static int test_PACKET_get_net_4() { unsigned long i; PACKET pkt; if (!TEST_true(PACKET_buf_init(&pkt, smbuf, BUF_LEN)) || !TEST_true(PACKET_get_net_4(&pkt, &i)) || !TEST_ulong_eq(i, 0x02040608UL) || !TEST_true(PACKET_forward(&pkt, BUF_LEN - 8)) || !TEST_true(PACKET_get_net_4(&pkt, &i)) || !TEST_ulong_eq(i, 0xf8fafcfeUL) || !TEST_false(PACKET_get_net_4(&pkt, &i))) return 0; return 1; }
static int test_PACKET_contains_zero_byte() { char buf1[10], buf2[10]; PACKET pkt; memset(buf1, 'x', 10); memset(buf2, 'y', 10); buf2[5] = '\0'; if (!TEST_true(PACKET_buf_init(&pkt, (unsigned char*)buf1, 10)) || !TEST_false(PACKET_contains_zero_byte(&pkt)) || !TEST_true(PACKET_buf_init(&pkt, (unsigned char*)buf2, 10)) || !TEST_true(PACKET_contains_zero_byte(&pkt))) return 0; return 1; }
static int test_PACKET_get_sub_packet() { PACKET pkt, subpkt; unsigned long i; if (!TEST_true(PACKET_buf_init(&pkt, smbuf, BUF_LEN)) || !TEST_true(PACKET_get_sub_packet(&pkt, &subpkt, 4)) || !TEST_true(PACKET_get_net_4(&subpkt, &i)) || !TEST_ulong_eq(i, 0x02040608UL) || !TEST_size_t_eq(PACKET_remaining(&subpkt), 0) || !TEST_true(PACKET_forward(&pkt, BUF_LEN - 8)) || !TEST_true(PACKET_get_sub_packet(&pkt, &subpkt, 4)) || !TEST_true(PACKET_get_net_4(&subpkt, &i)) || !TEST_ulong_eq(i, 0xf8fafcfeUL) || !TEST_size_t_eq(PACKET_remaining(&subpkt), 0) || !TEST_false(PACKET_get_sub_packet(&pkt, &subpkt, 4))) return 0; return 1; }
static int test_PACKET_as_length_prefixed_2() { unsigned char buf[1024]; const size_t len = 516; /* 0x0204 */ unsigned int i; PACKET pkt, exact_pkt, subpkt = {0}; for (i = 1; i <= 1024; i++) buf[i-1] = (i * 2) & 0xff; if (!TEST_true(PACKET_buf_init(&pkt, buf, 1024)) || !TEST_true(PACKET_buf_init(&exact_pkt, buf, len + 2)) || !TEST_false(PACKET_as_length_prefixed_2(&pkt, &subpkt)) || !TEST_size_t_eq(PACKET_remaining(&pkt), 1024) || !TEST_true(PACKET_as_length_prefixed_2(&exact_pkt, &subpkt)) || !TEST_size_t_eq(PACKET_remaining(&exact_pkt), 0) || !TEST_size_t_eq(PACKET_remaining(&subpkt), len)) return 0; return 1; }
static int test_PACKET_get_length_prefixed_3() { unsigned char buf1[1024]; const size_t len = 516; /* 0x000204 */ unsigned int i; PACKET pkt, short_pkt, subpkt = {0}; for (i = 0; i < 1024; i++) buf1[i] = (i * 2) & 0xff; if (!TEST_true(PACKET_buf_init(&pkt, buf1, 1024)) || !TEST_true(PACKET_buf_init(&short_pkt, buf1, len)) || !TEST_true(PACKET_get_length_prefixed_3(&pkt, &subpkt)) || !TEST_size_t_eq(PACKET_remaining(&subpkt), len) || !TEST_true(PACKET_get_net_2(&subpkt, &i)) || !TEST_uint_eq(i, 0x0608) || !TEST_false(PACKET_get_length_prefixed_3(&short_pkt, &subpkt)) || !TEST_size_t_eq(PACKET_remaining(&short_pkt), len)) return 0; return 1; }
static int test_PACKET_as_length_prefixed_1() { unsigned char buf1[BUF_LEN]; const size_t len = 16; unsigned int i; PACKET pkt, exact_pkt, subpkt = {0}; buf1[0] = len; for (i = 1; i < BUF_LEN; i++) buf1[i] = (i * 2) & 0xff; if (!TEST_true(PACKET_buf_init(&pkt, buf1, BUF_LEN)) || !TEST_true(PACKET_buf_init(&exact_pkt, buf1, len + 1)) || !TEST_false(PACKET_as_length_prefixed_1(&pkt, &subpkt)) || !TEST_size_t_eq(PACKET_remaining(&pkt), BUF_LEN) || !TEST_true(PACKET_as_length_prefixed_1(&exact_pkt, &subpkt) || !TEST_size_t_eq(PACKET_remaining(&exact_pkt), 0) || !TEST_size_t_eq(PACKET_remaining(&subpkt), len))) return 0; return 1; }
