SNES_NORM_ALWAYS) {
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    if (fnorm) {
      if (snes->xl && snes->xu) {
        ierr = SNESVIComputeInactiveSetFnorm(snes, F, X, fnorm);CHKERRQ(ierr);
      } else {
        ierr = VecNorm(F, NORM_2, fnorm);CHKERRQ(ierr);
      }
      SNESCheckFunctionNorm(snes,*fnorm);
    }
  }
  PetscFunctionReturn(0);
}
コード例 #9
0
ファイル: anderson.c プロジェクト: pombredanne/petsc
PetscErrorCode SNESSolve_Anderson(SNES snes)
{
  SNES_NGMRES         *ngmres = (SNES_NGMRES*) snes->data;
  /* present solution, residual, and preconditioned residual */
  Vec                 X,F,B,D;
  /* candidate linear combination answers */
  Vec                 XA,FA,XM,FM;

  /* coefficients and RHS to the minimization problem */
  PetscReal           fnorm,fMnorm,fAnorm;
  PetscReal           xnorm,ynorm;
  PetscReal           dnorm,dminnorm=0.0,fminnorm;
  PetscInt            restart_count=0;
  PetscInt            k,k_restart,l,ivec;
  PetscBool           selectRestart;
  SNESConvergedReason reason;
  PetscErrorCode      ierr;

  PetscFunctionBegin;

  if (snes->xl || snes->xu || snes->ops->computevariablebounds) {
    SETERRQ1(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);
  }

  ierr = PetscCitationsRegister(SNESCitation,&SNEScite);CHKERRQ(ierr);
  /* variable initialization */
  snes->reason = SNES_CONVERGED_ITERATING;
  X            = snes->vec_sol;
  F            = snes->vec_func;
  B            = snes->vec_rhs;
  XA           = snes->vec_sol_update;
  FA           = snes->work[0];
  D            = snes->work[1];

  /* work for the line search */
  XM = snes->work[3];
  FM = snes->work[4];

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);

  /* initialization */

  /* r = F(x) */

  if (snes->pc && snes->pcside == PC_LEFT) {
    ierr = SNESApplyNPC(snes,X,NULL,F);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
  } else {
    if (!snes->vec_func_init_set) {
      ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    } else snes->vec_func_init_set = PETSC_FALSE;

    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);
    SNESCheckFunctionNorm(snes,fnorm);
  }
  fminnorm = fnorm;

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);
  ierr       = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  k_restart = 0;
  l         = 0;
  ivec      = 0;
  for (k=1; k < snes->max_its+1; k++) {
    /* select which vector of the stored subspace will be updated */
    if (snes->pc && snes->pcside == PC_RIGHT) {
      ierr = VecCopy(X,XM);CHKERRQ(ierr);
      ierr = SNESSetInitialFunction(snes->pc,F);CHKERRQ(ierr);

      ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,XM,B,0);CHKERRQ(ierr);
      ierr = SNESSolve(snes->pc,B,XM);CHKERRQ(ierr);
      ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,XM,B,0);CHKERRQ(ierr);

      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0 && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
      ierr = SNESGetNPCFunction(snes,FM,&fMnorm);CHKERRQ(ierr);
      if (ngmres->andersonBeta != 1.0) {
        VecAXPBY(XM,(1.0 - ngmres->andersonBeta),ngmres->andersonBeta,X);CHKERRQ(ierr);
      }
    } else {
      ierr   = VecCopy(F,FM);CHKERRQ(ierr);
      ierr   = VecCopy(X,XM);CHKERRQ(ierr);
      ierr   = VecAXPY(XM,-ngmres->andersonBeta,FM);CHKERRQ(ierr);
      fMnorm = fnorm;
    }

    ierr = SNESNGMRESFormCombinedSolution_Private(snes,ivec,l,XM,FM,fMnorm,X,XA,FA);CHKERRQ(ierr);
    ivec = k_restart % ngmres->msize;
    if (ngmres->restart_type == SNES_NGMRES_RESTART_DIFFERENCE) {
      ierr = SNESNGMRESNorms_Private(snes,l,X,F,XM,FM,XA,FA,D,&dnorm,&dminnorm,NULL,NULL,NULL,&xnorm,&fAnorm,&ynorm);CHKERRQ(ierr);
      ierr = SNESNGMRESSelectRestart_Private(snes,l,fMnorm,fnorm,dnorm,fminnorm,dminnorm,&selectRestart);CHKERRQ(ierr);
      /* if the restart conditions persist for more than restart_it iterations, restart. */
      if (selectRestart) restart_count++;
      else restart_count = 0;
    } else if (ngmres->restart_type == SNES_NGMRES_RESTART_PERIODIC) {
      ierr = SNESNGMRESNorms_Private(snes,l,X,F,XM,FM,XA,FA,D,NULL,NULL,NULL,NULL,NULL,&xnorm,&fAnorm,&ynorm);CHKERRQ(ierr);
      if (k_restart > ngmres->restart_periodic) {
        if (ngmres->monitor) ierr = PetscViewerASCIIPrintf(ngmres->monitor,"periodic restart after %D iterations\n",k_restart);CHKERRQ(ierr);
        restart_count = ngmres->restart_it;
      }
    } else {
      ierr = SNESNGMRESNorms_Private(snes,l,X,F,XM,FM,XA,FA,D,NULL,NULL,NULL,NULL,NULL,&xnorm,&fAnorm,&ynorm);CHKERRQ(ierr);
    }
    /* restart after restart conditions have persisted for a fixed number of iterations */
    if (restart_count >= ngmres->restart_it) {
      if (ngmres->monitor) {
        ierr = PetscViewerASCIIPrintf(ngmres->monitor,"Restarted at iteration %d\n",k_restart);CHKERRQ(ierr);
      }
      restart_count = 0;
      k_restart     = 0;
      l             = 0;
      ivec          = 0;
    } else {
      if (l < ngmres->msize) l++;
      k_restart++;
      ierr = SNESNGMRESUpdateSubspace_Private(snes,ivec,l,FM,fnorm,XM);CHKERRQ(ierr);
    }

