static void stub_socket_newconn(struct socket *oldso, struct label *oldsolabel, struct socket *newso, struct label *newsolabel) { #if 0 SOCK_LOCK(oldso); SOCK_UNLOCK(oldso); #endif #if 0 SOCK_LOCK(newso); SOCK_UNLOCK(newso); #endif }
static void stub_socketpeer_set_from_socket(struct socket *oldso, struct label *oldsolabel, struct socket *newso, struct label *newsopeerlabel) { #if 0 SOCK_LOCK(oldso); SOCK_UNLOCK(oldso); #endif #if 0 SOCK_LOCK(newso); SOCK_UNLOCK(newso); #endif }
/* * Abort the TCP. Drop the connection abruptly. */ static void tcp_usr_abort(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_abort: inp == NULL")); INP_INFO_WLOCK(&tcbinfo); INP_LOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_abort: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, drop. */ if (!(inp->inp_vflag & INP_TIMEWAIT) && !(inp->inp_vflag & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tcp_drop(tp, ECONNABORTED); TCPDEBUG2(PRU_ABORT); } if (!(inp->inp_vflag & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_vflag |= INP_SOCKREF; } INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); }
int do_getopt_accept_filter(struct socket *so, struct sockopt *sopt) { struct accept_filter_arg *afap; int error; error = 0; afap = malloc(sizeof(*afap), M_TEMP, M_WAITOK | M_ZERO); SOCK_LOCK(so); if ((so->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto out; } if ((so->so_options & SO_ACCEPTFILTER) == 0) { error = EINVAL; goto out; } strcpy(afap->af_name, so->so_accf->so_accept_filter->accf_name); if (so->so_accf->so_accept_filter_str != NULL) strcpy(afap->af_arg, so->so_accf->so_accept_filter_str); out: SOCK_UNLOCK(so); if (error == 0) error = sooptcopyout(sopt, afap, sizeof(*afap)); free(afap, M_TEMP); return (error); }
static void soaio_process_sb(struct socket *so, struct sockbuf *sb) { struct kaiocb *job; SOCKBUF_LOCK(sb); while (!TAILQ_EMPTY(&sb->sb_aiojobq) && soaio_ready(so, sb)) { job = TAILQ_FIRST(&sb->sb_aiojobq); TAILQ_REMOVE(&sb->sb_aiojobq, job, list); if (!aio_clear_cancel_function(job)) continue; soaio_process_job(so, sb, job); } /* * If there are still pending requests, the socket must not be * ready so set SB_AIO to request a wakeup when the socket * becomes ready. */ if (!TAILQ_EMPTY(&sb->sb_aiojobq)) sb->sb_flags |= SB_AIO; sb->sb_flags &= ~SB_AIO_RUNNING; SOCKBUF_UNLOCK(sb); ACCEPT_LOCK(); SOCK_LOCK(so); sorele(so); }
/* * Prepare to accept connections. */ static int tcp_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; INP_INFO_WLOCK(&V_tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL")); INP_WLOCK(inp); if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); if (error == 0 && inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); if (error == 0) { tp->t_state = TCPS_LISTEN; solisten_proto(so, backlog); tcp_offload_listen_open(tp); } SOCK_UNLOCK(so); out: TCPDEBUG2(PRU_LISTEN); INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_tcbinfo); return (error); }
int mac_socket_label_set(struct ucred *cred, struct socket *so, struct label *label) { int error; /* * We acquire the socket lock when we perform the test and set, but * have to release it as the pcb code needs to acquire the pcb lock, * which will precede the socket lock in the lock order. However, * this is fine, as any race will simply result in the inpcb being * refreshed twice, but still consistently, as the inpcb code will * acquire the socket lock before refreshing, holding both locks. */ SOCK_LOCK(so); error = mac_socket_check_relabel(cred, so, label); if (error) { SOCK_UNLOCK(so); return (error); } mac_socket_relabel(cred, so, label); SOCK_UNLOCK(so); /* * If the protocol has expressed interest in socket layer changes, * such as if it needs to propagate changes to a cached pcb label * from the socket, notify it of the label change while holding the * socket lock. */ if (so->so_proto->pr_usrreqs->pru_sosetlabel != NULL) (so->so_proto->pr_usrreqs->pru_sosetlabel)(so); return (0); }