static int test_pq_diff(void) { int ret = 0; BIGNUM *tmp = NULL, *p = NULL, *q = NULL; ret = TEST_ptr(tmp = BN_new()) && TEST_ptr(p = BN_new()) && TEST_ptr(q = BN_new()) /* |1-(2+1)| > 2^1 */ && TEST_true(BN_set_word(p, 1)) && TEST_true(BN_set_word(q, 1+2)) && TEST_false(rsa_check_pminusq_diff(tmp, p, q, 202)) /* Check |p - q| > 2^(nbits/2 - 100) */ && TEST_true(BN_set_word(q, 1+3)) && TEST_true(rsa_check_pminusq_diff(tmp, p, q, 202)) && TEST_true(BN_set_word(p, 1+3)) && TEST_true(BN_set_word(q, 1)) && TEST_true(rsa_check_pminusq_diff(tmp, p, q, 202)); BN_free(p); BN_free(q); BN_free(tmp); return ret; }
static int test_PACKET_copy_bytes() { unsigned char bytes[4]; PACKET pkt; if (!TEST_true(PACKET_buf_init(&pkt, smbuf, BUF_LEN)) || !TEST_true(PACKET_copy_bytes(&pkt, bytes, 4)) || !TEST_char_eq(bytes[0], 2) || !TEST_char_eq(bytes[1], 4) || !TEST_char_eq(bytes[2], 6) || !TEST_char_eq(bytes[3], 8) || !TEST_size_t_eq(PACKET_remaining(&pkt), BUF_LEN - 4) || !TEST_true(PACKET_forward(&pkt, BUF_LEN - 8)) || !TEST_true(PACKET_copy_bytes(&pkt, bytes, 4)) || !TEST_uchar_eq(bytes[0], 0xf8) || !TEST_uchar_eq(bytes[1], 0xfa) || !TEST_uchar_eq(bytes[2], 0xfc) || !TEST_uchar_eq(bytes[3], 0xfe) || !TEST_false(PACKET_remaining(&pkt))) return 0; return 1; }
static int test_sec_mem(void) { #if defined(OPENSSL_SYS_LINUX) || defined(OPENSSL_SYS_UNIX) int testresult = 0; char *p = NULL, *q = NULL, *r = NULL, *s = NULL; s = OPENSSL_secure_malloc(20); /* s = non-secure 20 */ if (!TEST_ptr(s) || !TEST_false(CRYPTO_secure_allocated(s))) goto end; r = OPENSSL_secure_malloc(20); /* r = non-secure 20, s = non-secure 20 */ if (!TEST_ptr(r) || !TEST_true(CRYPTO_secure_malloc_init(4096, 32)) || !TEST_false(CRYPTO_secure_allocated(r))) goto end; p = OPENSSL_secure_malloc(20); if (!TEST_ptr(p) /* r = non-secure 20, p = secure 20, s = non-secure 20 */ || !TEST_true(CRYPTO_secure_allocated(p)) /* 20 secure -> 32-byte minimum allocation unit */ || !TEST_size_t_eq(CRYPTO_secure_used(), 32)) goto end; q = OPENSSL_malloc(20); if (!TEST_ptr(q)) goto end; /* r = non-secure 20, p = secure 20, q = non-secure 20, s = non-secure 20 */ if (!TEST_false(CRYPTO_secure_allocated(q))) goto end; OPENSSL_secure_clear_free(s, 20); s = OPENSSL_secure_malloc(20); if (!TEST_ptr(s) /* r = non-secure 20, p = secure 20, q = non-secure 20, s = secure 20 */ || !TEST_true(CRYPTO_secure_allocated(s)) /* 2 * 20 secure -> 64 bytes allocated */ || !TEST_size_t_eq(CRYPTO_secure_used(), 64)) goto end; OPENSSL_secure_clear_free(p, 20); p = NULL; /* 20 secure -> 32 bytes allocated */ if (!TEST_size_t_eq(CRYPTO_secure_used(), 32)) goto end; OPENSSL_free(q); q = NULL; /* should not complete, as secure memory is still allocated */ if (!TEST_false(CRYPTO_secure_malloc_done()) || !TEST_true(CRYPTO_secure_malloc_initialized())) goto end; OPENSSL_secure_free(s); s = NULL; /* secure memory should now be 0, so done should complete */ if (!TEST_size_t_eq(CRYPTO_secure_used(), 0) || !TEST_true(CRYPTO_secure_malloc_done()) || !TEST_false(CRYPTO_secure_malloc_initialized())) goto