    fnorm = fAnorm;
    if (fminnorm > fnorm) fminnorm = fnorm;

    ierr = VecCopy(XA,X);CHKERRQ(ierr);
    ierr = VecCopy(FA,F);CHKERRQ(ierr);

    ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
    snes->iter = k;
    snes->norm = fnorm;
    ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
    ierr       = SNESLogConvergenceHistory(snes,snes->norm,snes->iter);CHKERRQ(ierr);
    ierr       = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    ierr       = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) PetscFunctionReturn(0);
  }
  snes->reason = SNES_DIVERGED_MAX_IT;
  PetscFunctionReturn(0);
}
コード例 #10
0
ファイル: snesrichardson.c プロジェクト: feelpp/debian-petsc
PetscErrorCode SNESSolve_NRichardson(SNES snes)
{
  Vec                 X, Y, F;
  PetscReal           xnorm, fnorm, ynorm;
  PetscInt            maxits, i;
  PetscErrorCode      ierr;
  PetscBool           lsSuccess;
  SNESConvergedReason reason;

  PetscFunctionBegin;
  snes->reason = SNES_CONVERGED_ITERATING;

  maxits = snes->max_its;        /* maximum number of iterations */
  X      = snes->vec_sol;        /* X^n */
  Y      = snes->vec_sol_update; /* \tilde X */
  F      = snes->vec_func;       /* residual vector */

  ierr       = PetscObjectAMSTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.;
  ierr       = PetscObjectAMSGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  if (!snes->vec_func_init_set) {
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    if (snes->domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
  } else snes->vec_func_init_set = PETSC_FALSE;

  if (!snes->norm_init_set) {
    ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr); /* fnorm <- ||F||  */
    if (PetscIsInfOrNanReal(fnorm)) {
      snes->reason = SNES_DIVERGED_FNORM_NAN;
      PetscFunctionReturn(0);
    }
  } else {
    fnorm               = snes->norm_init;
    snes->norm_init_set = PETSC_FALSE;
  }

  ierr       = PetscObjectAMSTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectAMSGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* set parameter for default relative tolerance convergence test */
  snes->ttol = fnorm*snes->rtol;
  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  for (i = 0; i < maxits; i++) {
    lsSuccess = PETSC_TRUE;
    /* Call general purpose update function */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }
    if (snes->pc && snes->pcside == PC_RIGHT) {
      ierr = VecCopy(X,Y);CHKERRQ(ierr);
      ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
      ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);CHKERRQ(ierr);
      ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,Y,snes->vec_rhs,0);CHKERRQ(ierr);
      ierr = SNESSolve(snes->pc, snes->vec_rhs, Y);CHKERRQ(ierr);
      ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,Y,snes->vec_rhs,0);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
      ierr = VecAYPX(Y,-1.0,X);CHKERRQ(ierr);
    } else {
      ierr = VecCopy(F,Y);CHKERRQ(ierr);
    }
    ierr = SNESLineSearchApply(snes->linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    ierr = SNESLineSearchGetNorms(snes->linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    ierr = SNESLineSearchGetSuccess(snes->linesearch, &lsSuccess);CHKERRQ(ierr);
    if (!lsSuccess) {
      if (++snes->numFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        break;
      }
    }
    if (snes->nfuncs >= snes->max_funcs) {
      snes->reason = SNES_DIVERGED_FUNCTION_COUNT;
      break;
    }
    if (snes->domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
    /* Monitor convergence */
    ierr       = PetscObjectAMSTakeAccess((PetscObject)snes);CHKERRQ(ierr);
    snes->iter = i+1;
    snes->norm = fnorm;
    ierr       = PetscObjectAMSGrantAccess((PetscObject)snes);CHKERRQ(ierr);
    ierr       = SNESLogConvergenceHistory(snes,snes->norm,0);CHKERRQ(ierr);
    ierr       = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* Test for convergence */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) break;
  }
  if (i == maxits) {
    ierr = PetscInfo1(snes, "Maximum number of iterations has been reached: %D\n", maxits);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}
コード例 #11
0
ファイル: ls.c プロジェクト: ziolai/petsc
PetscErrorCode SNESSolve_NEWTONLS(SNES snes)
{
  PetscErrorCode       ierr;
  PetscInt             maxits,i,lits;
  SNESLineSearchReason lssucceed;
  PetscReal            fnorm,gnorm,xnorm,ynorm;
  Vec                  Y,X,F;
  SNESLineSearch       linesearch;
  SNESConvergedReason  reason;