/* * TCP socket is closed. Start friendly disconnect. */ static void tcp_usr_close(struct socket *so) { struct inpcb *inp; struct tcpcb *tp = NULL; TCPDEBUG0; inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_close: inp == NULL")); INP_INFO_WLOCK(&V_tcbinfo); INP_WLOCK(inp); KASSERT(inp->inp_socket != NULL, ("tcp_usr_close: inp_socket == NULL")); /* * If we still have full TCP state, and we're not dropped, initiate * a disconnect. */ if (!(inp->inp_flags & INP_TIMEWAIT) && !(inp->inp_flags & INP_DROPPED)) { tp = intotcpcb(inp); TCPDEBUG1(); tcp_disconnect(tp); TCPDEBUG2(PRU_CLOSE); } if (!(inp->inp_flags & INP_DROPPED)) { SOCK_LOCK(so); so->so_state |= SS_PROTOREF; SOCK_UNLOCK(so); inp->inp_flags |= INP_SOCKREF; } INP_WUNLOCK(inp); INP_INFO_WUNLOCK(&V_tcbinfo); }
/* * Audit information about a file, either the file's vnode info, or its * socket address info. */ void audit_arg_file(struct proc *p, struct file *fp) { struct kaudit_record *ar; struct socket *so; struct inpcb *pcb; struct vnode *vp; int vfslocked; ar = currecord(); if (ar == NULL) return; switch (fp->f_type) { case DTYPE_VNODE: case DTYPE_FIFO: /* * XXXAUDIT: Only possibly to record as first vnode? */ vp = fp->f_vnode; vfslocked = VFS_LOCK_GIANT(vp->v_mount); vn_lock(vp, LK_SHARED | LK_RETRY); audit_arg_vnode1(vp); VOP_UNLOCK(vp, 0); VFS_UNLOCK_GIANT(vfslocked); break; case DTYPE_SOCKET: so = (struct socket *)fp->f_data; if (INP_CHECK_SOCKAF(so, PF_INET)) { SOCK_LOCK(so); ar->k_ar.ar_arg_sockinfo.so_type = so->so_type; ar->k_ar.ar_arg_sockinfo.so_domain = INP_SOCKAF(so); ar->k_ar.ar_arg_sockinfo.so_protocol = so->so_proto->pr_protocol; SOCK_UNLOCK(so); pcb = (struct inpcb *)so->so_pcb; INP_RLOCK(pcb); ar->k_ar.ar_arg_sockinfo.so_raddr = pcb->inp_faddr.s_addr; ar->k_ar.ar_arg_sockinfo.so_laddr = pcb->inp_laddr.s_addr; ar->k_ar.ar_arg_sockinfo.so_rport = pcb->inp_fport; ar->k_ar.ar_arg_sockinfo.so_lport = pcb->inp_lport; INP_RUNLOCK(pcb); ARG_SET_VALID(ar, ARG_SOCKINFO); } break; default: /* XXXAUDIT: else? */ break; } }
/* * Usage: * xprt = svc_vc_create(sock, send_buf_size, recv_buf_size); * * Creates, registers, and returns a (rpc) tcp based transporter. * Once *xprt is initialized, it is registered as a transporter * see (svc.h, xprt_register). This routine returns * a NULL if a problem occurred. * * The filedescriptor passed in is expected to refer to a bound, but * not yet connected socket. * * Since streams do buffered io similar to stdio, the caller can specify * how big the send and receive buffers are via the second and third parms; * 0 => use the system default. */ SVCXPRT * svc_vc_create(SVCPOOL *pool, struct socket *so, size_t sendsize, size_t recvsize) { SVCXPRT *xprt = NULL; struct sockaddr* sa; int error; SOCK_LOCK(so); if (so->so_state & (SS_ISCONNECTED|SS_ISDISCONNECTED)) { SOCK_UNLOCK(so); CURVNET_SET(so->so_vnet); error = so->so_proto->pr_usrreqs->pru_peeraddr(so, &sa); CURVNET_RESTORE(); if (error) return (NULL); xprt = svc_vc_create_conn(pool, so, sa); free(sa, M_SONAME); return (xprt); } SOCK_UNLOCK(so); xprt = svc_xprt_alloc(); sx_init(&xprt->xp_lock, "xprt->xp_lock"); xprt->xp_pool = pool; xprt->xp_socket = so; xprt->xp_p1 = NULL; xprt->xp_p2 = NULL; xprt->xp_ops = &svc_vc_rendezvous_ops; CURVNET_SET(so->so_vnet); error = so->so_proto->pr_usrreqs->pru_sockaddr(so, &sa); CURVNET_RESTORE(); if (error) { goto cleanup_svc_vc_create; } memcpy(&xprt->xp_ltaddr, sa, sa->sa_len); free(sa, M_SONAME); xprt_register(xprt); solisten(so, -1, curthread); SOCKBUF_LOCK(&so->so_rcv); xprt->xp_upcallset = 1; soupcall_set(so, SO_RCV, svc_vc_soupcall, xprt); SOCKBUF_UNLOCK(&so->so_rcv); return (xprt); cleanup_svc_vc_create: if (xprt) { sx_destroy(&xprt->xp_lock); svc_xprt_free(xprt); } return (NULL); }