end; TEST_info("Possible infinite loop: allocate more than available"); if (!TEST_true(CRYPTO_secure_malloc_init(32768, 16))) goto end; TEST_ptr_null(OPENSSL_secure_malloc((size_t)-1)); TEST_true(CRYPTO_secure_malloc_done()); /* * If init fails, then initialized should be false, if not, this * could cause an infinite loop secure_malloc, but we don't test it */ if (TEST_false(CRYPTO_secure_malloc_init(16, 16)) && !TEST_false(CRYPTO_secure_malloc_initialized())) { TEST_true(CRYPTO_secure_malloc_done()); goto end; } /*- * There was also a possible infinite loop when the number of * elements was 1<<31, as |int i| was set to that, which is a * negative number. However, it requires minimum input values: * * CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4); * * Which really only works on 64-bit systems, since it took 16 GB * secure memory arena to trigger the problem. It naturally takes * corresponding amount of available virtual and physical memory * for test to be feasible/representative. Since we can't assume * that every system is equipped with that much memory, the test * remains disabled. If the reader of this comment really wants * to make sure that infinite loop is fixed, they can enable the * code below. */ # if 0 /*- * On Linux and BSD this test has a chance to complete in minimal * time and with minimum side effects, because mlock is likely to * fail because of RLIMIT_MEMLOCK, which is customarily [much] * smaller than 16GB. In other words Linux and BSD users can be * limited by virtual space alone... */ if (sizeof(size_t) > 4) { TEST_info("Possible infinite loop: 1<<31 limit"); if (TEST_true(CRYPTO_secure_malloc_init((size_t)1<<34, (size_t)1<<4) != 0)) TEST_true(CRYPTO_secure_malloc_done()); } # endif /* this can complete - it was not really secure */ testresult = 1; end: OPENSSL_secure_free(p); OPENSSL_free(q); OPENSSL_secure_free(r); OPENSSL_secure_free(s); return testresult; #else /* Should fail. */ return TEST_false(CRYPTO_secure_malloc_init(4096, 32)); #endif }
static int test_fatalerr(void) { SSL_CTX *sctx = NULL, *cctx = NULL; SSL *sssl = NULL, *cssl = NULL; const char *msg = "Dummy"; BIO *wbio = NULL; int ret = 0, len; char buf[80]; unsigned char dummyrec[] = { 0x17, 0x03, 0x03, 0x00, 0x05, 'D', 'u', 'm', 'm', 'y' }; if (!TEST_true(create_ssl_ctx_pair(TLS_method(), TLS_method(), TLS1_VERSION, 0, &sctx, &cctx, cert, privkey))) goto err; /* * Deliberately set the cipher lists for client and server to be different * to force a handshake failure. */ if (!TEST_true(SSL_CTX_set_cipher_list(sctx, "AES128-SHA")) || !TEST_true(SSL_CTX_set_cipher_list(cctx, "AES256-SHA")) || !TEST_true(SSL_CTX_set_ciphersuites(sctx, "TLS_AES_128_GCM_SHA256")) || !TEST_true(SSL_CTX_set_ciphersuites(cctx, "TLS_AES_256_GCM_SHA384")) || !TEST_true(create_ssl_objects(sctx, cctx, &sssl, &cssl, NULL, NULL))) goto err; wbio = SSL_get_wbio(cssl); if (!TEST_ptr(wbio)) { printf("Unexpected NULL bio received\n"); goto err; } /* Connection should fail */ if (!TEST_false(create_ssl_connection(sssl, cssl, SSL_ERROR_NONE))) goto err; ERR_clear_error(); /* Inject a plaintext record from client to server */ if (!TEST_int_gt(BIO_write(wbio, dummyrec, sizeof(dummyrec)), 0)) goto err; /* SSL_read()/SSL_write should fail because of a previous fatal error */ if (!TEST_int_le(len = SSL_read(sssl, buf, sizeof(buf) - 1), 0)) { buf[len] = '\0'; TEST_error("Unexpected success reading data: %s\n", buf); goto err; } if (!TEST_int_le(SSL_write(sssl, msg, strlen(msg)), 0)) goto err; ret = 1; err: SSL_free(sssl); SSL_free(cssl); SSL_CTX_free(sctx); SSL_CTX_free(cctx); return ret; }