  PetscFunctionBegin;
  if (snes->xl || snes->xu || snes->ops->computevariablebounds) SETERRQ1(PetscObjectComm((PetscObject)snes),PETSC_ERR_ARG_WRONGSTATE, "SNES solver %s does not support bounds", ((PetscObject)snes)->type_name);

  snes->numFailures            = 0;
  snes->numLinearSolveFailures = 0;
  snes->reason                 = SNES_CONVERGED_ITERATING;

  maxits = snes->max_its;               /* maximum number of iterations */
  X      = snes->vec_sol;               /* solution vector */
  F      = snes->vec_func;              /* residual vector */
  Y      = snes->vec_sol_update;        /* newton step */

  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.0;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESGetLineSearch(snes, &linesearch);CHKERRQ(ierr);

  /* compute the preconditioned function first in the case of left preconditioning with preconditioned function */
  if (snes->pc && snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_PRECONDITIONED) {
    ierr = SNESApplyNPC(snes,X,NULL,F);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }

    ierr = VecNormBegin(F,NORM_2,&fnorm);CHKERRQ(ierr);
    ierr = VecNormEnd(F,NORM_2,&fnorm);CHKERRQ(ierr);
  } else {
    if (!snes->vec_func_init_set) {
      ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    } else snes->vec_func_init_set = PETSC_FALSE;
  }

  ierr = VecNorm(F,NORM_2,&fnorm);CHKERRQ(ierr);        /* fnorm <- ||F||  */
  SNESCheckFunctionNorm(snes,fnorm);
  ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
  ierr       = SNESLogConvergenceHistory(snes,fnorm,0);CHKERRQ(ierr);
  ierr       = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  for (i=0; i<maxits; i++) {

    /* Call general purpose update function */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }

    /* apply the nonlinear preconditioner */
    if (snes->pc) {
      if (snes->pcside == PC_RIGHT) {
        ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
        ierr = PetscLogEventBegin(SNES_NPCSolve,snes->pc,X,snes->vec_rhs,0);CHKERRQ(ierr);
        ierr = SNESSolve(snes->pc, snes->vec_rhs, X);CHKERRQ(ierr);
        ierr = PetscLogEventEnd(SNES_NPCSolve,snes->pc,X,snes->vec_rhs,0);CHKERRQ(ierr);
        ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
        if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
          snes->reason = SNES_DIVERGED_INNER;
          PetscFunctionReturn(0);
        }
        ierr = SNESGetNPCFunction(snes,F,&fnorm);CHKERRQ(ierr);
      } else if (snes->pcside == PC_LEFT && snes->functype == SNES_FUNCTION_UNPRECONDITIONED) {
        ierr = SNESApplyNPC(snes,X,F,F);CHKERRQ(ierr);
        ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
        if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
          snes->reason = SNES_DIVERGED_INNER;
          PetscFunctionReturn(0);
        }
      }
    }

    /* Solve J Y = F, where J is Jacobian matrix */
    ierr = SNESComputeJacobian(snes,X,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre);CHKERRQ(ierr);
    ierr = KSPSolve(snes->ksp,F,Y);CHKERRQ(ierr);
    SNESCheckKSPSolve(snes);
    ierr              = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
    snes->linear_its += lits;
    ierr              = PetscInfo2(snes,"iter=%D, linear solve iterations=%D\n",snes->iter,lits);CHKERRQ(ierr);

    if (PetscLogPrintInfo) {
      ierr = SNESNEWTONLSCheckResidual_Private(snes,snes->jacobian,F,Y);CHKERRQ(ierr);
    }

    /* Compute a (scaled) negative update in the line search routine:
         X <- X - lambda*Y
       and evaluate F = function(X) (depends on the line search).
    */
    gnorm = fnorm;
    ierr  = SNESLineSearchApply(linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    ierr  = SNESLineSearchGetReason(linesearch, &lssucceed);CHKERRQ(ierr);
    ierr  = SNESLineSearchGetNorms(linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    ierr  = PetscInfo4(snes,"fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n",(double)gnorm,(double)fnorm,(double)ynorm,(int)lssucceed);CHKERRQ(ierr);
    if (snes->reason == SNES_DIVERGED_FUNCTION_COUNT) break;
    SNESCheckFunctionNorm(snes,fnorm);
    if (lssucceed) {
      if (snes->stol*xnorm > ynorm) {
        snes->reason = SNES_CONVERGED_SNORM_RELATIVE;
        PetscFunctionReturn(0);
      }
      if (++snes->numFailures >= snes->maxFailures) {
        PetscBool ismin;
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        ierr         = SNESNEWTONLSCheckLocalMin_Private(snes,snes->jacobian,F,fnorm,&ismin);CHKERRQ(ierr);
        if (ismin) snes->reason = SNES_DIVERGED_LOCAL_MIN;
        break;
      }
    }
    /* Monitor convergence */
    ierr       = PetscObjectSAWsTakeAccess((PetscObject)snes);CHKERRQ(ierr);
    snes->iter = i+1;
    snes->norm = fnorm;
    ierr       = PetscObjectSAWsGrantAccess((PetscObject)snes);CHKERRQ(ierr);
    ierr       = SNESLogConvergenceHistory(snes,snes->norm,lits);CHKERRQ(ierr);
    ierr       = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* Test for convergence */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) break;
  }
  if (i == maxits) {
    ierr = PetscInfo1(snes,"Maximum number of iterations has been reached: %D\n",maxits);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}
コード例 #12
0
ファイル: snesncg.c プロジェクト: erdc-cm/petsc-dev
EXTERN_C_END

/*
  SNESSolve_NCG - Solves a nonlinear system with the Nonlinear Conjugate Gradient method.