static int ng_ksocket_connect(hook_p hook) { node_p node = NG_HOOK_NODE(hook); const priv_p priv = NG_NODE_PRIVATE(node); struct socket *const so = priv->so; /* Add our hook for incoming data and other events */ priv->so->so_upcallarg = (caddr_t)node; priv->so->so_upcall = ng_ksocket_incoming; SOCKBUF_LOCK(&priv->so->so_rcv); priv->so->so_rcv.sb_flags |= SB_UPCALL; SOCKBUF_UNLOCK(&priv->so->so_rcv); SOCKBUF_LOCK(&priv->so->so_snd); priv->so->so_snd.sb_flags |= SB_UPCALL; SOCKBUF_UNLOCK(&priv->so->so_snd); SOCK_LOCK(priv->so); sosetstate(priv->so, SS_NBIO); SOCK_UNLOCK(priv->so); /* * --Original comment-- * On a cloned socket we may have already received one or more * upcalls which we couldn't handle without a hook. Handle * those now. * We cannot call the upcall function directly * from here, because until this function has returned our * hook isn't connected. * * ---meta comment for -current --- * XXX This is dubius. * Upcalls between the time that the hook was * first created and now (on another processesor) will * be earlier on the queue than the request to finalise the hook. * By the time the hook is finalised, * The queued upcalls will have happenned and the code * will have discarded them because of a lack of a hook. * (socket not open). * * This is a bad byproduct of the complicated way in which hooks * are now created (3 daisy chained async events). * * Since we are a netgraph operation * We know that we hold a lock on this node. This forces the * request we make below to be queued rather than implemented * immediatly which will cause the upcall function to be called a bit * later. * However, as we will run any waiting queued operations immediatly * after doing this one, if we have not finalised the other end * of the hook, those queued operations will fail. */ if (priv->flags & KSF_CLONED) { ng_send_fn(node, NULL, &ng_ksocket_incoming2, so, M_WAITOK | M_NULLOK); } return (0); }
static void stub_socket_create_mbuf(struct socket *so, struct label *solabel, struct mbuf *m, struct label *mlabel) { #if 0 SOCK_LOCK(so); SOCK_UNLOCK(so); #endif }
static void stub_socketpeer_set_from_mbuf(struct mbuf *m, struct label *mlabel, struct socket *so, struct label *sopeerlabel) { #if 0 SOCK_LOCK(so); SOCK_UNLOCK(so); #endif }
static int icl_conn_connect_tcp(struct icl_conn *ic, int domain, int socktype, int protocol, struct sockaddr *from_sa, struct sockaddr *to_sa) { struct socket *so; int error; int interrupted = 0; error = socreate(domain, &so, socktype, protocol, curthread->td_ucred, curthread); if (error != 0) return (error); if (from_sa != NULL) { error = sobind(so, from_sa, curthread); if (error != 0) { soclose(so); return (error); } } error = soconnect(so, to_sa, curthread); if (error != 0) { soclose(so); return (error); } SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH, "icl_connect", 0); if (error) { if (error == EINTR || error == ERESTART) interrupted = 1; break; } } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); if (error != 0) { soclose(so); return (error); } error = icl_conn_handoff_sock(ic, so); if (error != 0) soclose(so); return (error); }
