PCRYPTO_INFO crypto_open () { #ifndef TC_WINDOWS_BOOT /* Do the crt allocation */ PCRYPTO_INFO cryptoInfo = (PCRYPTO_INFO) TCalloc (sizeof (CRYPTO_INFO)); if (cryptoInfo == NULL) return NULL; memset (cryptoInfo, 0, sizeof (CRYPTO_INFO)); #ifndef DEVICE_DRIVER VirtualLock (cryptoInfo, sizeof (CRYPTO_INFO)); #endif cryptoInfo->ea = -1; return cryptoInfo; #else // TC_WINDOWS_BOOT #if 0 if (CryptoInfoBufferInUse) TC_THROW_FATAL_EXCEPTION; #endif CryptoInfoBufferInUse = 1; return &CryptoInfoBuffer; #endif // TC_WINDOWS_BOOT }
/* Init the random number generator, setup the hooks, and start the thread */ int Randinit () { DWORD dwLastError = ERROR_SUCCESS; if (GetMaxPkcs5OutSize() > RNG_POOL_SIZE) TC_THROW_FATAL_EXCEPTION; if(bRandDidInit) return 0; InitializeCriticalSection (&critRandProt); bRandDidInit = TRUE; CryptoAPILastError = ERROR_SUCCESS; ProcessedMouseEventsCounter = 0; if (pRandPool == NULL) { pRandPool = (unsigned char *) TCalloc (RANDOMPOOL_ALLOCSIZE); if (pRandPool == NULL) goto error; bDidSlowPoll = FALSE; RandomPoolEnrichedByUser = FALSE; memset (pRandPool, 0, RANDOMPOOL_ALLOCSIZE); VirtualLock (pRandPool, RANDOMPOOL_ALLOCSIZE); } hKeyboard = SetWindowsHookEx (WH_KEYBOARD, (HOOKPROC)&KeyboardProc, NULL, GetCurrentThreadId ()); if (hKeyboard == 0) handleWin32Error (0, SRC_POS); hMouse = SetWindowsHookEx (WH_MOUSE, (HOOKPROC)&MouseProc, NULL, GetCurrentThreadId ()); if (hMouse == 0) { handleWin32Error (0, SRC_POS); goto error; } if (!CryptAcquireContext (&hCryptProv, NULL, MS_ENHANCED_PROV, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT | CRYPT_SILENT)) { CryptoAPIAvailable = FALSE; CryptoAPILastError = GetLastError (); goto error; } else CryptoAPIAvailable = TRUE; if (!(PeriodicFastPollThreadHandle = (HANDLE) _beginthreadex (NULL, 0, PeriodicFastPollThreadProc, NULL, 0, NULL))) goto error; return 0; error: dwLastError = GetLastError(); RandStop (TRUE); SetLastError (dwLastError); return 1; }
/* Init the random number generator, setup the hooks, and start the thread */ int Randinit () { if (GetMaxPkcs5OutSize() > RNG_POOL_SIZE) TC_THROW_FATAL_EXCEPTION; if(bRandDidInit) return 0; InitializeCriticalSection (&critRandProt); bRandDidInit = TRUE; if (pRandPool == NULL) { pRandPool = (unsigned char *) TCalloc (RANDOMPOOL_ALLOCSIZE); if (pRandPool == NULL) goto error; bDidSlowPoll = FALSE; RandomPoolEnrichedByUser = FALSE; memset (pRandPool, 0, RANDOMPOOL_ALLOCSIZE); VirtualLock (pRandPool, RANDOMPOOL_ALLOCSIZE); } hKeyboard = SetWindowsHookEx (WH_KEYBOARD, (HOOKPROC)&KeyboardProc, NULL, GetCurrentThreadId ()); if (hKeyboard == 0) handleWin32Error (0); hMouse = SetWindowsHookEx (WH_MOUSE, (HOOKPROC)&MouseProc, NULL, GetCurrentThreadId ()); if (hMouse == 0) { handleWin32Error (0); goto error; } if (!CryptAcquireContext (&hCryptProv, NULL, NULL, PROV_RSA_FULL, 0) && !CryptAcquireContext (&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET)) CryptoAPIAvailable = FALSE; else CryptoAPIAvailable = TRUE; if (!(PeriodicFastPollThreadHandle = (HANDLE) _beginthreadex (NULL, 0, PeriodicFastPollThreadProc, NULL, 0, NULL))) goto error; return 0; error: RandStop (TRUE); return 1; }
static BOOL StartFormatWriteThread () { DWORD sysErr; WriteBufferEmptyEvent = NULL; WriteBufferFullEvent = NULL; WriteThreadBuffer = NULL; WriteBufferEmptyEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!WriteBufferEmptyEvent) goto err; WriteBufferFullEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!WriteBufferFullEvent) goto err; WriteThreadBuffer = TCalloc (FormatWriteBufferSize); if (!WriteThreadBuffer) { SetLastError (ERROR_OUTOFMEMORY); goto err; } WriteThreadExitRequested = FALSE; WriteRequestResult = ERROR_SUCCESS; WriteThreadHandle = (HANDLE) _beginthread (FormatWriteThreadProc, 0, NULL); if ((uintptr_t) WriteThreadHandle == -1L) goto err; WriteThreadRunning = TRUE; return TRUE; err: sysErr = GetLastError(); if (WriteBufferEmptyEvent) CloseHandle (WriteBufferEmptyEvent); if (WriteBufferFullEvent) CloseHandle (WriteBufferFullEvent); if (WriteThreadBuffer) TCfree (WriteThreadBuffer); SetLastError (sysErr); return FALSE; }
int FormatNoFs (HWND hwndDlg, unsigned __int64 startSector, __int64 num_sectors, void * dev, PCRYPTO_INFO cryptoInfo, BOOL quickFormat) { int write_buf_cnt = 0; char sector[TC_MAX_VOLUME_SECTOR_SIZE], *write_buf; unsigned __int64 nSecNo = startSector; int retVal = 0; DWORD err; char temporaryKey[MASTER_KEYDATA_SIZE]; char originalK2[MASTER_KEYDATA_SIZE]; LARGE_INTEGER startOffset; LARGE_INTEGER newOffset; // Seek to start sector startOffset.QuadPart = startSector * FormatSectorSize; if (!SetFilePointerEx ((HANDLE) dev, startOffset, &newOffset, FILE_BEGIN) || newOffset.QuadPart != startOffset.QuadPart) { return ERR_OS_ERROR; } write_buf = (char *)TCalloc (FormatWriteBufferSize); if (!write_buf) return ERR_OUTOFMEMORY; VirtualLock (temporaryKey, sizeof (temporaryKey)); VirtualLock (originalK2, sizeof (originalK2)); memset (sector, 0, sizeof (sector)); // Remember the original secondary key (XTS mode) before generating a temporary one memcpy (originalK2, cryptoInfo->k2, sizeof (cryptoInfo->k2)); /* Fill the rest of the data area with random data */ if(!quickFormat) { /* Generate a random temporary key set to be used for "dummy" encryption that will fill the free disk space (data area) with random data. This is necessary for plausible deniability of hidden volumes. */ // Temporary master key if (!RandgetBytes (hwndDlg, temporaryKey, EAGetKeySize (cryptoInfo->ea), FALSE)) goto fail; // Temporary secondary key (XTS mode) if (!RandgetBytes (hwndDlg, cryptoInfo->k2, sizeof cryptoInfo->k2, FALSE)) goto fail; retVal = EAInit (cryptoInfo->ea, temporaryKey, cryptoInfo->ks); if (retVal != ERR_SUCCESS) goto fail; if (!EAInitMode (cryptoInfo)) { retVal = ERR_MODE_INIT_FAILED; goto fail; } while (num_sectors--) { if (WriteSector (dev, sector, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo) == FALSE) goto fail; } if (!FlushFormatWriteBuffer (dev, write_buf, &write_buf_cnt, &nSecNo, cryptoInfo)) goto fail; } else nSecNo = num_sectors; UpdateProgressBar (nSecNo * FormatSectorSize); // Restore the original secondary key (XTS mode) in case NTFS format fails and the user wants to try FAT immediately memcpy (cryptoInfo->k2, originalK2, sizeof (cryptoInfo->k2)); // Reinitialize the encryption algorithm and mode in case NTFS format fails and the user wants to try FAT immediately retVal = EAInit (cryptoInfo->ea, cryptoInfo->master_keydata, cryptoInfo->ks); if (retVal != ERR_SUCCESS) goto fail; if (!EAInitMode (cryptoInfo)) { retVal = ERR_MODE_INIT_FAILED; goto fail; } burn (temporaryKey, sizeof(temporaryKey)); burn (originalK2, sizeof(originalK2)); VirtualUnlock (temporaryKey, sizeof (temporaryKey)); VirtualUnlock (originalK2, sizeof (originalK2)); TCfree (write_buf); return 0; fail: err = GetLastError(); burn (temporaryKey, sizeof(temporaryKey)); burn (originalK2, sizeof(originalK2)); VirtualUnlock (temporaryKey, sizeof (temporaryKey)); VirtualUnlock (originalK2, sizeof (originalK2)); TCfree (write_buf); SetLastError (err); return (retVal ? retVal : ERR_OS_ERROR); }
NTSTATUS EncryptedIoQueueStart (EncryptedIoQueue *queue) { NTSTATUS status; EncryptedIoQueueBuffer *buffer; int i; queue->StartPending = TRUE; queue->ThreadExitRequested = FALSE; queue->OutstandingIoCount = 0; queue->IoThreadPendingRequestCount = 0; queue->FirstPoolBuffer = NULL; KeInitializeMutex (&queue->BufferPoolMutex, 0); KeInitializeEvent (&queue->NoOutstandingIoEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&queue->PoolBufferFreeEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&queue->QueueResumedEvent, SynchronizationEvent, FALSE); queue->FragmentBufferA = TCalloc (TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE); if (!queue->FragmentBufferA) goto noMemory; queue->FragmentBufferB = TCalloc (TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE); if (!queue->FragmentBufferB) goto noMemory; KeInitializeEvent (&queue->FragmentBufferAFreeEvent, SynchronizationEvent, TRUE); KeInitializeEvent (&queue->FragmentBufferBFreeEvent, SynchronizationEvent, TRUE); queue->ReadAheadBufferValid = FALSE; queue->ReadAheadBuffer = TCalloc (TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE); if (!queue->ReadAheadBuffer) goto noMemory; // Preallocate buffers for (i = 0; i < TC_ENC_IO_QUEUE_PREALLOCATED_IO_REQUEST_COUNT; ++i) { if (i < TC_ENC_IO_QUEUE_PREALLOCATED_ITEM_COUNT && !GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem))) goto noMemory; if (!GetPoolBuffer (queue, sizeof (EncryptedIoRequest))) goto noMemory; } for (buffer = queue->FirstPoolBuffer; buffer != NULL; buffer = buffer->NextBuffer) { buffer->InUse = FALSE; } // Main thread InitializeListHead (&queue->MainThreadQueue); KeInitializeSpinLock (&queue->MainThreadQueueLock); KeInitializeEvent (&queue->MainThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (MainThreadProc, queue, &queue->MainThread); if (!NT_SUCCESS (status)) goto err; // IO thread InitializeListHead (&queue->IoThreadQueue); KeInitializeSpinLock (&queue->IoThreadQueueLock); KeInitializeEvent (&queue->IoThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (IoThreadProc, queue, &queue->IoThread); if (!NT_SUCCESS (status)) { queue->ThreadExitRequested = TRUE; TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); goto err; } // Completion thread InitializeListHead (&queue->CompletionThreadQueue); KeInitializeSpinLock (&queue->CompletionThreadQueueLock); KeInitializeEvent (&queue->CompletionThreadQueueNotEmptyEvent, SynchronizationEvent, FALSE); status = TCStartThread (CompletionThreadProc, queue, &queue->CompletionThread); if (!NT_SUCCESS (status)) { queue->ThreadExitRequested = TRUE; TCStopThread (queue->MainThread, &queue->MainThreadQueueNotEmptyEvent); TCStopThread (queue->IoThread, &queue->IoThreadQueueNotEmptyEvent); goto err; } #ifdef TC_TRACE_IO_QUEUE GetElapsedTimeInit (&queue->LastPerformanceCounter); #endif queue->StopPending = FALSE; queue->StartPending = FALSE; Dump ("Queue started\n"); return STATUS_SUCCESS; noMemory: status = STATUS_INSUFFICIENT_RESOURCES; err: if (queue->FragmentBufferA) TCfree (queue->FragmentBufferA); if (queue->FragmentBufferB) TCfree (queue->FragmentBufferB); if (queue->ReadAheadBuffer) TCfree (queue->ReadAheadBuffer); FreePoolBuffers (queue); queue->StartPending = FALSE; return status; }