  Input Parameters:
. snes - the SNES context

  Output Parameter:
. outits - number of iterations until termination

  Application Interface Routine: SNESSolve()
*/
#undef __FUNCT__
#define __FUNCT__ "SNESSolve_NCG"
PetscErrorCode SNESSolve_NCG(SNES snes)
{
    SNES_NCG            *ncg = (SNES_NCG *)snes->data;
    Vec                 X, dX, lX, F, B, Fold;
    PetscReal           fnorm, ynorm, xnorm, beta = 0.0;
    PetscScalar         dXdotF, dXolddotFold, dXdotFold, lXdotF, lXdotFold;
    PetscInt            maxits, i;
    PetscErrorCode      ierr;
    SNESConvergedReason reason;
    PetscBool           lsSuccess = PETSC_TRUE;
    SNESLineSearch     linesearch;

    PetscFunctionBegin;
    snes->reason = SNES_CONVERGED_ITERATING;

    maxits = snes->max_its;            /* maximum number of iterations */
    X      = snes->vec_sol;            /* X^n */
    Fold   = snes->work[0];            /* The previous iterate of X */
    dX     = snes->work[1];            /* the preconditioned direction */
    lX     = snes->vec_sol_update;     /* the conjugate direction */
    F      = snes->vec_func;           /* residual vector */
    B      = snes->vec_rhs;            /* the right hand side */

    ierr = SNESGetSNESLineSearch(snes, &linesearch);
    CHKERRQ(ierr);

    ierr = PetscObjectTakeAccess(snes);
    CHKERRQ(ierr);
    snes->iter = 0;
    snes->norm = 0.;
    ierr = PetscObjectGrantAccess(snes);
    CHKERRQ(ierr);

    /* compute the initial function and preconditioned update dX */
    if (!snes->vec_func_init_set) {
        ierr = SNESComputeFunction(snes,X,F);
        CHKERRQ(ierr);
        if (snes->domainerror) {
            snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
            PetscFunctionReturn(0);
        }
    } else {
        snes->vec_func_init_set = PETSC_FALSE;
    }
    if (!snes->norm_init_set) {
        /* convergence test */
        ierr = VecNorm(F, NORM_2, &fnorm);
        CHKERRQ(ierr); /* fnorm <- ||F||  */
        if (PetscIsInfOrNanReal(fnorm)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
    } else {
        fnorm = snes->norm_init;
        snes->norm_init_set = PETSC_FALSE;
    }
    ierr = PetscObjectTakeAccess(snes);
    CHKERRQ(ierr);
    snes->norm = fnorm;
    ierr = PetscObjectGrantAccess(snes);
    CHKERRQ(ierr);
    SNESLogConvHistory(snes,fnorm,0);
    ierr = SNESMonitor(snes,0,fnorm);
    CHKERRQ(ierr);

    /* set parameter for default relative tolerance convergence test */
    snes->ttol = fnorm*snes->rtol;
    /* test convergence */
    ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);
    CHKERRQ(ierr);
    if (snes->reason) PetscFunctionReturn(0);

    /* Call general purpose update function */
    if (snes->ops->update) {
        ierr = (*snes->ops->update)(snes, snes->iter);
        CHKERRQ(ierr);
    }

    /* first update -- just use the (preconditioned) residual direction for the initial conjugate direction */

    if (snes->pc && snes->pcside == PC_RIGHT) {
        ierr = VecCopy(X, dX);
        CHKERRQ(ierr);
        ierr = SNESSetInitialFunction(snes->pc, F);
        CHKERRQ(ierr);
        ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);
        CHKERRQ(ierr);
        ierr = SNESSolve(snes->pc, B, dX);
        CHKERRQ(ierr);
        ierr = SNESGetConvergedReason(snes->pc,&reason);
        CHKERRQ(ierr);
        if (reason < 0 && (reason != SNES_DIVERGED_MAX_IT)) {
            snes->reason = SNES_DIVERGED_INNER;
            PetscFunctionReturn(0);
        }
        ierr = VecAYPX(dX,-1.0,X);
        CHKERRQ(ierr);
    } else {
        ierr = VecCopy(F, dX);
        CHKERRQ(ierr);
    }
    ierr = VecCopy(dX, lX);
    CHKERRQ(ierr);
    ierr = VecDot(F, dX, &dXdotF);
    CHKERRQ(ierr);
    /*
    } else {
      ierr = SNESNCGComputeYtJtF_Private(snes, X, F, dX, W, G, &dXdotF);CHKERRQ(ierr);
    }
     */
    for (i = 1; i < maxits + 1; i++) {
        lsSuccess = PETSC_TRUE;
        /* some update types require the old update direction or conjugate direction */
        if (ncg->type != SNES_NCG_FR) {
            ierr = VecCopy(F, Fold);
            CHKERRQ(ierr);
        }
        ierr = SNESLineSearchApply(linesearch, X, F, &fnorm, lX);
        CHKERRQ(ierr);
        ierr = SNESLineSearchGetSuccess(linesearch, &lsSuccess);
        CHKERRQ(ierr);
        if (!lsSuccess) {
            if (++snes->numFailures >= snes->maxFailures) {
                snes->reason = SNES_DIVERGED_LINE_SEARCH;
                PetscFunctionReturn(0);
            }
        }
        if (snes->nfuncs >= snes->max_funcs) {
            snes->reason = SNES_DIVERGED_FUNCTION_COUNT;
            PetscFunctionReturn(0);
        }
        if (snes->domainerror) {
            snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
            PetscFunctionReturn(0);
        }
        ierr = SNESLineSearchGetNorms(linesearch, &xnorm, &fnorm, &ynorm);
        CHKERRQ(ierr);
        /* Monitor convergence */
        ierr = PetscObjectTakeAccess(snes);
        CHKERRQ(ierr);
        snes->iter = i;
        snes->norm = fnorm;
        ierr = PetscObjectGrantAccess(snes);
        CHKERRQ(ierr);
        SNESLogConvHistory(snes,snes->norm,0);
        ierr = SNESMonitor(snes,snes->iter,snes->norm);
        CHKERRQ(ierr);