static int stub_socket_check_connect(struct ucred *cred, struct socket *so, struct label *solabel, struct sockaddr *sa) { #if 0 SOCK_LOCK(so); SOCK_UNLOCK(so); #endif return (0); }
static int stub_socket_check_visible(struct ucred *cred, struct socket *so, struct label *solabel) { #if 0 SOCK_LOCK(so); SOCK_UNLOCK(so); #endif return (0); }
static int stub_socket_check_deliver(struct socket *so, struct label *solabel, struct mbuf *m, struct label *mlabel) { #if 0 SOCK_LOCK(so); SOCK_UNLOCK(so); #endif return (0); }
/* * This does all of the accept except the final call to soaccept. The * caller will call soaccept after dropping its locks (soaccept may * call malloc). */ int svc_vc_accept(struct socket *head, struct socket **sop) { int error = 0; struct socket *so; if ((head->so_options & SO_ACCEPTCONN) == 0) { error = EINVAL; goto done; } #ifdef MAC error = mac_socket_check_accept(curthread->td_ucred, head); if (error != 0) goto done; #endif ACCEPT_LOCK(); if (TAILQ_EMPTY(&head->so_comp)) { ACCEPT_UNLOCK(); error = EWOULDBLOCK; goto done; } so = TAILQ_FIRST(&head->so_comp); KASSERT(!(so->so_qstate & SQ_INCOMP), ("svc_vc_accept: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("svc_vc_accept: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. * XXX might not need soref() since this is simpler than kern_accept. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); *sop = so; /* connection has been removed from the listen queue */ KNOTE_UNLOCKED(&head->so_rcv.sb_sel.si_note, 0); done: return (error); }
/* * XXX Need to implement reconnecting as necessary. If that were to be * needed, most likely all current vnodes would have to be renegotiated * or otherwise invalidated (a la NFS "stale file handle"). */ static int p9fs_connect(struct mount *mp) { struct p9fsmount *p9mp = VFSTOP9(mp); struct p9fs_session *p9s = &p9mp->p9_session; struct socket *so; int error; error = socreate(p9s->p9s_sockaddr.sa_family, &p9s->p9s_sock, p9s->p9s_socktype, p9s->p9s_proto, curthread->td_ucred, curthread); if (error != 0) { vfs_mount_error(mp, "socreate"); goto out; } so = p9s->p9s_sock; error = soconnect(so, &p9s->p9s_sockaddr, curthread); SOCK_LOCK(so); while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) { error = msleep(&so->so_timeo, SOCK_MTX(so), PSOCK | PCATCH, "connec", 0); if (error) break; } if (error == 0) { error = so->so_error; so->so_error = 0; } SOCK_UNLOCK(so); if (error) { vfs_mount_error(mp, "soconnect"); if (error == EINTR) so->so_state &= ~SS_ISCONNECTING; goto out; } if (so->so_proto->pr_flags & PR_CONNREQUIRED) p9fs_setsockopt(so, SO_KEEPALIVE); if (so->so_proto->pr_protocol == IPPROTO_TCP) p9fs_setsockopt(so, TCP_NODELAY); SOCKBUF_LOCK(&so->so_rcv); soupcall_set(so, SO_RCV, p9fs_client_upcall, p9mp); SOCKBUF_UNLOCK(&so->so_rcv); error = 0; out: return (error); }
void sowakeup_aio(struct socket *so, struct sockbuf *sb) { SOCKBUF_LOCK_ASSERT(sb); sb->sb_flags &= ~SB_AIO; if (sb->sb_flags & SB_AIO_RUNNING) return; sb->sb_flags |= SB_AIO_RUNNING; if (sb == &so->so_snd) SOCK_LOCK(so); soref(so); if (sb == &so->so_snd) SOCK_UNLOCK(so); soaio_enqueue(&sb->sb_aiotask); }
/* * Prepare to accept connections. */ static int tcp_usr_listen(struct socket *so, int backlog, struct thread *td) { int error = 0; struct inpcb *inp; struct tcpcb *tp = NULL; //printf("%s: called\n", __FUNCTION__); TCPDEBUG0; INP_INFO_WLOCK(&tcbinfo); inp = sotoinpcb(so); KASSERT(inp != NULL, ("tcp_usr_listen: inp == NULL")); INP_LOCK(inp); if (inp->inp_vflag & (INP_TIMEWAIT | INP_DROPPED)) { error = EINVAL; goto out; } tp = intotcpcb(inp); TCPDEBUG1(); SOCK_LOCK(so); error = solisten_proto_check(so); //printf("%s: error=%d\n", __FUNCTION__, error); #ifdef MAXHE_TODO if (error == 0 && inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, td->td_ucred); #else if (error == 0 && inp->inp_lport == 0) error = in_pcbbind(inp, (struct sockaddr *)0, NULL); #endif // MAXHE_TODO if (error == 0) { tp->t_state = TCPS_LISTEN; //printf("%s: solisten_proto backlog=%d\n", __FUNCTION__, backlog); solisten_proto(so, backlog); } SOCK_UNLOCK(so); //printf("%s: called done\n", __FUNCTION__); out: //printf("%s: called out\n", __FUNCTION__); TCPDEBUG2(PRU_LISTEN); INP_UNLOCK(inp); INP_INFO_WUNLOCK(&tcbinfo); return (error); }
static int udp6_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; int error; pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp6_disconnect: inp == NULL")); INP_WLOCK(inp); #ifdef INET if (inp->inp_vflag & INP_IPV4) { struct pr_usrreqs *pru; uint8_t nxt; nxt = (inp->inp_socket->so_proto->pr_protocol == IPPROTO_UDP) ? IPPROTO_UDP : IPPROTO_UDPLITE; INP_WUNLOCK(inp); pru = inetsw[ip_protox[nxt]].pr_usrreqs; (void)(*pru->pru_disconnect)(so); return (0); } #endif if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) { error = ENOTCONN; goto out; } INP_HASH_WLOCK(pcbinfo); in6_pcbdisconnect(inp); inp->in6p_laddr = in6addr_any; INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); out: INP_WUNLOCK(inp); return (0); }
int linux_connect(struct thread *td, struct linux_connect_args *args) { struct socket *so; struct sockaddr *sa; u_int fflag; int error; error = linux_getsockaddr(&sa, (struct osockaddr *)PTRIN(args->name), args->namelen); if (error) return (error); error = kern_connect(td, args->s, sa); free(sa, M_SONAME); if (error != EISCONN) return (error); /* * Linux doesn't return EISCONN the first time it occurs, * when on a non-blocking socket. Instead it returns the * error getsockopt(SOL_SOCKET, SO_ERROR) would return on BSD. * * XXXRW: Instead of using fgetsock(), check that it is a * socket and use the file descriptor reference instead of * creating a new one. */ error = fgetsock(td, args->s, &so, &fflag); if (error == 0) { error = EISCONN; if (fflag & FNONBLOCK) { SOCK_LOCK(so); if (so->so_emuldata == 0) error = so->so_error; so->so_emuldata = (void *)1; SOCK_UNLOCK(so); } fputsock(so); } return (error); }
int mac_getsockopt_peerlabel(struct ucred *cred, struct socket *so, struct mac *mac) { char *elements, *buffer; struct label *intlabel; int error; if (!(mac_labeled & MPC_OBJECT_SOCKET)) return (EINVAL); error = mac_check_structmac_consistent(mac); if (error) return (error); elements = malloc(mac->m_buflen, M_MACTEMP, M_WAITOK); error = copyinstr(mac->m_string, elements, mac->m_buflen, NULL); if (error) { free(elements, M_MACTEMP); return (error); } buffer = malloc(mac->m_buflen, M_MACTEMP, M_WAITOK | M_ZERO); intlabel = mac_socket_label_alloc(M_WAITOK); SOCK_LOCK(so); mac_socket_copy_label(so->so_peerlabel, intlabel); SOCK_UNLOCK(so); error = mac_socketpeer_externalize_label(intlabel, elements, buffer, mac->m_buflen); mac_socket_label_free(intlabel); if (error == 0) error = copyout(buffer, mac->m_string, strlen(buffer)+1); free(buffer, M_MACTEMP); free(elements, M_MACTEMP); return (error); }
static int udp_disconnect(struct socket *so) { struct inpcb *inp; struct inpcbinfo *pcbinfo; pcbinfo = get_inpcbinfo(so->so_proto->pr_protocol); inp = sotoinpcb(so); KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); INP_WLOCK(inp); if (inp->inp_faddr.s_addr == INADDR_ANY) { INP_WUNLOCK(inp); return (ENOTCONN); } INP_HASH_WLOCK(pcbinfo); in_pcbdisconnect(inp); inp->inp_laddr.s_addr = INADDR_ANY; INP_HASH_WUNLOCK(pcbinfo); SOCK_LOCK(so); so->so_state &= ~SS_ISCONNECTED; /* XXX */ SOCK_UNLOCK(so); INP_WUNLOCK(inp); return (0); }