static VOID MainThreadProc (PVOID threadArg) { EncryptedIoQueue *queue = (EncryptedIoQueue *) threadArg; PLIST_ENTRY listEntry; EncryptedIoQueueItem *item; LARGE_INTEGER fragmentOffset; ULONG dataRemaining; PUCHAR activeFragmentBuffer = queue->FragmentBufferA; PUCHAR dataBuffer; EncryptedIoRequest *request; uint64 intersectStart; uint32 intersectLength; ULONGLONG addResult; HRESULT hResult; if (IsEncryptionThreadPoolRunning()) KeSetPriorityThread (KeGetCurrentThread(), LOW_REALTIME_PRIORITY); while (!queue->ThreadExitRequested) { if (!NT_SUCCESS (KeWaitForSingleObject (&queue->MainThreadQueueNotEmptyEvent, Executive, KernelMode, FALSE, NULL))) continue; while ((listEntry = ExInterlockedRemoveHeadList (&queue->MainThreadQueue, &queue->MainThreadQueueLock))) { PIRP irp = CONTAINING_RECORD (listEntry, IRP, Tail.Overlay.ListEntry); PIO_STACK_LOCATION irpSp = IoGetCurrentIrpStackLocation (irp); if (queue->Suspended) KeWaitForSingleObject (&queue->QueueResumedEvent, Executive, KernelMode, FALSE, NULL); item = GetPoolBuffer (queue, sizeof (EncryptedIoQueueItem)); if (!item) { TCCompleteDiskIrp (irp, STATUS_INSUFFICIENT_RESOURCES, 0); DecrementOutstandingIoCount (queue); IoReleaseRemoveLock (&queue->RemoveLock, irp); continue; } item->Queue = queue; item->OriginalIrp = irp; item->Status = STATUS_SUCCESS; IoSetCancelRoutine (irp, NULL); if (irp->Cancel) { CompleteOriginalIrp (item, STATUS_CANCELLED, 0); continue; } switch (irpSp->MajorFunction) { case IRP_MJ_READ: item->Write = FALSE; item->OriginalOffset = irpSp->Parameters.Read.ByteOffset; item->OriginalLength = irpSp->Parameters.Read.Length; break; case IRP_MJ_WRITE: item->Write = TRUE; item->OriginalOffset = irpSp->Parameters.Write.ByteOffset; item->OriginalLength = irpSp->Parameters.Write.Length; break; default: CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } #ifdef TC_TRACE_IO_QUEUE item->OriginalIrpOffset = item->OriginalOffset; #endif // Handle misaligned read operations to work around a bug in Windows System Assessment Tool which does not follow FILE_FLAG_NO_BUFFERING requirements when benchmarking disk devices if (queue->IsFilterDevice && !item->Write && item->OriginalLength > 0 && (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) == 0 && (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0) { byte *buffer; ULONG alignedLength; LARGE_INTEGER alignedOffset; hResult = ULongAdd(item->OriginalLength, ENCRYPTION_DATA_UNIT_SIZE, &alignedLength); if (hResult != S_OK) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } alignedOffset.QuadPart = item->OriginalOffset.QuadPart & ~((LONGLONG) ENCRYPTION_DATA_UNIT_SIZE - 1); buffer = TCalloc (alignedLength); if (!buffer) { CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } item->Status = TCReadDevice (queue->LowerDeviceObject, buffer, alignedOffset, alignedLength); if (NT_SUCCESS (item->Status)) { UINT64_STRUCT dataUnit; dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, HighPagePriority); if (!dataBuffer) { TCfree (buffer); CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } if (queue->EncryptedAreaStart != -1 && queue->EncryptedAreaEnd != -1) { GetIntersection (alignedOffset.QuadPart, alignedLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength); if (intersectLength > 0) { dataUnit.Value = intersectStart / ENCRYPTION_DATA_UNIT_SIZE; DecryptDataUnits (buffer + (intersectStart - alignedOffset.QuadPart), &dataUnit, intersectLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo); } } memcpy (dataBuffer, buffer + (item->OriginalOffset.LowPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)), item->OriginalLength); } TCfree (buffer); CompleteOriginalIrp (item, item->Status, NT_SUCCESS (item->Status) ? item->OriginalLength : 0); continue; } // Validate offset and length if (item->OriginalLength == 0 || (item->OriginalLength & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0 || (item->OriginalOffset.QuadPart & (ENCRYPTION_DATA_UNIT_SIZE - 1)) != 0 || ( !queue->IsFilterDevice && ( (S_OK != ULongLongAdd(item->OriginalOffset.QuadPart, item->OriginalLength, &addResult)) || (addResult > (ULONGLONG) queue->VirtualDeviceLength) ) ) ) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } #ifdef TC_TRACE_IO_QUEUE Dump ("Q %I64d [%I64d] %c len=%d\n", item->OriginalOffset.QuadPart, GetElapsedTime (&queue->LastPerformanceCounter), item->Write ? 'W' : 'R', item->OriginalLength); #endif if (!queue->IsFilterDevice) { // Adjust the offset for host file or device if (queue->CryptoInfo->hiddenVolume) hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->hiddenVolumeOffset, &addResult); else hResult = ULongLongAdd(item->OriginalOffset.QuadPart, queue->CryptoInfo->volDataAreaOffset, &addResult); if (hResult != S_OK) { CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } else item->OriginalOffset.QuadPart = addResult; // Hidden volume protection if (item->Write && queue->CryptoInfo->bProtectHiddenVolume) { // If there has already been a write operation denied in order to protect the // hidden volume (since the volume mount time) if (queue->CryptoInfo->bHiddenVolProtectionAction) { // Do not allow writing to this volume anymore. This is to fake a complete volume // or system failure (otherwise certain kinds of inconsistency within the file // system could indicate that this volume has used hidden volume protection). CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } // Verify that no byte is going to be written to the hidden volume area if (RegionsOverlap ((unsigned __int64) item->OriginalOffset.QuadPart, (unsigned __int64) item->OriginalOffset.QuadPart + item->OriginalLength - 1, queue->CryptoInfo->hiddenVolumeOffset, (unsigned __int64) queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1)) { Dump ("Hidden volume protection triggered: write %I64d-%I64d (protected %I64d-%I64d)\n", item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, queue->CryptoInfo->hiddenVolumeOffset, queue->CryptoInfo->hiddenVolumeOffset + queue->CryptoInfo->hiddenVolumeProtectedSize - 1); queue->CryptoInfo->bHiddenVolProtectionAction = TRUE; // Deny this write operation to prevent the hidden volume from being overwritten CompleteOriginalIrp (item, STATUS_INVALID_PARAMETER, 0); continue; } } } else if (item->Write && RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET, TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET + TC_BOOT_ENCRYPTION_VOLUME_HEADER_SIZE - 1)) { // Prevent inappropriately designed software from damaging important data that may be out of sync with the backup on the Rescue Disk (such as the end of the encrypted area). Dump ("Preventing write to the system encryption key data area\n"); CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0); continue; } else if (item->Write && IsHiddenSystemRunning() && (RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, TC_SECTOR_SIZE_BIOS, TC_BOOT_LOADER_AREA_SECTOR_COUNT * TC_SECTOR_SIZE_BIOS - 1) || RegionsOverlap (item->OriginalOffset.QuadPart, item->OriginalOffset.QuadPart + item->OriginalLength - 1, GetBootDriveLength(), _I64_MAX))) { Dump ("Preventing write to boot loader or host protected area\n"); CompleteOriginalIrp (item, STATUS_MEDIA_WRITE_PROTECTED, 0); continue; } dataBuffer = (PUCHAR) MmGetSystemAddressForMdlSafe (irp->MdlAddress, HighPagePriority); if (dataBuffer == NULL) { CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); continue; } // Divide data block to fragments to enable efficient overlapping of encryption and IO operations dataRemaining = item->OriginalLength; fragmentOffset = item->OriginalOffset; while (dataRemaining > 0) { BOOL isLastFragment = dataRemaining <= TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; ULONG dataFragmentLength = isLastFragment ? dataRemaining : TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; activeFragmentBuffer = (activeFragmentBuffer == queue->FragmentBufferA ? queue->FragmentBufferB : queue->FragmentBufferA); InterlockedIncrement (&queue->IoThreadPendingRequestCount); // Create IO request request = GetPoolBuffer (queue, sizeof (EncryptedIoRequest)); if (!request) { CompleteOriginalIrp (item, STATUS_INSUFFICIENT_RESOURCES, 0); break; } request->Item = item; request->CompleteOriginalIrp = isLastFragment; request->Offset = fragmentOffset; request->Data = activeFragmentBuffer; request->OrigDataBufferFragment = dataBuffer; request->Length = dataFragmentLength; if (queue->IsFilterDevice) { if (queue->EncryptedAreaStart == -1 || queue->EncryptedAreaEnd == -1) { request->EncryptedLength = 0; } else { // Get intersection of data fragment with encrypted area GetIntersection (fragmentOffset.QuadPart, dataFragmentLength, queue->EncryptedAreaStart, queue->EncryptedAreaEnd, &intersectStart, &intersectLength); request->EncryptedOffset = intersectStart - fragmentOffset.QuadPart; request->EncryptedLength = intersectLength; } } else { request->EncryptedOffset = 0; request->EncryptedLength = dataFragmentLength; } AcquireFragmentBuffer (queue, activeFragmentBuffer); if (item->Write) { // Encrypt data memcpy (activeFragmentBuffer, dataBuffer, dataFragmentLength); if (request->EncryptedLength > 0) { UINT64_STRUCT dataUnit; ASSERT (request->EncryptedOffset + request->EncryptedLength <= request->Offset.QuadPart + request->Length); dataUnit.Value = (request->Offset.QuadPart + request->EncryptedOffset) / ENCRYPTION_DATA_UNIT_SIZE; if (queue->CryptoInfo->bPartitionInInactiveSysEncScope) dataUnit.Value += queue->CryptoInfo->FirstDataUnitNo.Value; else if (queue->RemapEncryptedArea) dataUnit.Value += queue->RemappedAreaDataUnitOffset; EncryptDataUnits (activeFragmentBuffer + request->EncryptedOffset, &dataUnit, request->EncryptedLength / ENCRYPTION_DATA_UNIT_SIZE, queue->CryptoInfo); } } // Queue IO request ExInterlockedInsertTailList (&queue->IoThreadQueue, &request->ListEntry, &queue->IoThreadQueueLock); KeSetEvent (&queue->IoThreadQueueNotEmptyEvent, IO_DISK_INCREMENT, FALSE); if (isLastFragment) break; dataRemaining -= TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; dataBuffer += TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; fragmentOffset.QuadPart += TC_ENC_IO_QUEUE_MAX_FRAGMENT_SIZE; } } } PsTerminateSystemThread (STATUS_SUCCESS); }
static void *GetPoolBuffer (EncryptedIoQueue *queue, ULONG requestedSize) { EncryptedIoQueueBuffer *buffer; void *bufferAddress = NULL; BOOL requestedSizePresentInPool = FALSE; while (TRUE) { AcquireBufferPoolMutex (queue); for (buffer = queue->FirstPoolBuffer; ; buffer = buffer->NextBuffer) { if (buffer && buffer->Size == requestedSize) { requestedSizePresentInPool = TRUE; if (!buffer->InUse) { // Reuse a free buffer buffer->InUse = TRUE; bufferAddress = buffer->Address; break; } } if (!buffer || !buffer->NextBuffer) { EncryptedIoQueueBuffer *newBuffer; if (requestedSizePresentInPool && !queue->StartPending) break; // Allocate a new buffer newBuffer = TCalloc (sizeof (EncryptedIoQueueBuffer)); if (!newBuffer) { bufferAddress = NULL; break; } bufferAddress = TCalloc (requestedSize); if (bufferAddress) { newBuffer->NextBuffer = NULL; newBuffer->Address = bufferAddress; newBuffer->Size = requestedSize; newBuffer->InUse = TRUE; if (!buffer) queue->FirstPoolBuffer = newBuffer; else buffer->NextBuffer = newBuffer; } else TCfree (newBuffer); break; } } ReleaseBufferPoolMutex (queue); if (bufferAddress || !requestedSizePresentInPool || queue->StartPending) break; KeWaitForSingleObject (&queue->PoolBufferFreeEvent, Executive, KernelMode, FALSE, NULL); } return bufferAddress; }
/* ExpandVolume Sets the volume size in the volume header (and backup header) to a larger value, and resizes the filesystem within the volume (only NTFS supported) Parameters: hwndDlg : HWND [in] handle to progress dialog lpszVolume : char * [in] Pointer to a string that contains the path to the truecrypt volume pVolumePassword : Password * [in] Pointer to the volume password newHostSize : uint64 [in] new value of the volume host size (can be zero for devices, which means the volume should use all space of the host device) initFreeSpace : BOOL [in] if true, the new volume space will be initalized with random data Return value: int with Truecrypt error code (ERR_SUCCESS on success) Remarks: a lot of code is from TrueCrypt 'Common\Password.c' :: ChangePwd() */ static int ExpandVolume (HWND hwndDlg, wchar_t *lpszVolume, Password *pVolumePassword, int VolumePkcs5, int VolumePim, uint64 newHostSize, BOOL initFreeSpace) { int nDosLinkCreated = 1, nStatus = ERR_OS_ERROR; wchar_t szDiskFile[TC_MAX_PATH], szCFDevice[TC_MAX_PATH]; wchar_t szDosDevice[TC_MAX_PATH]; char buffer[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; PCRYPTO_INFO cryptoInfo = NULL, ci = NULL; void *dev = INVALID_HANDLE_VALUE; DWORD dwError; BOOL bDevice; uint64 hostSize=0, newDataAreaSize, currentVolSize; DWORD HostSectorSize; FILETIME ftCreationTime; FILETIME ftLastWriteTime; FILETIME ftLastAccessTime; BOOL bTimeStampValid = FALSE; LARGE_INTEGER headerOffset; BOOL backupHeader; byte *wipeBuffer = NULL; uint32 workChunkSize = TC_VOLUME_HEADER_GROUP_SIZE; if (pVolumePassword->Length == 0) return -1; WaitCursor (); CreateFullVolumePath (szDiskFile, sizeof(szDiskFile), lpszVolume, &bDevice); if (bDevice == FALSE) { wcscpy (szCFDevice, szDiskFile); } else { nDosLinkCreated = FakeDosNameForDevice (szDiskFile, szDosDevice, sizeof(szDosDevice), szCFDevice, sizeof(szCFDevice), FALSE); if (nDosLinkCreated != 0) // note: nStatus == ERR_OS_ERROR goto error; } dev = CreateFile (szCFDevice, GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL); if (dev == INVALID_HANDLE_VALUE) goto error; if (bDevice) { /* This is necessary to determine the hidden volume header offset */ if (dev == INVALID_HANDLE_VALUE) { goto error; } else { PARTITION_INFORMATION diskInfo; DWORD dwResult; BOOL bResult; bResult = GetPartitionInfo (lpszVolume, &diskInfo); if (bResult) { hostSize = diskInfo.PartitionLength.QuadPart; HostSectorSize = TC_SECTOR_SIZE_FILE_HOSTED_VOLUME; //TO DO: get the real host disk sector size } else { DISK_GEOMETRY driveInfo; bResult = DeviceIoControl (dev, IOCTL_DISK_GET_DRIVE_GEOMETRY, NULL, 0, &driveInfo, sizeof (driveInfo), &dwResult, NULL); if (!bResult) goto error; hostSize = driveInfo.Cylinders.QuadPart * driveInfo.BytesPerSector * driveInfo.SectorsPerTrack * driveInfo.TracksPerCylinder; HostSectorSize = driveInfo.BytesPerSector; } if (hostSize == 0) { nStatus = ERR_VOL_SIZE_WRONG; goto error; } } } else { LARGE_INTEGER fileSize; if (!GetFileSizeEx (dev, &fileSize)) { nStatus = ERR_OS_ERROR; goto error; } hostSize = fileSize.QuadPart; HostSectorSize = TC_SECTOR_SIZE_FILE_HOSTED_VOLUME; //TO DO: get the real host disk sector size } if (Randinit ()) { if (CryptoAPILastError == ERROR_SUCCESS) nStatus = ERR_RAND_INIT_FAILED; else nStatus = ERR_CAPI_INIT_FAILED; goto error; } if (!bDevice && bPreserveTimestamp) { /* Remember the container modification/creation date and time, (used to reset file date and time of file-hosted volumes after password change (or attempt to), in order to preserve plausible deniability of hidden volumes (last password change time is stored in the volume header). */ if (GetFileTime ((HANDLE) dev, &ftCreationTime, &ftLastAccessTime, &ftLastWriteTime) == 0) { bTimeStampValid = FALSE; MessageBoxW (hwndDlg, GetString ("GETFILETIME_FAILED_PW"), lpszTitle, MB_OK | MB_ICONEXCLAMATION); } else bTimeStampValid = TRUE; } // Seek the volume header headerOffset.QuadPart = TC_VOLUME_HEADER_OFFSET; if (!SetFilePointerEx ((HANDLE) dev, headerOffset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto error; } /* Read in volume header */ nStatus = _lread ((HFILE) dev, buffer, sizeof (buffer)); if (nStatus != sizeof (buffer)) { // Windows may report EOF when reading sectors from the last cluster of a device formatted as NTFS memset (buffer, 0, sizeof (buffer)); } /* Try to decrypt the header */ nStatus = ReadVolumeHeader (FALSE, buffer, pVolumePassword, VolumePkcs5, VolumePim, FALSE, &cryptoInfo, NULL); if (nStatus == ERR_CIPHER_INIT_WEAK_KEY) nStatus = 0; // We can ignore this error here if (nStatus != 0) { cryptoInfo = NULL; goto error; } if (cryptoInfo->HeaderFlags & TC_HEADER_FLAG_ENCRYPTED_SYSTEM) { nStatus = ERR_SYS_HIDVOL_HEAD_REENC_MODE_WRONG; goto error; } if (bDevice && newHostSize == 0) { // this means we shall take all host space as new volume size newHostSize = hostSize; } if ( newHostSize % cryptoInfo->SectorSize != 0 || newHostSize > TC_MAX_VOLUME_SIZE || (bDevice && newHostSize > hostSize) ) { // 1. must be multiple of sector size // 2. truecrypt volume size limit // 3. for devices volume size can't be larger than host size cryptoInfo = NULL; nStatus = ERR_PARAMETER_INCORRECT; goto error; } newDataAreaSize = GetVolumeDataAreaSize (newHostSize, cryptoInfo->LegacyVolume); if (cryptoInfo->LegacyVolume) { if (bDevice) { if (initFreeSpace) { // unsupported cryptoInfo = NULL; nStatus = ERR_PARAMETER_INCORRECT; goto error; } else { // note: dummy value (only used for parameter checks) cryptoInfo->VolumeSize.Value = newDataAreaSize - TC_MINVAL_FS_EXPAND; } } else { cryptoInfo->VolumeSize.Value = GetVolumeDataAreaSize (hostSize, TRUE); } } currentVolSize = GetVolumeSizeByDataAreaSize (cryptoInfo->VolumeSize.Value, cryptoInfo->LegacyVolume); if ( newDataAreaSize < cryptoInfo->VolumeSize.Value + TC_MINVAL_FS_EXPAND ) { // shrinking a volume or enlarging by less then TC_MINVAL_FS_EXPAND is not allowed cryptoInfo = NULL; nStatus = ERR_PARAMETER_INCORRECT; goto error; } InitProgressBar ( newHostSize, currentVolSize, FALSE, FALSE, FALSE, TRUE); if (bVolTransformThreadCancel) { SetLastError(0); nStatus = ERR_USER_ABORT; goto error; } if (!bDevice) { LARGE_INTEGER liNewSize; liNewSize.QuadPart=(LONGLONG)newHostSize; // Preallocate the file if (!SetFilePointerEx (dev, liNewSize, NULL, FILE_BEGIN) || !SetEndOfFile (dev) || SetFilePointer (dev, 0, NULL, FILE_BEGIN) != 0) { nStatus = ERR_OS_ERROR; goto error; } } if (initFreeSpace) { uint64 startSector; int64 num_sectors; // fill new space with random data startSector = currentVolSize/HostSectorSize ; num_sectors = (newHostSize/HostSectorSize) - startSector; if (bDevice && !StartFormatWriteThread()) { nStatus = ERR_OS_ERROR; goto error; } DebugAddProgressDlgStatus(hwndDlg, L"Writing random data to new space ...