        /* Test for convergence */
        ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);
        CHKERRQ(ierr);
        if (snes->reason) PetscFunctionReturn(0);

        /* Call general purpose update function */
        if (snes->ops->update) {
            ierr = (*snes->ops->update)(snes, snes->iter);
            CHKERRQ(ierr);
        }
        if (snes->pc && snes->pcside == PC_RIGHT) {
            ierr = VecCopy(X,dX);
            CHKERRQ(ierr);
            ierr = SNESSetInitialFunction(snes->pc, F);
            CHKERRQ(ierr);
            ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);
            CHKERRQ(ierr);
            ierr = SNESSolve(snes->pc, B, dX);
            CHKERRQ(ierr);
            ierr = SNESGetConvergedReason(snes->pc,&reason);
            CHKERRQ(ierr);
            if (reason < 0 && (reason != SNES_DIVERGED_MAX_IT)) {
                snes->reason = SNES_DIVERGED_INNER;
                PetscFunctionReturn(0);
            }
            ierr = VecAYPX(dX,-1.0,X);
            CHKERRQ(ierr);
        } else {
            ierr = VecCopy(F, dX);
            CHKERRQ(ierr);
        }

        /* compute the conjugate direction lX = dX + beta*lX with beta = ((dX, dX) / (dX_old, dX_old) (Fletcher-Reeves update)*/
        switch(ncg->type) {
        case SNES_NCG_FR: /* Fletcher-Reeves */
            dXolddotFold = dXdotF;
            ierr = VecDot(dX, dX, &dXdotF);
            CHKERRQ(ierr);
            beta = PetscRealPart(dXdotF / dXolddotFold);
            break;
        case SNES_NCG_PRP: /* Polak-Ribiere-Poylak */
            dXolddotFold = dXdotF;
            ierr = VecDotBegin(F, dX, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(Fold, dX, &dXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotEnd(F, dX, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(Fold, dX, &dXdotFold);
            CHKERRQ(ierr);
            beta = PetscRealPart(((dXdotF - dXdotFold) / dXolddotFold));
            if (beta < 0.0) beta = 0.0; /* restart */
            break;
        case SNES_NCG_HS: /* Hestenes-Stiefel */
            ierr = VecDotBegin(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(dX, Fold, &dXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotBegin(lX, F, &lXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotEnd(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(dX, Fold, &dXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotEnd(lX, F, &lXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            beta = PetscRealPart((dXdotF - dXdotFold) / (lXdotF - lXdotFold));
            break;
        case SNES_NCG_DY: /* Dai-Yuan */
            ierr = VecDotBegin(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(lX, F, &lXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotEnd(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(lX, F, &lXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            beta = PetscRealPart(dXdotF / (lXdotFold - lXdotF));
            CHKERRQ(ierr);
            break;
        case SNES_NCG_CD: /* Conjugate Descent */
            ierr = VecDotBegin(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotBegin(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            ierr = VecDotEnd(dX, F, &dXdotF);
            CHKERRQ(ierr);
            ierr = VecDotEnd(lX, Fold, &lXdotFold);
            CHKERRQ(ierr);
            beta = PetscRealPart(dXdotF / lXdotFold);
            CHKERRQ(ierr);
            break;
        }
        if (ncg->monitor) {
            ierr = PetscViewerASCIIPrintf(ncg->monitor, "beta = %e\n", beta);
            CHKERRQ(ierr);
        }
        ierr = VecAYPX(lX, beta, dX);
        CHKERRQ(ierr);
    }
    ierr = PetscInfo1(snes, "Maximum number of iterations has been reached: %D\n", maxits);
    CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
    PetscFunctionReturn(0);
}
コード例 #13
0
ファイル: ls.c プロジェクト: erdc-cm/petsc-dev
PetscErrorCode SNESSolve_NEWTONLS(SNES snes)
{
  PetscErrorCode      ierr;
  PetscInt            maxits,i,lits;
  PetscBool           lssucceed;
  MatStructure        flg = DIFFERENT_NONZERO_PATTERN;
  PetscReal           fnorm,gnorm,xnorm,ynorm;
  Vec                 Y,X,F,G,W,FPC;
  KSPConvergedReason  kspreason;
  PetscBool           domainerror;
  SNESLineSearch      linesearch;
  SNESConvergedReason reason;