struct socket * sctp_get_peeloff(struct socket *head, sctp_assoc_t assoc_id, int *error) { struct socket *newso; struct sctp_inpcb *inp, *n_inp; struct sctp_tcb *stcb; SCTPDBG(SCTP_DEBUG_PEEL1, "SCTP peel-off called\n"); inp = (struct sctp_inpcb *)head->so_pcb; if (inp == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, EFAULT); *error = EFAULT; return (NULL); } stcb = sctp_findassociation_ep_asocid(inp, assoc_id, 1); if (stcb == NULL) { SCTP_LTRACE_ERR_RET(inp, NULL, NULL, SCTP_FROM_SCTP_PEELOFF, ENOTCONN); *error = ENOTCONN; return (NULL); } atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); newso = sonewconn(head, SS_ISCONNECTED ); if (newso == NULL) { SCTPDBG(SCTP_DEBUG_PEEL1, "sctp_peeloff:sonewconn failed\n"); SCTP_LTRACE_ERR_RET(NULL, stcb, NULL, SCTP_FROM_SCTP_PEELOFF, ENOMEM); *error = ENOMEM; atomic_subtract_int(&stcb->asoc.refcnt, 1); return (NULL); } SCTP_TCB_LOCK(stcb); atomic_subtract_int(&stcb->asoc.refcnt, 1); n_inp = (struct sctp_inpcb *)newso->so_pcb; SOCK_LOCK(head); n_inp->sctp_flags = (SCTP_PCB_FLAGS_UDPTYPE | SCTP_PCB_FLAGS_CONNECTED | SCTP_PCB_FLAGS_IN_TCPPOOL | /* Turn on Blocking IO */ (SCTP_PCB_COPY_FLAGS & inp->sctp_flags)); n_inp->sctp_features = inp->sctp_features; n_inp->sctp_frag_point = inp->sctp_frag_point; n_inp->partial_delivery_point = inp->partial_delivery_point; n_inp->sctp_context = inp->sctp_context; n_inp->inp_starting_point_for_iterator = NULL; /* copy in the authentication parameters from the original endpoint */ if (n_inp->sctp_ep.local_hmacs) sctp_free_hmaclist(n_inp->sctp_ep.local_hmacs); n_inp->sctp_ep.local_hmacs = sctp_copy_hmaclist(inp->sctp_ep.local_hmacs); if (n_inp->sctp_ep.local_auth_chunks) sctp_free_chunklist(n_inp->sctp_ep.local_auth_chunks); n_inp->sctp_ep.local_auth_chunks = sctp_copy_chunklist(inp->sctp_ep.local_auth_chunks); (void)sctp_copy_skeylist(&inp->sctp_ep.shared_keys, &n_inp->sctp_ep.shared_keys); n_inp->sctp_socket = newso; if (sctp_is_feature_on(inp, SCTP_PCB_FLAGS_AUTOCLOSE)) { sctp_feature_off(n_inp, SCTP_PCB_FLAGS_AUTOCLOSE); n_inp->sctp_ep.auto_close_time = 0; sctp_timer_stop(SCTP_TIMER_TYPE_AUTOCLOSE, n_inp, stcb, NULL, SCTP_FROM_SCTP_PEELOFF + SCTP_LOC_1); } /* Turn off any non-blocking semantic. */ SCTP_CLEAR_SO_NBIO(newso); newso->so_state |= SS_ISCONNECTED; /* We remove it right away */ #ifdef SCTP_LOCK_LOGGING if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) { sctp_log_lock(inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_SOCK); } #endif TAILQ_REMOVE(&head->so_comp, newso, so_list); head->so_qlen--; SOCK_UNLOCK(head); /* * Now we must move it from one hash table to another and get the * stcb in the right place. */ sctp_move_pcb_and_assoc(inp, n_inp, stcb); atomic_add_int(&stcb->asoc.refcnt, 1); SCTP_TCB_UNLOCK(stcb); /* * And now the final hack. We move data in the pending side i.e. * head to the new socket buffer. Let the GRUBBING begin :-0 */ sctp_pull_off_control_to_new_inp(inp, n_inp, stcb, SBL_WAIT); atomic_subtract_int(&stcb->asoc.refcnt, 1); return (newso); }
/* * XXX: Doing accept in a separate thread in each socket might not be the best way * to do stuff, but it's pretty clean and debuggable - and you probably won't * have hundreds of listening sockets anyway. */ static void icl_accept_thread(void *arg) { struct icl_listen_sock *ils; struct socket *head, *so; struct sockaddr *sa; int error; ils = arg; head = ils->ils_socket; ils->ils_running = true; for (;;) { ACCEPT_LOCK(); while (TAILQ_EMPTY(&head->so_comp) && head->so_error == 0 && ils->ils_disconnecting == false) { if (head->so_rcv.sb_state & SBS_CANTRCVMORE) { head->so_error = ECONNABORTED; break; } error = msleep(&head->so_timeo, &accept_mtx, PSOCK | PCATCH, "accept", 0); if (error) { ACCEPT_UNLOCK(); ICL_WARN("msleep failed with error %d", error); continue; } if (ils->ils_disconnecting) { ACCEPT_UNLOCK(); ICL_DEBUG("terminating"); ils->ils_running = false; kthread_exit(); return; } } if (head->so_error) { error = head->so_error; head->so_error = 0; ACCEPT_UNLOCK(); ICL_WARN("socket error %d", error); continue; } so = TAILQ_FIRST(&head->so_comp); KASSERT(so != NULL, ("NULL so")); KASSERT(!