\r\n"); SetFormatSectorSize(HostSectorSize); nStatus = FormatNoFs (hwndDlg, startSector, num_sectors, dev, cryptoInfo, FALSE); dwError = GetLastError(); StopFormatWriteThread(); SetLastError (dwError); } else { UpdateProgressBar(newHostSize); } if (nStatus != ERR_SUCCESS) { dwError = GetLastError(); DebugAddProgressDlgStatus(hwndDlg, L"Error: failed to write random data ...\r\n"); if ( !bDevice ) { // restore original size of the container file LARGE_INTEGER liOldSize; liOldSize.QuadPart=(LONGLONG)hostSize; if (!SetFilePointerEx (dev, liOldSize, NULL, FILE_BEGIN) || !SetEndOfFile (dev)) { DebugAddProgressDlgStatus(hwndDlg, L"Warning: failed to restore original size of the container file\r\n"); } } SetLastError (dwError); goto error; } RandSetHashFunction (cryptoInfo->pkcs5); // Re-encrypt the volume header forn non-legacy volumes: backup header first backupHeader = TRUE; headerOffset.QuadPart = TC_VOLUME_HEADER_OFFSET + newHostSize - TC_VOLUME_HEADER_GROUP_SIZE; /* note: updating the header is not neccessary for legay volumes */ while ( !cryptoInfo->LegacyVolume ) { if (backupHeader) DebugAddProgressDlgStatus(hwndDlg, L"Writing re-encrypted backup header ...\r\n"); else DebugAddProgressDlgStatus(hwndDlg, L"Writing re-encrypted primary header ...\r\n"); // Prepare new volume header nStatus = CreateVolumeHeaderInMemory (hwndDlg, FALSE, buffer, cryptoInfo->ea, cryptoInfo->mode, pVolumePassword, cryptoInfo->pkcs5, VolumePim, (char*)(cryptoInfo->master_keydata), &ci, newDataAreaSize, 0, // hiddenVolumeSize cryptoInfo->EncryptedAreaStart.Value, newDataAreaSize, cryptoInfo->RequiredProgramVersion, cryptoInfo->HeaderFlags, cryptoInfo->SectorSize, TRUE ); // use slow poll if (ci != NULL) crypto_close (ci); if (nStatus != 0) goto error; if (!SetFilePointerEx ((HANDLE) dev, headerOffset, NULL, FILE_BEGIN)) { nStatus = ERR_OS_ERROR; goto error; } nStatus = _lwrite ((HFILE) dev, buffer, TC_VOLUME_HEADER_EFFECTIVE_SIZE); if (nStatus != TC_VOLUME_HEADER_EFFECTIVE_SIZE) { nStatus = ERR_OS_ERROR; goto error; } if ( ( backupHeader && !initFreeSpace ) || ( bDevice && !cryptoInfo->LegacyVolume && !cryptoInfo->hiddenVolume && cryptoInfo->HeaderVersion == 4 // BUG in TrueCrypt: doing this only for v4 make no sense && (cryptoInfo->HeaderFlags & TC_HEADER_FLAG_NONSYS_INPLACE_ENC) != 0 && (cryptoInfo->HeaderFlags & ~TC_HEADER_FLAG_NONSYS_INPLACE_ENC) == 0 ) ) { //DebugAddProgressDlgStatus(hwndDlg, L"WriteRandomDataToReservedHeaderAreas() ...\r\n"); nStatus = WriteRandomDataToReservedHeaderAreas (hwndDlg, dev, cryptoInfo, newDataAreaSize, !backupHeader, backupHeader); if (nStatus != ERR_SUCCESS) goto error; } FlushFileBuffers (dev); if (!backupHeader) break; backupHeader = FALSE; headerOffset.QuadPart = TC_VOLUME_HEADER_OFFSET; // offset for main header } /* header successfully updated */ nStatus = ERR_SUCCESS; if (bVolTransformThreadCancel) { nStatus = ERR_USER_ABORT; goto error; } /* wipe old backup header */ if ( !cryptoInfo->LegacyVolume ) { byte wipeRandChars [TC_WIPE_RAND_CHAR_COUNT]; byte wipeRandCharsUpdate [TC_WIPE_RAND_CHAR_COUNT]; byte wipePass; UINT64_STRUCT unitNo; LARGE_INTEGER offset; WipeAlgorithmId wipeAlgorithm = TC_WIPE_35_GUTMANN; if ( !RandgetBytes (hwndDlg, wipeRandChars, TC_WIPE_RAND_CHAR_COUNT, TRUE) || !RandgetBytes (hwndDlg, wipeRandCharsUpdate, TC_WIPE_RAND_CHAR_COUNT, TRUE) ) { nStatus = ERR_OS_ERROR; goto error; } DebugAddProgressDlgStatus(hwndDlg, L"Wiping old backup header ...\r\n"); wipeBuffer = (byte *) TCalloc (workChunkSize); if (!wipeBuffer) { nStatus = ERR_OUTOFMEMORY; goto error; } offset.QuadPart = currentVolSize - TC_VOLUME_HEADER_GROUP_SIZE; unitNo.Value = offset.QuadPart; for (wipePass = 1; wipePass <= GetWipePassCount (wipeAlgorithm); ++wipePass) { if (!WipeBuffer (wipeAlgorithm, wipeRandChars, wipePass, wipeBuffer, workChunkSize)) { ULONG i; for (i = 0; i < workChunkSize; ++i) { wipeBuffer[i] = wipePass; } EncryptDataUnits (wipeBuffer, &unitNo, workChunkSize / ENCRYPTION_DATA_UNIT_SIZE, cryptoInfo); memcpy (wipeRandCharsUpdate, wipeBuffer, sizeof (wipeRandCharsUpdate)); } if ( !SetFilePointerEx (dev, offset, NULL, FILE_BEGIN) || _lwrite ((HFILE)dev, (LPCSTR)wipeBuffer, workChunkSize) == HFILE_ERROR ) { // Write error DebugAddProgressDlgStatus(hwndDlg, L"Warning: Failed to wipe old backup header\r\n"); MessageBoxW (hwndDlg, L"WARNING: Failed to wipe old backup header!\n\nIt may be possible to use the current volume password to decrypt the old backup header even after a future password change.\n", lpszTitle, MB_OK | MB_ICONEXCLAMATION); if (wipePass == 1) continue; // retry once // non-critical error - it's better to continue nStatus = ERR_SUCCESS; goto error; } FlushFileBuffers(dev); // we don't check FlushFileBuffers() return code, because it fails for devices // (same implementation in password.c - a bug or not ???) } burn (wipeRandChars, TC_WIPE_RAND_CHAR_COUNT); burn (wipeRandCharsUpdate, TC_WIPE_RAND_CHAR_COUNT); } error: dwError = GetLastError (); if (wipeBuffer) { burn (wipeBuffer, workChunkSize); TCfree (wipeBuffer); wipeBuffer = NULL; } burn (buffer, sizeof (buffer)); if (cryptoInfo != NULL) crypto_close (cryptoInfo); if (bTimeStampValid) { // Restore the container timestamp (to preserve plausible deniability of possible hidden volume). if (SetFileTime (dev, &ftCreationTime, &ftLastAccessTime, &ftLastWriteTime) == 0) MessageBoxW (hwndDlg, GetString ("SETFILETIME_FAILED_PW"), lpszTitle, MB_OK | MB_ICONEXCLAMATION); } if (dev != INVALID_HANDLE_VALUE) CloseHandle ((HANDLE) dev); if (nDosLinkCreated == 0) RemoveFakeDosName (szDiskFile, szDosDevice); RandStop (FALSE); if (bVolTransformThreadCancel) nStatus = ERR_USER_ABORT; SetLastError (dwError); if (nStatus == ERR_SUCCESS) { nStatus = ExtendFileSystem (hwndDlg, lpszVolume, pVolumePassword, VolumePkcs5, VolumePim, newDataAreaSize); } return nStatus; }
int ReadVolumeHeader (BOOL bBoot, char *encryptedHeader, Password *password, PCRYPTO_INFO *retInfo, CRYPTO_INFO *retHeaderCryptoInfo) { char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; KEY_INFO keyInfo; PCRYPTO_INFO cryptoInfo; char dk[MASTER_KEYDATA_SIZE]; int enqPkcs5Prf, pkcs5_prf; uint16 headerVersion; int status = ERR_PARAMETER_INCORRECT; int primaryKeyOffset; TC_EVENT keyDerivationCompletedEvent; TC_EVENT noOutstandingWorkItemEvent; KeyDerivationWorkItem *keyDerivationWorkItems; KeyDerivationWorkItem *item; int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1; size_t encryptionThreadCount = GetEncryptionThreadCount(); size_t queuedWorkItems = 0; LONG outstandingWorkItemCount = 0; int i; if (retHeaderCryptoInfo != NULL) { cryptoInfo = retHeaderCryptoInfo; } else { cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; } if (encryptionThreadCount > 1) { keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); if (!keyDerivationWorkItems) return ERR_OUTOFMEMORY; for (i = 0; i < pkcs5PrfCount; ++i) keyDerivationWorkItems[i].Free = TRUE; #ifdef DEVICE_DRIVER KeInitializeEvent (&keyDerivationCompletedEvent, SynchronizationEvent, FALSE); KeInitializeEvent (&noOutstandingWorkItemEvent, SynchronizationEvent, TRUE); #else keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!keyDerivationCompletedEvent) { TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!noOutstandingWorkItemEvent) { CloseHandle (keyDerivationCompletedEvent); TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } #endif } #ifndef DEVICE_DRIVER VirtualLock (&keyInfo, sizeof (keyInfo)); VirtualLock (&dk, sizeof (dk)); #endif crypto_loadkey (&keyInfo, password->Text, (int) password->Length); // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE); // Test all available PKCS5 PRFs for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf) { BOOL lrw64InitDone = FALSE; // Deprecated/legacy BOOL lrw128InitDone = FALSE; // Deprecated/legacy if (encryptionThreadCount > 1) { // Enqueue key derivation on thread pool if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (item->Free) { item->Free = FALSE; item->KeyReady = FALSE; item->Pkcs5Prf = enqPkcs5Prf; EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent, &item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey); ++queuedWorkItems; break; } } if (enqPkcs5Prf < LAST_PRF_ID) continue; } else --enqPkcs5Prf; // Wait for completion of a key derivation while (queuedWorkItems > 0) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE) { pkcs5_prf = item->Pkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot); memcpy (dk, item->DerivedKey, sizeof (dk)); item->Free = TRUE; --queuedWorkItems; goto KeyReady; } } if (queuedWorkItems > 0) TC_WAIT_EVENT (keyDerivationCompletedEvent); } continue; KeyReady: ; } else { pkcs5_prf = enqPkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot); switch (pkcs5_prf) { case RIPEMD160: derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA512: derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA1: // Deprecated/legacy derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Test all available modes of operation for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; cryptoInfo->mode <= LAST_MODE_OF_OPERATION; cryptoInfo->mode++) { switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), copy the tweak key // For CBC (deprecated/legacy), copy the IV/whitening seed memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE); primaryKeyOffset = LEGACY_VOL_IV_SIZE; break; default: primaryKeyOffset = 0; } // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) { int blockSize; if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode)) continue; // This encryption algorithm has never been available with this mode of operation blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea)); status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; // Init objects related to the mode of operation if (cryptoInfo->mode == XTS) { // Copy the secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); // Secondary key schedule if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } } else if (cryptoInfo->mode == LRW && (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone)) { // Deprecated/legacy if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } if (blockSize == 8) lrw64InitDone = TRUE; else if (blockSize == 16) lrw128InitDone = TRUE; } // Copy the header for decryption memcpy (header, encryptedHeader, sizeof (header)); // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Magic 'TRUE' if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) != 0x54525545) continue; // Header version headerVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_VERSION); if (headerVersion > VOLUME_HEADER_VERSION) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Check CRC of the header fields if (!ReadVolumeHeaderRecoveryMode && headerVersion >= 4 && GetHeaderField32 (header, TC_HEADER_OFFSET_HEADER_CRC) != GetCrc32 (header + TC_HEADER_OFFSET_MAGIC, TC_HEADER_OFFSET_HEADER_CRC - TC_HEADER_OFFSET_MAGIC)) continue; // Required program version cryptoInfo->RequiredProgramVersion = GetHeaderField16 (header, TC_HEADER_OFFSET_REQUIRED_VERSION); cryptoInfo->LegacyVolume = cryptoInfo->RequiredProgramVersion < 0x600; // Check CRC of the key set if (!ReadVolumeHeaderRecoveryMode && GetHeaderField32 (header, TC_HEADER_OFFSET_KEY_AREA_CRC) != GetCrc32 (header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE)) continue; // Now we have the correct password, cipher, hash algorithm, and volume type // Check the version required to handle this volume if (cryptoInfo->RequiredProgramVersion > VERSION_NUM) { status = ERR_NEW_VERSION_REQUIRED; goto err; } // Header version cryptoInfo->HeaderVersion = headerVersion; // Volume creation time (legacy) cryptoInfo->volume_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_CREATION_TIME).Value; // Header creation time (legacy) cryptoInfo->header_creation_time = GetHeaderField64 (header, TC_HEADER_OFFSET_MODIFICATION_TIME).Value; // Hidden volume size (if any) cryptoInfo->hiddenVolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_HIDDEN_VOLUME_SIZE).Value; // Hidden volume status cryptoInfo->hiddenVolume = (cryptoInfo->hiddenVolumeSize != 0); // Volume size cryptoInfo->VolumeSize = GetHeaderField64 (header, TC_HEADER_OFFSET_VOLUME_SIZE); // Encrypted area size and length cryptoInfo->EncryptedAreaStart = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_START); cryptoInfo->EncryptedAreaLength = GetHeaderField64 (header, TC_HEADER_OFFSET_ENCRYPTED_AREA_LENGTH); // Flags cryptoInfo->HeaderFlags = GetHeaderField32 (header, TC_HEADER_OFFSET_FLAGS); // Sector size if (headerVersion >= 5) cryptoInfo->SectorSize = GetHeaderField32 (header, TC_HEADER_OFFSET_SECTOR_SIZE); else cryptoInfo->SectorSize = TC_SECTOR_SIZE_LEGACY; if (cryptoInfo->SectorSize < TC_MIN_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize > TC_MAX_VOLUME_SECTOR_SIZE || cryptoInfo->SectorSize % ENCRYPTION_DATA_UNIT_SIZE != 0) { status = ERR_PARAMETER_INCORRECT; goto err; } // Preserve scheduled header keys if requested if (retHeaderCryptoInfo) { if (retInfo == NULL) { cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo.noIterations; goto ret; } cryptoInfo = *retInfo = crypto_open (); if (cryptoInfo == NULL) { status = ERR_OUTOFMEMORY; goto err; } memcpy (cryptoInfo, retHeaderCryptoInfo, sizeof (*cryptoInfo)); } // Master key data memcpy (keyInfo.master_keydata, header + HEADER_MASTER_KEYDATA_OFFSET, MASTER_KEYDATA_SIZE); memcpy (cryptoInfo->master_keydata, keyInfo.master_keydata, MASTER_KEYDATA_SIZE); // PKCS #5 memcpy (cryptoInfo->salt, keyInfo.salt, PKCS5_SALT_SIZE); cryptoInfo->pkcs5 = pkcs5_prf; cryptoInfo->noIterations = keyInfo.noIterations; // Init the cipher with the decrypted master key status = EAInit (cryptoInfo->ea, keyInfo.master_keydata + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), the tweak key // For CBC (deprecated/legacy), the IV/whitening seed memcpy (cryptoInfo->k2, keyInfo.master_keydata, LEGACY_VOL_IV_SIZE); break; default: // The secondary master key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, keyInfo.master_keydata + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); } if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } status = ERR_SUCCESS; goto ret; } } } status = ERR_PASSWORD_WRONG; err: if (cryptoInfo != retHeaderCryptoInfo) { crypto_close(cryptoInfo); *retInfo = NULL; } ret: burn (&keyInfo, sizeof (keyInfo)); burn (dk, sizeof(dk)); #ifndef DEVICE_DRIVER VirtualUnlock (&keyInfo, sizeof (keyInfo)); VirtualUnlock (&dk, sizeof (dk)); #endif if (encryptionThreadCount > 1) { TC_WAIT_EVENT (noOutstandingWorkItemEvent); burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); TCfree (keyDerivationWorkItems); #ifndef DEVICE_DRIVER CloseHandle (keyDerivationCompletedEvent); CloseHandle (noOutstandingWorkItemEvent); #endif } return status; }
/// /// Note: if there are Keyfiles, these must be applied already to the password! /// int __declspec(dllexport) __stdcall CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password) int __declspec(dllexport) __cdecl CheckVolumeHeaderPassword (BOOL bBoot, char *encryptedHeader, Password *password) { char header[TC_VOLUME_HEADER_EFFECTIVE_SIZE]; KEY_INFO keyInfo; PCRYPTO_INFO cryptoInfo; char dk[MASTER_KEYDATA_SIZE]; int enqPkcs5Prf, pkcs5_prf; uint16 headerVersion; int status = ERR_PARAMETER_INCORRECT; int primaryKeyOffset; TC_EVENT keyDerivationCompletedEvent; TC_EVENT noOutstandingWorkItemEvent; KeyDerivationWorkItem *keyDerivationWorkItems; KeyDerivationWorkItem *item; int pkcs5PrfCount = LAST_PRF_ID - FIRST_PRF_ID + 1; size_t encryptionThreadCount = GetEncryptionThreadCount(); size_t queuedWorkItems = 0; LONG outstandingWorkItemCount = 0; int i; cryptoInfo = crypto_open(); if (cryptoInfo == NULL) return ERR_OUTOFMEMORY; if (encryptionThreadCount > 1) { keyDerivationWorkItems = TCalloc (sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); if (!keyDerivationWorkItems) return ERR_OUTOFMEMORY; for (i = 0; i < pkcs5PrfCount; ++i) keyDerivationWorkItems[i].Free = TRUE; keyDerivationCompletedEvent = CreateEvent (NULL, FALSE, FALSE, NULL); if (!keyDerivationCompletedEvent) { TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } noOutstandingWorkItemEvent = CreateEvent (NULL, FALSE, TRUE, NULL); if (!noOutstandingWorkItemEvent) { CloseHandle (keyDerivationCompletedEvent); TCfree (keyDerivationWorkItems); return ERR_OUTOFMEMORY; } } VirtualLock (&keyInfo, sizeof (keyInfo)); VirtualLock (&dk, sizeof (dk)); crypto_loadkey (&keyInfo, password->Text, (int) password->Length); // PKCS5 is used to derive the primary header key(s) and secondary header key(s) (XTS mode) from the password memcpy (keyInfo.salt, encryptedHeader + HEADER_SALT_OFFSET, PKCS5_SALT_SIZE); // Test all available PKCS5 PRFs for (enqPkcs5Prf = FIRST_PRF_ID; enqPkcs5Prf <= LAST_PRF_ID || queuedWorkItems > 0; ++enqPkcs5Prf) { BOOL lrw64InitDone = FALSE; // Deprecated/legacy BOOL lrw128InitDone = FALSE; // Deprecated/legacy if (encryptionThreadCount > 1) { // Enqueue key derivation on thread pool if (queuedWorkItems < encryptionThreadCount && enqPkcs5Prf <= LAST_PRF_ID) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (item->Free) { item->Free = FALSE; item->KeyReady = FALSE; item->Pkcs5Prf = enqPkcs5Prf; EncryptionThreadPoolBeginKeyDerivation (&keyDerivationCompletedEvent, &noOutstandingWorkItemEvent, &item->KeyReady, &outstandingWorkItemCount, enqPkcs5Prf, keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, get_pkcs5_iteration_count (enqPkcs5Prf, bBoot), item->DerivedKey); ++queuedWorkItems; break; } } if (enqPkcs5Prf < LAST_PRF_ID) continue; } else --enqPkcs5Prf; // Wait for completion of a key derivation while (queuedWorkItems > 0) { for (i = 0; i < pkcs5PrfCount; ++i) { item = &keyDerivationWorkItems[i]; if (!item->Free && InterlockedExchangeAdd (&item->KeyReady, 0) == TRUE) { pkcs5_prf = item->Pkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (pkcs5_prf, bBoot); memcpy (dk, item->DerivedKey, sizeof (dk)); item->Free = TRUE; --queuedWorkItems; goto KeyReady; } } if (queuedWorkItems > 0) TC_WAIT_EVENT (keyDerivationCompletedEvent); } continue; KeyReady: ; } else { pkcs5_prf = enqPkcs5Prf; keyInfo.noIterations = get_pkcs5_iteration_count (enqPkcs5Prf, bBoot); switch (pkcs5_prf) { case RIPEMD160: derive_key_ripemd160 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA512: derive_key_sha512 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case SHA1: // Deprecated/legacy derive_key_sha1 (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; case WHIRLPOOL: derive_key_whirlpool (keyInfo.userKey, keyInfo.keyLength, keyInfo.salt, PKCS5_SALT_SIZE, keyInfo.noIterations, dk, GetMaxPkcs5OutSize()); break; default: // Unknown/wrong ID TC_THROW_FATAL_EXCEPTION; } } // Test all available modes of operation for (cryptoInfo->mode = FIRST_MODE_OF_OPERATION_ID; cryptoInfo->mode <= LAST_MODE_OF_OPERATION; cryptoInfo->mode++) { switch (cryptoInfo->mode) { case LRW: case CBC: case INNER_CBC: case OUTER_CBC: // For LRW (deprecated/legacy), copy the tweak key // For CBC (deprecated/legacy), copy the IV/whitening seed memcpy (cryptoInfo->k2, dk, LEGACY_VOL_IV_SIZE); primaryKeyOffset = LEGACY_VOL_IV_SIZE; break; default: primaryKeyOffset = 0; } // Test all available encryption algorithms for (cryptoInfo->ea = EAGetFirst (); cryptoInfo->ea != 0; cryptoInfo->ea = EAGetNext (cryptoInfo->ea)) { int blockSize; if (!EAIsModeSupported (cryptoInfo->ea, cryptoInfo->mode)) continue; // This encryption algorithm has never been available with this mode of operation blockSize = CipherGetBlockSize (EAGetFirstCipher (cryptoInfo->ea)); status = EAInit (cryptoInfo->ea, dk + primaryKeyOffset, cryptoInfo->ks); if (status == ERR_CIPHER_INIT_FAILURE) goto err; // Init objects related to the mode of operation if (cryptoInfo->mode == XTS) { // Copy the secondary key (if cascade, multiple concatenated) memcpy (cryptoInfo->k2, dk + EAGetKeySize (cryptoInfo->ea), EAGetKeySize (cryptoInfo->ea)); // Secondary key schedule if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } } else if (cryptoInfo->mode == LRW && (blockSize == 8 && !lrw64InitDone || blockSize == 16 && !lrw128InitDone)) { // Deprecated/legacy if (!EAInitMode (cryptoInfo)) { status = ERR_MODE_INIT_FAILED; goto err; } if (blockSize == 8) lrw64InitDone = TRUE; else if (blockSize == 16) lrw128InitDone = TRUE; } // Copy the header for decryption memcpy (header, encryptedHeader, sizeof (header)); // Try to decrypt header DecryptBuffer (header + HEADER_ENCRYPTED_DATA_OFFSET, HEADER_ENCRYPTED_DATA_SIZE, cryptoInfo); // Magic 'TRUE' if (GetHeaderField32 (header, TC_HEADER_OFFSET_MAGIC) == 0x54525545){ status = ERR_SUCCESS; goto ret; } } } } status = ERR_PASSWORD_WRONG; err: ret: burn (&keyInfo, sizeof (keyInfo)); burn (dk, sizeof(dk)); VirtualUnlock (&keyInfo, sizeof (keyInfo)); VirtualUnlock (&dk, sizeof (dk)); if (encryptionThreadCount > 1) { // TC_WAIT_EVENT (noOutstandingWorkItemEvent); burn (keyDerivationWorkItems, sizeof (KeyDerivationWorkItem) * pkcs5PrfCount); TCfree (keyDerivationWorkItems); CloseHandle (keyDerivationCompletedEvent); CloseHandle (noOutstandingWorkItemEvent); } return status; }
NTSTATUS TCOpenVolume (PDEVICE_OBJECT DeviceObject, PEXTENSION Extension, MOUNT_STRUCT *mount, PWSTR pwszMountVolume, BOOL bRawDevice) { FILE_STANDARD_INFORMATION FileStandardInfo; FILE_BASIC_INFORMATION FileBasicInfo; OBJECT_ATTRIBUTES oaFileAttributes; UNICODE_STRING FullFileName; IO_STATUS_BLOCK IoStatusBlock; PCRYPTO_INFO cryptoInfoPtr = NULL; PCRYPTO_INFO tmpCryptoInfo = NULL; LARGE_INTEGER lDiskLength; __int64 partitionStartingOffset = 0; int volumeType; char *readBuffer = 0; NTSTATUS ntStatus = 0; BOOL forceAccessCheck = (!bRawDevice && !(OsMajorVersion == 5 &&OsMinorVersion == 0)); // Windows 2000 does not support OBJ_FORCE_ACCESS_CHECK attribute BOOL disableBuffering = TRUE; BOOL exclusiveAccess = mount->bExclusiveAccess; Extension->pfoDeviceFile = NULL; Extension->hDeviceFile = NULL; Extension->bTimeStampValid = FALSE; RtlInitUnicodeString (&FullFileName, pwszMountVolume); InitializeObjectAttributes (&oaFileAttributes, &FullFileName, OBJ_CASE_INSENSITIVE | (forceAccessCheck ? OBJ_FORCE_ACCESS_CHECK : 0) | OBJ_KERNEL_HANDLE, NULL, NULL); KeInitializeEvent (&Extension->keVolumeEvent, NotificationEvent, FALSE); if (Extension->SecurityClientContextValid) { ntStatus = SeImpersonateClientEx (&Extension->SecurityClientContext, NULL); if (!NT_SUCCESS (ntStatus)) goto error; } mount->VolumeMountedReadOnlyAfterDeviceWriteProtected = FALSE; // If we are opening a device, query its size first if (bRawDevice) { PARTITION_INFORMATION pi; PARTITION_INFORMATION_EX pix; LARGE_INTEGER diskLengthInfo; DISK_GEOMETRY dg; STORAGE_PROPERTY_QUERY storagePropertyQuery = {0}; STORAGE_ACCESS_ALIGNMENT_DESCRIPTOR storageDescriptor = {0}; ntStatus = IoGetDeviceObjectPointer (&FullFileName, FILE_READ_DATA | FILE_READ_ATTRIBUTES, &Extension->pfoDeviceFile, &Extension->pFsdDevice); if (!NT_SUCCESS (ntStatus)) goto error; ntStatus = TCSendHostDeviceIoControlRequest (DeviceObject, Extension, IOCTL_DISK_GET_DRIVE_GEOMETRY, (char *) &dg, sizeof (dg)); if (!NT_SUCCESS (ntStatus)) goto error; lDiskLength.QuadPart = dg.Cylinders.QuadPart * dg.SectorsPerTrack * dg.TracksPerCylinder * dg.BytesPerSector; Extension->HostBytesPerSector = dg.BytesPerSector; storagePropertyQuery.PropertyId = StorageAccessAlignmentProperty; storagePropertyQuery.QueryType = PropertyStandardQuery; /* IOCTL_STORAGE_QUERY_PROPERTY supported only on Vista and above */ if (NT_SUCCESS (TCSendHostDeviceIoControlRequestEx (DeviceObject, Extension, IOCTL_STORAGE_QUERY_PROPERTY, (char*) &storagePropertyQuery, sizeof(storagePropertyQuery), (char *) &storageDescriptor, sizeof (storageDescriptor)))) { Extension->HostBytesPerPhysicalSector = storageDescriptor.BytesPerPhysicalSector; } else { Extension->HostBytesPerPhysicalSector = dg.BytesPerSector; } // Drive geometry is used only when IOCTL_DISK_GET_PARTITION_INFO fails if (NT_SUCCESS (TCSendHostDeviceIoControlRequest (DeviceObject, Extension, IOCTL_DISK_GET_PARTITION_INFO_EX, (char *) &pix, sizeof (pix)))) { lDiskLength.QuadPart = pix.PartitionLength.QuadPart; partitionStartingOffset = pix.StartingOffset.QuadPart; } // Windows 2000 does not support IOCTL_DISK_GET_PARTITION_INFO_EX else if (NT_SUCCESS (TCSendHostDeviceIoControlRequest (DeviceObject, Extension, IOCTL_DISK_GET_PARTITION_INFO, (char *) &pi, sizeof (pi)))) { lDiskLength.QuadPart = pi.PartitionLength.QuadPart; partitionStartingOffset = pi.StartingOffset.QuadPart; } else if (NT_SUCCESS (TCSendHostDeviceIoControlRequest (DeviceObject, Extension, IOCTL_DISK_GET_LENGTH_INFO, &diskLengthInfo, sizeof (diskLengthInfo)))) { lDiskLength = diskLengthInfo; } ProbingHostDeviceForWrite = TRUE; if (!mount->bMountReadOnly && TCSendHostDeviceIoControlRequest (DeviceObject, Extension, IsHiddenSystemRunning() ? TC_IOCTL_DISK_IS_WRITABLE : IOCTL_DISK_IS_WRITABLE, NULL, 0) == STATUS_MEDIA_WRITE_PROTECTED) { mount->bMountReadOnly = TRUE; DeviceObject->Characteristics |= FILE_READ_ONLY_DEVICE; mount->VolumeMountedReadOnlyAfterDeviceWriteProtected = TRUE; } ProbingHostDeviceForWrite = FALSE; // Some Windows tools (e.g. diskmgmt, diskpart, vssadmin) fail or experience timeouts when there is a raw device // open for exclusive access. Therefore, exclusive access is used only for file-hosted volumes. // Applications requiring a consistent device image need to acquire exclusive write access first. This is prevented // when a device-hosted volume is mounted. exclusiveAccess = FALSE; } else { // Limit the maximum required buffer size if (mount->BytesPerSector > 128 * BYTES_PER_KB) { ntStatus = STATUS_INVALID_PARAMETER; goto error; } Extension->HostBytesPerSector = mount->BytesPerSector; Extension->HostBytesPerPhysicalSector = mount->BytesPerPhysicalSector; if (Extension->HostBytesPerSector != TC_SECTOR_SIZE_FILE_HOSTED_VOLUME) disableBuffering = FALSE; } // Open the volume hosting file/device if (!mount->bMountReadOnly) { ntStatus = ZwCreateFile (&Extension->hDeviceFile, GENERIC_READ | GENERIC_WRITE | SYNCHRONIZE, &oaFileAttributes, &IoStatusBlock, NULL, FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_SYSTEM, exclusiveAccess ? 0 : FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, FILE_RANDOM_ACCESS | FILE_WRITE_THROUGH | (disableBuffering ? FILE_NO_INTERMEDIATE_BUFFERING : 0) | FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); } /* 26-4-99 NT for some partitions returns this code, it is really a access denied */ if (ntStatus == 0xc000001b) ntStatus = STATUS_ACCESS_DENIED; mount->VolumeMountedReadOnlyAfterAccessDenied = FALSE; if (mount->bMountReadOnly || ntStatus == STATUS_ACCESS_DENIED) { ntStatus = ZwCreateFile (&Extension->hDeviceFile, GENERIC_READ | SYNCHRONIZE, &oaFileAttributes, &IoStatusBlock, NULL, FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_SYSTEM, exclusiveAccess ? FILE_SHARE_READ : FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, FILE_RANDOM_ACCESS | FILE_WRITE_THROUGH | (disableBuffering ? FILE_NO_INTERMEDIATE_BUFFERING : 0) | FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); if (NT_SUCCESS (ntStatus) && !mount->bMountReadOnly) mount->VolumeMountedReadOnlyAfterAccessDenied = TRUE; Extension->bReadOnly = TRUE; DeviceObject->Characteristics |= FILE_READ_ONLY_DEVICE; } else Extension->bReadOnly = FALSE; /* 26-4-99 NT for some partitions returns this code, it is really a access denied */ if (ntStatus == 0xc000001b) { /* Partitions which return this code can still be opened with FILE_SHARE_READ but this causes NT problems elsewhere in particular if you do FILE_SHARE_READ NT will die later if anyone even tries to open the partition (or file for that matter...) */ ntStatus = STATUS_SHARING_VIOLATION; } if (!NT_SUCCESS (ntStatus)) { goto error; } // If we have opened a file, query its size now if (bRawDevice == FALSE) { ntStatus = ZwQueryInformationFile (Extension->hDeviceFile, &IoStatusBlock, &FileBasicInfo, sizeof (FileBasicInfo), FileBasicInformation); if (NT_SUCCESS (ntStatus)) { if (mount->bPreserveTimestamp) { Extension->fileCreationTime = FileBasicInfo.CreationTime; Extension->fileLastAccessTime = FileBasicInfo.LastAccessTime; Extension->fileLastWriteTime = FileBasicInfo.LastWriteTime; Extension->fileLastChangeTime = FileBasicInfo.ChangeTime; Extension->bTimeStampValid = TRUE; } ntStatus = ZwQueryInformationFile (Extension->hDeviceFile, &IoStatusBlock, &FileStandardInfo, sizeof (FileStandardInfo), FileStandardInformation); } if (!NT_SUCCESS (ntStatus)) { Dump ("ZwQueryInformationFile failed while opening file: NTSTATUS 0x%08x\n", ntStatus); goto error; } lDiskLength.QuadPart = FileStandardInfo.EndOfFile.QuadPart; if (FileBasicInfo.FileAttributes & FILE_ATTRIBUTE_COMPRESSED) { Dump ("File \"%ls\" is marked as compressed - not supported!