  PetscFunctionBegin;
  snes->numFailures            = 0;
  snes->numLinearSolveFailures = 0;
  snes->reason                 = SNES_CONVERGED_ITERATING;

  maxits        = snes->max_its;        /* maximum number of iterations */
  X             = snes->vec_sol;        /* solution vector */
  F             = snes->vec_func;       /* residual vector */
  Y             = snes->vec_sol_update; /* newton step */
  G             = snes->work[0];
  W             = snes->work[1];

  ierr = PetscObjectTakeAccess(snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.0;
  ierr = PetscObjectGrantAccess(snes);CHKERRQ(ierr);
  ierr = SNESGetSNESLineSearch(snes, &linesearch);CHKERRQ(ierr);
  if (!snes->vec_func_init_set) {
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    ierr = SNESGetFunctionDomainError(snes, &domainerror);CHKERRQ(ierr);
    if (domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
  } else {
    snes->vec_func_init_set = PETSC_FALSE;
  }
  if (!snes->norm_init_set) {
    ierr = VecNormBegin(F,NORM_2,&fnorm);CHKERRQ(ierr);        /* fnorm <- ||F||  */
    ierr = VecNormEnd(F,NORM_2,&fnorm);CHKERRQ(ierr);
    if (PetscIsInfOrNanReal(fnorm)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FP,"User provided compute function generated a Not-a-Number");
  } else {
    fnorm = snes->norm_init;
    snes->norm_init_set = PETSC_FALSE;
  }
  ierr = PetscObjectTakeAccess(snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr = PetscObjectGrantAccess(snes);CHKERRQ(ierr);
  SNESLogConvHistory(snes,fnorm,0);
  ierr = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* set parameter for default relative tolerance convergence test */
  snes->ttol = fnorm*snes->rtol;
  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  for (i=0; i<maxits; i++) {

    /* Call general purpose update function */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }

    /* apply the nonlinear preconditioner if it's right preconditioned */
    if (snes->pc && snes->pcside == PC_RIGHT) {
      ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
      ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);CHKERRQ(ierr);
      ierr = SNESSolve(snes->pc, snes->vec_rhs, X);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0  && reason != SNES_DIVERGED_MAX_IT) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
      ierr = SNESGetFunction(snes->pc, &FPC, PETSC_NULL, PETSC_NULL);CHKERRQ(ierr);
      ierr = VecCopy(FPC, F);CHKERRQ(ierr);
      ierr = SNESGetFunctionNorm(snes->pc, &fnorm);CHKERRQ(ierr);
    }

    /* Solve J Y = F, where J is Jacobian matrix */
    ierr = SNESComputeJacobian(snes,X,&snes->jacobian,&snes->jacobian_pre,&flg);CHKERRQ(ierr);
    ierr = KSPSetOperators(snes->ksp,snes->jacobian,snes->jacobian_pre,flg);CHKERRQ(ierr);
    ierr = SNES_KSPSolve(snes,snes->ksp,F,Y);CHKERRQ(ierr);
    ierr = KSPGetConvergedReason(snes->ksp,&kspreason);CHKERRQ(ierr);
    if (kspreason < 0) {
      if (++snes->numLinearSolveFailures >= snes->maxLinearSolveFailures) {
        ierr = PetscInfo2(snes,"iter=%D, number linear solve failures %D greater than current SNES allowed, stopping solve\n",snes->iter,snes->numLinearSolveFailures);CHKERRQ(ierr);
        snes->reason = SNES_DIVERGED_LINEAR_SOLVE;
        break;
      }
    }
    ierr = KSPGetIterationNumber(snes->ksp,&lits);CHKERRQ(ierr);
    snes->linear_its += lits;
    ierr = PetscInfo2(snes,"iter=%D, linear solve iterations=%D\n",snes->iter,lits);CHKERRQ(ierr);

    if (PetscLogPrintInfo){
      ierr = SNESNEWTONLSCheckResidual_Private(snes,snes->jacobian,F,Y,G,W);CHKERRQ(ierr);
    }

    /* Compute a (scaled) negative update in the line search routine:
         X <- X - lambda*Y
       and evaluate F = function(X) (depends on the line search).
    */
    gnorm = fnorm;
    ierr = SNESLineSearchApply(linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    ierr = SNESLineSearchGetSuccess(linesearch, &lssucceed);CHKERRQ(ierr);
    ierr = SNESLineSearchGetNorms(linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    ierr = PetscInfo4(snes,"fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n",(double)gnorm,(double)fnorm,(double)ynorm,(int)lssucceed);CHKERRQ(ierr);
    if (snes->reason == SNES_DIVERGED_FUNCTION_COUNT) break;
    ierr = SNESGetFunctionDomainError(snes, &domainerror);CHKERRQ(ierr);
    if (domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
    if (!lssucceed) {
      if (snes->stol*xnorm > ynorm) {
        snes->reason = SNES_CONVERGED_SNORM_RELATIVE;
        PetscFunctionReturn(0);
      }
      if (++snes->numFailures >= snes->maxFailures) {
        PetscBool  ismin;
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        ierr = SNESNEWTONLSCheckLocalMin_Private(snes,snes->jacobian,F,W,fnorm,&ismin);CHKERRQ(ierr);
        if (ismin) snes->reason = SNES_DIVERGED_LOCAL_MIN;
        break;
      }
    }
    /* Monitor convergence */
    ierr = PetscObjectTakeAccess(snes);CHKERRQ(ierr);
    snes->iter = i+1;
    snes->norm = fnorm;
    ierr = PetscObjectGrantAccess(snes);CHKERRQ(ierr);
    SNESLogConvHistory(snes,snes->norm,lits);
    ierr = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* Test for convergence */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) break;
  }
  if (i == maxits) {
    ierr = PetscInfo1(snes,"Maximum number of iterations has been reached: %D\n",maxits);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}
コード例 #14
0
ファイル: qn.c プロジェクト: erdc-cm/petsc-dev
static PetscErrorCode SNESSolve_QN(SNES snes)
{
  PetscErrorCode      ierr;
  SNES_QN             *qn = (SNES_QN*) snes->data;
  Vec                 X,Xold;
  Vec                 F,B;
  Vec                 Y,FPC,D,Dold;
  SNESConvergedReason reason;
  PetscInt            i, i_r;
  PetscReal           fnorm,xnorm,ynorm,gnorm;
  PetscBool           lssucceed,powell,periodic;
  PetscScalar         DolddotD,DolddotDold,DdotD,YdotD;
  MatStructure        flg = DIFFERENT_NONZERO_PATTERN;