(so->so_qstate & SQ_INCOMP), ("accept1: so SQ_INCOMP")); KASSERT(so->so_qstate & SQ_COMP, ("accept1: so not SQ_COMP")); /* * Before changing the flags on the socket, we have to bump the * reference count. Otherwise, if the protocol calls sofree(), * the socket will be released due to a zero refcount. */ SOCK_LOCK(so); /* soref() and so_state update */ soref(so); /* file descriptor reference */ TAILQ_REMOVE(&head->so_comp, so, so_list); head->so_qlen--; so->so_state |= (head->so_state & SS_NBIO); so->so_qstate &= ~SQ_COMP; so->so_head = NULL; SOCK_UNLOCK(so); ACCEPT_UNLOCK(); sa = NULL; error = soaccept(so, &sa); if (error != 0) { ICL_WARN("soaccept error %d", error); if (sa != NULL) free(sa, M_SONAME); soclose(so); continue; } (ils->ils_listen->il_accept)(so, sa, ils->ils_id); } }
int sbsetopt(struct socket *so, int cmd, u_long cc) { struct sockbuf *sb; short *flags; u_int *hiwat, *lowat; int error; sb = NULL; SOCK_LOCK(so); if (SOLISTENING(so)) { switch (cmd) { case SO_SNDLOWAT: case SO_SNDBUF: lowat = &so->sol_sbsnd_lowat; hiwat = &so->sol_sbsnd_hiwat; flags = &so->sol_sbsnd_flags; break; case SO_RCVLOWAT: case SO_RCVBUF: lowat = &so->sol_sbrcv_lowat; hiwat = &so->sol_sbrcv_hiwat; flags = &so->sol_sbrcv_flags; break; } } else { switch (cmd) { case SO_SNDLOWAT: case SO_SNDBUF: sb = &so->so_snd; break; case SO_RCVLOWAT: case SO_RCVBUF: sb = &so->so_rcv; break; } flags = &sb->sb_flags; hiwat = &sb->sb_hiwat; lowat = &sb->sb_lowat; SOCKBUF_LOCK(sb); } error = 0; switch (cmd) { case SO_SNDBUF: case SO_RCVBUF: if (SOLISTENING(so)) { if (cc > sb_max_adj) { error = ENOBUFS; break; } *hiwat = cc; if (*lowat > *hiwat) *lowat = *hiwat; } else { if (!sbreserve_locked(sb, cc, so, curthread)) error = ENOBUFS; } if (error == 0) *flags &= ~SB_AUTOSIZE; break; case SO_SNDLOWAT: case SO_RCVLOWAT: /* * Make sure the low-water is never greater than the * high-water. */ *lowat = (cc > *hiwat) ? *hiwat : cc; break; } if (!SOLISTENING(so)) SOCKBUF_UNLOCK(sb); SOCK_UNLOCK(so); return (error); }
static int soo_ioctl(struct file *fp, u_long cmd, void *data, struct ucred *active_cred, struct thread *td) { struct socket *so = fp->f_data; int error = 0; switch (cmd) { case FIONBIO: SOCK_LOCK(so); if (*(int *)data) so->so_state |= SS_NBIO; else so->so_state &= ~SS_NBIO; SOCK_UNLOCK(so); break; case FIOASYNC: /* * XXXRW: This code separately acquires SOCK_LOCK(so) and * SOCKBUF_LOCK(&so->so_rcv) even though they are the same * mutex to avoid introducing the assumption that they are * the same. */ if (*(int *)data) { SOCK_LOCK(so); so->so_state |= SS_ASYNC; SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags |= SB_ASYNC; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags |= SB_ASYNC; SOCKBUF_UNLOCK(&so->so_snd); } else { SOCK_LOCK(so); so->so_state &= ~SS_ASYNC; SOCK_UNLOCK(so); SOCKBUF_LOCK(&so->so_rcv); so->so_rcv.sb_flags &= ~SB_ASYNC; SOCKBUF_UNLOCK(&so->so_rcv); SOCKBUF_LOCK(&so->so_snd); so->so_snd.sb_flags &= ~SB_ASYNC; SOCKBUF_UNLOCK(&so->so_snd); } break; case FIONREAD: /* Unlocked read. */ *(int *)data = sbavail(&so->so_rcv); break; case FIONWRITE: /* Unlocked read. */ *(int *)data = sbavail(&so->so_snd); break; case FIONSPACE: /* Unlocked read. */ if ((so->so_snd.sb_hiwat < sbused(&so->so_snd)) || (so->so_snd.sb_mbmax < so->so_snd.sb_mbcnt)) *(int *)data = 0; else *(int *)data = sbspace(&so->so_snd); break; case FIOSETOWN: error = fsetown(*(int *)data, &so->so_sigio); break; case FIOGETOWN: *(int *)data = fgetown(&so->so_sigio); break; case SIOCSPGRP: error = fsetown(-(*(int *)data), &so->so_sigio); break; case SIOCGPGRP: *(int *)data = -fgetown(&so->so_sigio); break; case SIOCATMARK: /* Unlocked read. */ *(int *)data = (so->so_rcv.sb_state & SBS_RCVATMARK) != 0; break; default: /* * Interface/routing/protocol specific ioctls: interface and * routing ioctls should have a different entry since a * socket is unnecessary. */ if (IOCGROUP(cmd) == 'i') error = ifioctl(so, cmd, data, td); else if (IOCGROUP(cmd) == 'r') { CURVNET_SET(so->so_vnet); error = rtioctl_fib(cmd, data, so->so_fibnum); CURVNET_RESTORE(); } else { CURVNET_SET(so->so_vnet); error = ((*so->so_proto->pr_usrreqs->pru_control) (so, cmd, data, 0, td)); CURVNET_RESTORE(); } break; } return (error); }
int do_setopt_accept_filter(struct socket *so, struct sockopt *sopt) { struct accept_filter_arg *afap; struct accept_filter *afp; struct so_accf *newaf; int error = 0; /* * Handle the simple delete case first. */ if (sopt == NULL || sopt->sopt_val == NULL) { SOCK_LOCK(so); if ((so->so_options & SO_ACCEPTCONN) == 0) { SOCK_UNLOCK(so); return (EINVAL); } if (so->so_accf != NULL) { struct so_accf *af = so->so_accf; if (af->so_accept_filter != NULL && af->so_accept_filter->accf_destroy != NULL) { af->so_accept_filter->accf_destroy(so); } if (af->so_accept_filter_str != NULL) free(af->so_accept_filter_str, M_ACCF); free(af, M_ACCF); so->so_accf = NULL; } so->so_options &= ~SO_ACCEPTFILTER; SOCK_UNLOCK(so); return (0); } /* * Pre-allocate any memory we may need later to avoid blocking at * untimely moments. This does not optimize for invalid arguments. */ afap = malloc(sizeof(*afap), M_TEMP, M_WAITOK); error = sooptcopyin(sopt, afap, sizeof *afap, sizeof *afap); afap->af_name[sizeof(afap->af_name)-1] = '\0'; afap->af_arg[sizeof(afap->af_arg)-1] = '\0'; if (error) { free(afap, M_TEMP); return (error); } afp = accept_filt_get(afap->af_name); if (afp == NULL) { free(afap, M_TEMP); return (ENOENT); } /* * Allocate the new accept filter instance storage. We may * have to free it again later if we fail to attach it. If * attached properly, 'newaf' is NULLed to avoid a free() * while in use. */ newaf = malloc(sizeof(*newaf), M_ACCF, M_WAITOK | M_ZERO); if (afp->accf_create != NULL && afap->af_name[0] != '\0') { int len = strlen(afap->af_name) + 1; newaf->so_accept_filter_str = malloc(len, M_ACCF, M_WAITOK); strcpy(newaf->so_accept_filter_str, afap->af_name); } /* * Require a listen socket; don't try to replace an existing filter * without first removing it. */ SOCK_LOCK(so); if (((so->so_options & SO_ACCEPTCONN) == 0) || (so->so_accf != NULL)) { error = EINVAL; goto out; } /* * Invoke the accf_create() method of the filter if required. The * socket mutex is held over this call, so create methods for filters * can't block. */ if (afp->accf_create != NULL) { newaf->so_accept_filter_arg = afp->accf_create(so, afap->af_arg); if (newaf->so_accept_filter_arg == NULL) { error = EINVAL; goto out; } } newaf->so_accept_filter = afp; so->so_accf = newaf; so->so_options |= SO_ACCEPTFILTER; newaf = NULL; out: SOCK_UNLOCK(so); if (newaf != NULL) { if (newaf->so_accept_filter_str != NULL) free(newaf->so_accept_filter_str, M_ACCF); free(newaf, M_ACCF); } if (afap != NULL) free(afap, M_TEMP); return (error); }