\n", pwszMountVolume); mount->nReturnCode = ERR_COMPRESSION_NOT_SUPPORTED; ntStatus = STATUS_SUCCESS; goto error; } ntStatus = ObReferenceObjectByHandle (Extension->hDeviceFile, FILE_ALL_ACCESS, *IoFileObjectType, KernelMode, &Extension->pfoDeviceFile, 0); if (!NT_SUCCESS (ntStatus)) { goto error; } /* Get the FSD device for the file (probably either NTFS or FAT) */ Extension->pFsdDevice = IoGetRelatedDeviceObject (Extension->pfoDeviceFile); } else { // Try to gain "raw" access to the partition in case there is a live filesystem on it (otherwise, // the NTFS driver guards hidden sectors and prevents mounting using a backup header e.g. after the user // accidentally quick-formats a dismounted partition-hosted TrueCrypt volume as NTFS). PFILE_OBJECT pfoTmpDeviceFile = NULL; if (NT_SUCCESS (ObReferenceObjectByHandle (Extension->hDeviceFile, FILE_ALL_ACCESS, *IoFileObjectType, KernelMode, &pfoTmpDeviceFile, NULL)) && pfoTmpDeviceFile != NULL) { TCFsctlCall (pfoTmpDeviceFile, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0); ObDereferenceObject (pfoTmpDeviceFile); } } // Check volume size if (lDiskLength.QuadPart < TC_MIN_VOLUME_SIZE_LEGACY || lDiskLength.QuadPart > TC_MAX_VOLUME_SIZE) { mount->nReturnCode = ERR_VOL_SIZE_WRONG; ntStatus = STATUS_SUCCESS; goto error; } Extension->DiskLength = lDiskLength.QuadPart; Extension->HostLength = lDiskLength.QuadPart; readBuffer = TCalloc (max (max (TC_VOLUME_HEADER_EFFECTIVE_SIZE, PAGE_SIZE), Extension->HostBytesPerSector)); if (readBuffer == NULL) { ntStatus = STATUS_INSUFFICIENT_RESOURCES; goto error; } // Go through all volume types (e.g., normal, hidden) for (volumeType = TC_VOLUME_TYPE_NORMAL; volumeType < TC_VOLUME_TYPE_COUNT; volumeType++) { Dump ("Trying to open volume type %d\n", volumeType); /* Read the volume header */ if (!mount->bPartitionInInactiveSysEncScope || (mount->bPartitionInInactiveSysEncScope && volumeType == TC_VOLUME_TYPE_HIDDEN)) { // Header of a volume that is not within the scope of system encryption, or // header of a system hidden volume (containing a hidden OS) LARGE_INTEGER headerOffset; if (mount->UseBackupHeader && lDiskLength.QuadPart <= TC_TOTAL_VOLUME_HEADERS_SIZE) continue; switch (volumeType) { case TC_VOLUME_TYPE_NORMAL: headerOffset.QuadPart = mount->UseBackupHeader ? lDiskLength.QuadPart - TC_VOLUME_HEADER_GROUP_SIZE : TC_VOLUME_HEADER_OFFSET; break; case TC_VOLUME_TYPE_HIDDEN: if (lDiskLength.QuadPart <= TC_VOLUME_HEADER_GROUP_SIZE) continue; headerOffset.QuadPart = mount->UseBackupHeader ? lDiskLength.QuadPart - TC_HIDDEN_VOLUME_HEADER_OFFSET : TC_HIDDEN_VOLUME_HEADER_OFFSET; break; } Dump ("Reading volume header at %I64d\n", headerOffset.QuadPart); ntStatus = ZwReadFile (Extension->hDeviceFile, NULL, NULL, NULL, &IoStatusBlock, readBuffer, bRawDevice ? max (TC_VOLUME_HEADER_EFFECTIVE_SIZE, Extension->HostBytesPerSector) : TC_VOLUME_HEADER_EFFECTIVE_SIZE, &headerOffset, NULL); } else { // Header of a partition that is within the scope of system encryption WCHAR parentDrivePath [47+1] = {0}; HANDLE hParentDeviceFile = NULL; UNICODE_STRING FullParentPath; OBJECT_ATTRIBUTES oaParentFileAttributes; LARGE_INTEGER parentKeyDataOffset; RtlStringCbPrintfW (parentDrivePath, sizeof (parentDrivePath), WIDE ("\\Device\\Harddisk%d\\Partition0"), mount->nPartitionInInactiveSysEncScopeDriveNo); Dump ("Mounting partition within scope of system encryption (reading key data from: %ls)\n", parentDrivePath); RtlInitUnicodeString (&FullParentPath, parentDrivePath); InitializeObjectAttributes (&oaParentFileAttributes, &FullParentPath, OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE, NULL, NULL); ntStatus = ZwCreateFile (&hParentDeviceFile, GENERIC_READ | SYNCHRONIZE, &oaParentFileAttributes, &IoStatusBlock, NULL, FILE_ATTRIBUTE_NORMAL | FILE_ATTRIBUTE_SYSTEM, FILE_SHARE_READ | FILE_SHARE_WRITE, FILE_OPEN, FILE_RANDOM_ACCESS | FILE_WRITE_THROUGH | FILE_NO_INTERMEDIATE_BUFFERING | FILE_SYNCHRONOUS_IO_NONALERT, NULL, 0); if (!NT_SUCCESS (ntStatus)) { if (hParentDeviceFile != NULL) ZwClose (hParentDeviceFile); Dump ("Cannot open %ls\n", parentDrivePath); goto error; } parentKeyDataOffset.QuadPart = TC_BOOT_VOLUME_HEADER_SECTOR_OFFSET; ntStatus = ZwReadFile (hParentDeviceFile, NULL, NULL, NULL, &IoStatusBlock, readBuffer, max (TC_VOLUME_HEADER_EFFECTIVE_SIZE, Extension->HostBytesPerSector), &parentKeyDataOffset, NULL); if (hParentDeviceFile != NULL) ZwClose (hParentDeviceFile); } if (!NT_SUCCESS (ntStatus) && ntStatus != STATUS_END_OF_FILE) { Dump ("Read failed: NTSTATUS 0x%08x\n", ntStatus); goto error; } if (ntStatus == STATUS_END_OF_FILE || IoStatusBlock.Information < TC_VOLUME_HEADER_EFFECTIVE_SIZE) { Dump ("Read didn't read enough data\n"); // If FSCTL_ALLOW_EXTENDED_DASD_IO failed and there is a live filesystem on the partition, then the // filesystem driver may report EOF when we are reading hidden sectors (when the filesystem is // shorter than the partition). This can happen for example after the user quick-formats a dismounted // partition-hosted TrueCrypt volume and then tries to mount the volume using the embedded backup header. memset (readBuffer, 0, TC_VOLUME_HEADER_EFFECTIVE_SIZE); } /* Attempt to recognize the volume (decrypt the header) */ ReadVolumeHeaderRecoveryMode = mount->RecoveryMode; if ((volumeType == TC_VOLUME_TYPE_HIDDEN) && mount->bProtectHiddenVolume) { mount->nReturnCode = ReadVolumeHeaderWCache ( FALSE, mount->bCache, mount->bCachePim, readBuffer, &mount->ProtectedHidVolPassword, mount->ProtectedHidVolPkcs5Prf, mount->ProtectedHidVolPim, mount->bTrueCryptMode, &tmpCryptoInfo); } else { mount->nReturnCode = ReadVolumeHeaderWCache ( mount->bPartitionInInactiveSysEncScope && volumeType == TC_VOLUME_TYPE_NORMAL, mount->bCache, mount->bCachePim, readBuffer, &mount->VolumePassword, mount->pkcs5_prf, mount->VolumePim, mount->bTrueCryptMode, &Extension->cryptoInfo); } ReadVolumeHeaderRecoveryMode = FALSE; if (mount->nReturnCode == 0 || mount->nReturnCode == ERR_CIPHER_INIT_WEAK_KEY) { /* Volume header successfully decrypted */ if (!Extension->cryptoInfo) { /* should never happen */ mount->nReturnCode = ERR_OUTOFMEMORY; ntStatus = STATUS_SUCCESS; goto error; } Dump ("Volume header decrypted\n"); Dump ("Required program version = %x\n", (int) Extension->cryptoInfo->RequiredProgramVersion); Dump ("Legacy volume = %d\n", (int) Extension->cryptoInfo->LegacyVolume); if (IsHiddenSystemRunning() && !Extension->cryptoInfo->hiddenVolume) { Extension->bReadOnly = mount->bMountReadOnly = TRUE; HiddenSysLeakProtectionCount++; } Extension->cryptoInfo->bProtectHiddenVolume = FALSE; Extension->cryptoInfo->bHiddenVolProtectionAction = FALSE; Extension->cryptoInfo->bPartitionInInactiveSysEncScope = mount->bPartitionInInactiveSysEncScope; /* compute the ID of this volume: SHA-512 of the effective header */ sha256 (Extension->volumeID, readBuffer, TC_VOLUME_HEADER_EFFECTIVE_SIZE); if (volumeType == TC_VOLUME_TYPE_NORMAL) { if (mount->bPartitionInInactiveSysEncScope) { if (Extension->cryptoInfo->EncryptedAreaStart.Value > (unsigned __int64) partitionStartingOffset || Extension->cryptoInfo->EncryptedAreaStart.Value + Extension->cryptoInfo->VolumeSize.Value <= (unsigned __int64) partitionStartingOffset) { // The partition is not within the key scope of system encryption mount->nReturnCode = ERR_PASSWORD_WRONG; ntStatus = STATUS_SUCCESS; goto error; } if (Extension->cryptoInfo->EncryptedAreaLength.Value != Extension->cryptoInfo->VolumeSize.Value) { // Partial encryption is not supported for volumes mounted as regular mount->nReturnCode = ERR_ENCRYPTION_NOT_COMPLETED; ntStatus = STATUS_SUCCESS; goto error; } } else if (Extension->cryptoInfo->HeaderFlags & TC_HEADER_FLAG_NONSYS_INPLACE_ENC) { if (Extension->cryptoInfo->EncryptedAreaLength.Value != Extension->cryptoInfo->VolumeSize.Value) { // Non-system in-place encryption process has not been completed on this volume mount->nReturnCode = ERR_NONSYS_INPLACE_ENC_INCOMPLETE; ntStatus = STATUS_SUCCESS; goto error; } } } Extension->cryptoInfo->FirstDataUnitNo.Value = 0; if (Extension->cryptoInfo->hiddenVolume && IsHiddenSystemRunning()) { // Prevent mount of a hidden system partition if the system hosted on it is currently running if (memcmp (Extension->cryptoInfo->master_keydata, GetSystemDriveCryptoInfo()->master_keydata, EAGetKeySize (Extension->cryptoInfo->ea)) == 0) { mount->nReturnCode = ERR_VOL_ALREADY_MOUNTED; ntStatus = STATUS_SUCCESS; goto error; } } switch (volumeType) { case TC_VOLUME_TYPE_NORMAL: Extension->cryptoInfo->hiddenVolume = FALSE; if (mount->bPartitionInInactiveSysEncScope) { Extension->cryptoInfo->volDataAreaOffset = 0; Extension->DiskLength = lDiskLength.QuadPart; Extension->cryptoInfo->FirstDataUnitNo.Value = partitionStartingOffset / ENCRYPTION_DATA_UNIT_SIZE; } else if (Extension->cryptoInfo->LegacyVolume) { Extension->cryptoInfo->volDataAreaOffset = TC_VOLUME_HEADER_SIZE_LEGACY; Extension->DiskLength = lDiskLength.QuadPart - TC_VOLUME_HEADER_SIZE_LEGACY; } else { Extension->cryptoInfo->volDataAreaOffset = Extension->cryptoInfo->EncryptedAreaStart.Value; Extension->DiskLength = Extension->cryptoInfo->VolumeSize.Value; } break; case TC_VOLUME_TYPE_HIDDEN: cryptoInfoPtr = mount->bProtectHiddenVolume ? tmpCryptoInfo : Extension->cryptoInfo; Extension->cryptoInfo->hiddenVolumeOffset = cryptoInfoPtr->EncryptedAreaStart.Value; Dump ("Hidden volume offset = %I64d\n", Extension->cryptoInfo->hiddenVolumeOffset); Dump ("Hidden volume size = %I64d\n", cryptoInfoPtr->hiddenVolumeSize); Dump ("Hidden volume end = %I64d\n", Extension->cryptoInfo->hiddenVolumeOffset + cryptoInfoPtr->hiddenVolumeSize - 1); // Validate the offset if (Extension->cryptoInfo->hiddenVolumeOffset % ENCRYPTION_DATA_UNIT_SIZE != 0) { mount->nReturnCode = ERR_VOL_SIZE_WRONG; ntStatus = STATUS_SUCCESS; goto error; } // If we are supposed to actually mount the hidden volume (not just to protect it) if (!mount->bProtectHiddenVolume) { Extension->DiskLength = cryptoInfoPtr->hiddenVolumeSize; Extension->cryptoInfo->hiddenVolume = TRUE; Extension->cryptoInfo->volDataAreaOffset = Extension->cryptoInfo->hiddenVolumeOffset; } else { // Hidden volume protection Extension->cryptoInfo->hiddenVolume = FALSE; Extension->cryptoInfo->bProtectHiddenVolume = TRUE; Extension->cryptoInfo->hiddenVolumeProtectedSize = tmpCryptoInfo->hiddenVolumeSize; Dump ("Hidden volume protection active: %I64d-%I64d (%I64d)\n", Extension->cryptoInfo->hiddenVolumeOffset, Extension->cryptoInfo->hiddenVolumeProtectedSize + Extension->cryptoInfo->hiddenVolumeOffset - 1, Extension->cryptoInfo->hiddenVolumeProtectedSize); } break; } Dump ("Volume data offset = %I64d\n", Extension->cryptoInfo->volDataAreaOffset); Dump ("Volume data size = %I64d\n", Extension->DiskLength); Dump ("Volume data end = %I64d\n", Extension->cryptoInfo->volDataAreaOffset + Extension->DiskLength - 1); if (Extension->DiskLength == 0) { Dump ("Incorrect volume size\n"); continue; } // If this is a hidden volume, make sure we are supposed to actually // mount it (i.e. not just to protect it) if (volumeType == TC_VOLUME_TYPE_NORMAL || !mount->bProtectHiddenVolume) { // Validate sector size if (bRawDevice && Extension->cryptoInfo->SectorSize != Extension->HostBytesPerSector) { mount->nReturnCode = ERR_PARAMETER_INCORRECT; ntStatus = STATUS_SUCCESS; goto error; } // Calculate virtual volume geometry Extension->TracksPerCylinder = 1; Extension->SectorsPerTrack = 1; Extension->BytesPerSector = Extension->cryptoInfo->SectorSize; Extension->NumberOfCylinders = Extension->DiskLength / Extension->BytesPerSector; Extension->PartitionType = 0; Extension->bRawDevice = bRawDevice; memset (Extension->wszVolume, 0, sizeof (Extension->wszVolume)); if (wcsstr (pwszMountVolume, WIDE ("\\??\\UNC\\")) == pwszMountVolume) { /* UNC path */ RtlStringCbPrintfW (Extension->wszVolume, sizeof (Extension->wszVolume), WIDE ("\\??\\\\%s"), pwszMountVolume + 7); } else { RtlStringCbCopyW (Extension->wszVolume, sizeof(Extension->wszVolume),pwszMountVolume); } memset (Extension->wszLabel, 0, sizeof (Extension->wszLabel)); RtlStringCbCopyW (Extension->wszLabel, sizeof(Extension->wszLabel), mount->wszLabel); } // If we are to protect a hidden volume we cannot exit yet, for we must also // decrypt the hidden volume header. if (!(volumeType == TC_VOLUME_TYPE_NORMAL && mount->bProtectHiddenVolume)) { TCfree (readBuffer); if (tmpCryptoInfo != NULL) { crypto_close (tmpCryptoInfo); tmpCryptoInfo = NULL; } return STATUS_SUCCESS; } } else if ((mount->bProtectHiddenVolume && volumeType == TC_VOLUME_TYPE_NORMAL) || mount->nReturnCode != ERR_PASSWORD_WRONG) { /* If we are not supposed to protect a hidden volume, the only error that is tolerated is ERR_PASSWORD_WRONG (to allow mounting a possible hidden volume). If we _are_ supposed to protect a hidden volume, we do not tolerate any error (both volume headers must be successfully decrypted). */ break; } } /* Failed due to some non-OS reason so we drop through and return NT SUCCESS then nReturnCode is checked later in user-mode */ if (mount->nReturnCode == ERR_OUTOFMEMORY) ntStatus = STATUS_INSUFFICIENT_RESOURCES; else ntStatus = STATUS_SUCCESS; error: if (mount->nReturnCode == ERR_SUCCESS) mount->nReturnCode = ERR_PASSWORD_WRONG; if (tmpCryptoInfo != NULL) { crypto_close (tmpCryptoInfo); tmpCryptoInfo = NULL; } if (Extension->cryptoInfo) { crypto_close (Extension->cryptoInfo); Extension->cryptoInfo = NULL; } if (Extension->bTimeStampValid) { RestoreTimeStamp (Extension); } /* Close the hDeviceFile */ if (Extension->hDeviceFile != NULL) ZwClose (Extension->hDeviceFile); /* The cryptoInfo pointer is deallocated if the readheader routines fail so there is no need to deallocate here */ /* Dereference the user-mode file object */ if (Extension->pfoDeviceFile != NULL) ObDereferenceObject (Extension->pfoDeviceFile); /* Free the tmp IO buffers */ if (readBuffer != NULL) TCfree (readBuffer); return ntStatus; }
NTSTATUS GingkoCreateCompleteRoutine ( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp, IN PVOID Context ) { PKEVENT Event = Context; ULONG CreateOptions = 0L; PIO_STACK_LOCATION pCurrStack = NULL; ULONG dwRequestProcessId = 0L; PFILE_OBJECT FileObject = NULL; ACCESS_MASK DesiredAccess = 0L; ULONG Information = 0L; NTSTATUS status = STATUS_SUCCESS; UNREFERENCED_PARAMETER( DeviceObject ); UNREFERENCED_PARAMETER( Irp ); UNREFERENCED_PARAMETER( Context ); ASSERT(IS_GINGKO_DEVICE_OBJECT( DeviceObject )); ///KdPrint(("Gingko Completed Read from the physical driver.\n")); if( Irp->PendingReturned == TRUE ) { IoMarkIrpPending( Irp ); return STATUS_MORE_PROCESSING_REQUIRED; } pCurrStack = IoGetCurrentIrpStackLocation( Irp ); FileObject = pCurrStack->FileObject; dwRequestProcessId = IoGetRequestorProcessId( Irp ); IoCopyCurrentIrpStackLocationToNext( Irp ); //ShareAccess = pCurrStack->Parameters.Create.ShareAccess; //FileAttributes = pCurrStack->Parameters.Create.FileAttributes; CreateOptions = pCurrStack->Parameters.Create.Options; DesiredAccess = pCurrStack->Parameters.Create.SecurityContext ? pCurrStack->Parameters.Create.SecurityContext->DesiredAccess : 0xFFFFFFFF; Information = (ULONG)Irp->IoStatus.Information; if( Irp->IoStatus.Status == STATUS_SUCCESS //&& !(FileObject->Flags & FO_NO_INTERMEDIATE_BUFFERING) //&& !(FileObject->Flags & FO_STREAM_FILE) && !(CreateOptions & FILE_OPEN_REPARSE_POINT) && !(CreateOptions & FILE_DELETE_ON_CLOSE) && !(CreateOptions & FILE_DIRECTORY_FILE) && !(DesiredAccess & FILE_EXECUTE)) { PGINGKO_OBJECT pRelatedGingko = NULL; GINGKO_HEADER Header = {0}; IO_STATUS_BLOCK IoStatusBlock = {0}; LARGE_INTEGER offset = {0}; ULONG ulHeaderSize = sizeof(GINGKO_HEADER); ULONG FileFlags = FileObject->Flags; //Header = (PGINGKO_HEADER) TCalloc( 8192 ); //if( Header == NULL ) //{ // return status; //} if( Information == FILE_OPENED && FileObject->ReadAccess ) { //KdPrint(("Create FileObject->Flags: %08x, Irp->Flags: %08x.\n", FileObject->Flags, IrpFlags )); //FileObject->Flags = FO_HANDLE_CREATED | FO_CLEANUP_COMPLETE | FO_CACHE_SUPPORTED; if( TRUE ) // Header != NULL ) { //status = TCReadDeviceDirect( // status = TCReadDeviceEx( ((PGINGKO_DEVICE_EXTENSION)DeviceObject->DeviceExtension)->AttachedToDeviceObject, FileObject, &Header, &offset, sizeof(GINGKO_HEADER), &IoStatusBlock, IRP_PAGING_IO | IRP_NOCACHE ); //IRP_SYNCHRONOUS_PAGING_IO | IRP_PAGING_IO | IRP_NOCACHE ); }else { IoStatusBlock.Status = STATUS_NO_MEMORY; status = STATUS_NO_MEMORY; } FileObject->Flags = FileFlags; FileObject->CurrentByteOffset.QuadPart = 0L; if( NT_SUCCESS(IoStatusBlock.Status) && IoStatusBlock.Information == sizeof(GINGKO_HEADER) ) { //IoCheckShareAccess( DesiredAccess, DesiredShareAccess, FileObject, SHARE_ACCESS hs, FALSE ); if( HasGingkoIdentifier( &Header ) ) { GingkoFileFlushCache( FileObject ); if( !FindWriteFileObject( FileObject,dwRequestProcessId, NULL, FALSE ) ) { PGINGKO_OBJECT pObj = NULL; pObj = (PGINGKO_OBJECT)TCalloc(sizeof(GINGKO_OBJECT)); if( pObj != NULL ) { RtlZeroMemory( pObj, sizeof(GINGKO_OBJECT) ); RtlCopyMemory( &(pObj->GingkoHeader), &Header, sizeof(GINGKO_HEADER) ); pObj->FileObject = FileObject; pObj->Permission = GINGKO_PERMISSION_EMPTY; pObj->dwProcessId = dwRequestProcessId; pObj->Queue.LowerDeviceObject = ((PGINGKO_DEVICE_EXTENSION)DeviceObject->DeviceExtension)->AttachedToDeviceObject; pObj->Queue.DeviceObject = ((PGINGKO_DEVICE_EXTENSION)DeviceObject->DeviceExtension)->AttachedToDeviceObject; pObj->Queue.IsFilterDevice = TRUE; pObj->Queue.SecurityClientContext = NULL; //pObj->Queue.CompletionThread = NULL; pObj->Queue.CryptoInfo = NULL; pObj->Queue.StopPending = FALSE; pObj->Queue.ShouldPassthrough = FALSE; pObj->Queue.FileObject = FileObject; pObj->Queue.GingkoHeader = &(pObj->GingkoHeader); pObj->Queue.TotalBytesRead = 0; pObj->Queue.TotalBytesWritten = 0; pObj->Queue.GingkoObject = pObj; pObj->Queue.dwProcessId = dwRequestProcessId; GetFileObjectFullName( FileObject, &(pObj->FileName) ); pObj->Queue.AbstractOffset = sizeof(GINGKO_HEADER); ExInterlockedInsertTailList( &gGingkoWriteFileListEntry, &(pObj->ListEntry), &gGingkoWriteFileSpinLock ); EncryptedIoQueueStart( &pObj->Queue ); } } //KdPrint(("CREATE: Has Gingko Identifier from Create.\n")); } //reset the offset } //if( Header != NULL ) //{ // //ExFreePoolWithTag(Header, GINGKO_POOL_TAG); // TCfree( Header ); // Header = NULL; //} } } if(Event) KeSetEvent(Event, IO_NO_INCREMENT, FALSE); return STATUS_MORE_PROCESSING_REQUIRED; }