  /* basically just a regular newton's method except for the application of the jacobian */
  PetscFunctionBegin;

  F             = snes->vec_func;       /* residual vector */
  Y             = snes->vec_sol_update; /* search direction generated by J^-1D*/
  B             = snes->vec_rhs;

  X             = snes->vec_sol;        /* solution vector */
  Xold          = snes->work[0];

  /* directions generated by the preconditioned problem with F_pre = F or x - M(x, b) */
  D             = snes->work[1];
  Dold          = snes->work[2];

  snes->reason = SNES_CONVERGED_ITERATING;

  ierr = PetscObjectTakeAccess(snes);CHKERRQ(ierr);
  snes->iter = 0;
  snes->norm = 0.;
  ierr = PetscObjectGrantAccess(snes);CHKERRQ(ierr);
  if (!snes->vec_func_init_set){
    ierr = SNESComputeFunction(snes,X,F);CHKERRQ(ierr);
    if (snes->domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
    }
  } else {
    snes->vec_func_init_set = PETSC_FALSE;
  }

  if (!snes->norm_init_set) {
    ierr = VecNorm(F, NORM_2, &fnorm);CHKERRQ(ierr); /* fnorm <- ||F||  */
    if (PetscIsInfOrNanReal(fnorm)) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
  } else {
    fnorm = snes->norm_init;
    snes->norm_init_set = PETSC_FALSE;
  }

  ierr = PetscObjectTakeAccess(snes);CHKERRQ(ierr);
  snes->norm = fnorm;
  ierr = PetscObjectGrantAccess(snes);CHKERRQ(ierr);
  SNESLogConvHistory(snes,fnorm,0);
  ierr = SNESMonitor(snes,0,fnorm);CHKERRQ(ierr);

  /* set parameter for default relative tolerance convergence test */
   snes->ttol = fnorm*snes->rtol;
  /* test convergence */
  ierr = (*snes->ops->converged)(snes,0,0.0,0.0,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
  if (snes->reason) PetscFunctionReturn(0);

  /* composed solve */
  if (snes->pc && snes->pcside == PC_RIGHT) {
    ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
    ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);CHKERRQ(ierr);
    ierr = SNESSolve(snes->pc, B, X);CHKERRQ(ierr);
    ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
    if (reason < 0 && (reason != SNES_DIVERGED_MAX_IT)) {
      snes->reason = SNES_DIVERGED_INNER;
      PetscFunctionReturn(0);
    }
    ierr = SNESGetFunction(snes->pc, &FPC, PETSC_NULL, PETSC_NULL);CHKERRQ(ierr);
    ierr = VecCopy(FPC, F);CHKERRQ(ierr);
    ierr = SNESGetFunctionNorm(snes->pc, &fnorm);CHKERRQ(ierr);
    ierr = VecCopy(F, Y);CHKERRQ(ierr);
  } else {
    ierr = VecCopy(F, Y);CHKERRQ(ierr);
  }
  ierr = VecCopy(Y, D);CHKERRQ(ierr);

  /* scale the initial update */
  if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
    ierr = SNESComputeJacobian(snes,X,&snes->jacobian,&snes->jacobian_pre,&flg);CHKERRQ(ierr);
  }

  for (i = 0, i_r = 0; i < snes->max_its; i++, i_r++) {
    switch(qn->type) {
    case SNES_QN_BADBROYDEN:
      ierr = SNESQNApply_BadBroyden(snes,i_r,Y,X,Xold,D,Dold);CHKERRQ(ierr);
      break;
    case SNES_QN_BROYDEN:
      ierr = SNESQNApply_Broyden(snes,i_r,Y,X,Xold,D,Dold);CHKERRQ(ierr);
      break;
    case SNES_QN_LBFGS:
      SNESQNApply_LBFGS(snes,i_r,Y,X,Xold,D,Dold);CHKERRQ(ierr);
      break;
    }
    /* line search for lambda */
    ynorm = 1; gnorm = fnorm;
    ierr = VecCopy(D, Dold);CHKERRQ(ierr);
    ierr = VecCopy(X, Xold);CHKERRQ(ierr);
    ierr = SNESLineSearchApply(snes->linesearch, X, F, &fnorm, Y);CHKERRQ(ierr);
    if (snes->reason == SNES_DIVERGED_FUNCTION_COUNT) break;
    if (snes->domainerror) {
      snes->reason = SNES_DIVERGED_FUNCTION_DOMAIN;
      PetscFunctionReturn(0);
      }
    ierr = SNESLineSearchGetSuccess(snes->linesearch, &lssucceed);CHKERRQ(ierr);
    if (!lssucceed) {
      if (++snes->numFailures >= snes->maxFailures) {
        snes->reason = SNES_DIVERGED_LINE_SEARCH;
        break;
      }
    }
    ierr = SNESLineSearchGetNorms(snes->linesearch, &xnorm, &fnorm, &ynorm);CHKERRQ(ierr);
    if (qn->scale_type == SNES_QN_SCALE_LINESEARCH) {
      ierr = SNESLineSearchGetLambda(snes->linesearch, &qn->scaling);CHKERRQ(ierr);
    }

    /* convergence monitoring */
    ierr = PetscInfo4(snes,"fnorm=%18.16e, gnorm=%18.16e, ynorm=%18.16e, lssucceed=%d\n",(double)fnorm,(double)gnorm,(double)ynorm,(int)lssucceed);CHKERRQ(ierr);

    ierr = SNESSetIterationNumber(snes, i+1);CHKERRQ(ierr);
    ierr = SNESSetFunctionNorm(snes, fnorm);CHKERRQ(ierr);

    SNESLogConvHistory(snes,snes->norm,snes->iter);
    ierr = SNESMonitor(snes,snes->iter,snes->norm);CHKERRQ(ierr);
    /* set parameter for default relative tolerance convergence test */
    ierr = (*snes->ops->converged)(snes,snes->iter,xnorm,ynorm,fnorm,&snes->reason,snes->cnvP);CHKERRQ(ierr);
    if (snes->reason) PetscFunctionReturn(0);

    if (snes->pc && snes->pcside == PC_RIGHT) {
      ierr = SNESSetInitialFunction(snes->pc, F);CHKERRQ(ierr);
      ierr = SNESSetInitialFunctionNorm(snes->pc, fnorm);CHKERRQ(ierr);
      ierr = SNESSolve(snes->pc, B, X);CHKERRQ(ierr);
      ierr = SNESGetConvergedReason(snes->pc,&reason);CHKERRQ(ierr);
      if (reason < 0 && (reason != SNES_DIVERGED_MAX_IT)) {
        snes->reason = SNES_DIVERGED_INNER;
        PetscFunctionReturn(0);
      }
      ierr = SNESGetFunction(snes->pc, &FPC, PETSC_NULL, PETSC_NULL);CHKERRQ(ierr);
      ierr = VecCopy(FPC, F);CHKERRQ(ierr);
      ierr = SNESGetFunctionNorm(snes->pc, &fnorm);CHKERRQ(ierr);
      ierr = VecCopy(F, D);CHKERRQ(ierr);
    } else {
      ierr = VecCopy(F, D);CHKERRQ(ierr);
    }

    powell = PETSC_FALSE;
    if (qn->restart_type == SNES_QN_RESTART_POWELL) {
      /* check restart by Powell's Criterion: |F^T H_0 Fold| > 0.2 * |Fold^T H_0 Fold| */
      ierr = VecDotBegin(Dold, Dold, &DolddotDold);CHKERRQ(ierr);
      ierr = VecDotBegin(Dold, D, &DolddotD);CHKERRQ(ierr);
      ierr = VecDotBegin(D, D, &DdotD);CHKERRQ(ierr);
      ierr = VecDotBegin(Y, D, &YdotD);CHKERRQ(ierr);
      ierr = VecDotEnd(Dold, Dold, &DolddotDold);CHKERRQ(ierr);
      ierr = VecDotEnd(Dold, D, &DolddotD);CHKERRQ(ierr);
      ierr = VecDotEnd(D, D, &DdotD);CHKERRQ(ierr);
      ierr = VecDotEnd(Y, D, &YdotD);CHKERRQ(ierr);
      if (PetscAbs(PetscRealPart(DolddotD)) > qn->powell_gamma*PetscAbs(PetscRealPart(DolddotDold))) powell = PETSC_TRUE;
    }
    periodic = PETSC_FALSE;
    if (qn->restart_type == SNES_QN_RESTART_PERIODIC) {
      if (i_r>qn->m-1) periodic = PETSC_TRUE;
    }
    /* restart if either powell or periodic restart is satisfied. */
    if (powell || periodic) {
      if (qn->monitor) {
        ierr = PetscViewerASCIIAddTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
        ierr = PetscViewerASCIIPrintf(qn->monitor, "restart! |%14.12e| > %4.2f*|%14.12e| or i_r = %d\n", PetscRealPart(DolddotD), qn->powell_gamma, PetscRealPart(DolddotDold), i_r);CHKERRQ(ierr);
        ierr = PetscViewerASCIISubtractTab(qn->monitor,((PetscObject)snes)->tablevel+2);CHKERRQ(ierr);
      }
      i_r = -1;
      /* general purpose update */
      if (snes->ops->update) {
        ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
      }
      if (qn->scale_type == SNES_QN_SCALE_JACOBIAN) {
        ierr = SNESComputeJacobian(snes,X,&snes->jacobian,&snes->jacobian_pre,&flg);CHKERRQ(ierr);
      }
    }
    /* general purpose update */
    if (snes->ops->update) {
      ierr = (*snes->ops->update)(snes, snes->iter);CHKERRQ(ierr);
    }
  }
  if (i == snes->max_its) {
    ierr = PetscInfo1(snes, "Maximum number of iterations has been reached: %D\n", snes->max_its);CHKERRQ(ierr);
    if (!snes->reason) snes->reason = SNES_DIVERGED_MAX_IT;
  }
  PetscFunctionReturn(0);
}