static int test_invalid_keypair(void) { int ret = 0; RSA *key = NULL; BN_CTX *ctx = NULL; BIGNUM *p = NULL, *q = NULL, *n = NULL, *e = NULL, *d = NULL; ret = TEST_ptr(key = RSA_new()) && TEST_ptr(ctx = BN_CTX_new()) /* NULL parameters */ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048)) /* load key */ && TEST_ptr(p = bn_load_new(cav_p, sizeof(cav_p))) && TEST_ptr(q = bn_load_new(cav_q, sizeof(cav_q))) && TEST_true(RSA_set0_factors(key, p, q)); if (!ret) { BN_free(p); BN_free(q); goto end; } ret = TEST_ptr(e = bn_load_new(cav_e, sizeof(cav_e))) && TEST_ptr(n = bn_load_new(cav_n, sizeof(cav_n))) && TEST_ptr(d = bn_load_new(cav_d, sizeof(cav_d))) && TEST_true(RSA_set0_key(key, n, e, d)); if (!ret) { BN_free(e); BN_free(n); BN_free(d); goto end; } /* bad strength/key size */ ret = TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 100, 2048)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 112, 1024)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 128, 2048)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, 140, 3072)) /* mismatching exponent */ && TEST_false(rsa_sp800_56b_check_keypair(key, BN_value_one(), -1, 2048)) /* bad exponent */ && TEST_true(BN_add_word(e, 1)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048)) && TEST_true(BN_sub_word(e, 1)) /* mismatch between bits and modulus */ && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 3072)) && TEST_true(rsa_sp800_56b_check_keypair(key, e, 112, 2048)) /* check n == pq failure */ && TEST_true(BN_add_word(n, 1)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048)) && TEST_true(BN_sub_word(n, 1)) /* check p */ && TEST_true(BN_sub_word(p, 2)) && TEST_true(BN_mul(n, p, q, ctx)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048)) && TEST_true(BN_add_word(p, 2)) && TEST_true(BN_mul(n, p, q, ctx)) /* check q */ && TEST_true(BN_sub_word(q, 2)) && TEST_true(BN_mul(n, p, q, ctx)) && TEST_false(rsa_sp800_56b_check_keypair(key, NULL, -1, 2048)) && TEST_true(BN_add_word(q, 2)) && TEST_true(BN_mul(n, p, q, ctx)); end: RSA_free(key); BN_CTX_free(ctx); return ret; }
static int test_check_crt_components(void) { const int P = 15; const int Q = 17; const int E = 5; const int N = P*Q; const int DP = 3; const int DQ = 13; const int QINV = 8; int ret = 0; RSA *key = NULL; BN_CTX *ctx = NULL; BIGNUM *p = NULL, *q = NULL, *e = NULL; ret = TEST_ptr(key = RSA_new()) && TEST_ptr(ctx = BN_CTX_new()) && TEST_ptr(p = BN_new()) && TEST_ptr(q = BN_new()) && TEST_ptr(e = BN_new()) && TEST_true(BN_set_word(p, P)) && TEST_true(BN_set_word(q, Q)) && TEST_true(BN_set_word(e, E)) && TEST_true(RSA_set0_factors(key, p, q)); if (!ret) { BN_free(p); BN_free(q); goto end; } ret = TEST_true(rsa_sp800_56b_derive_params_from_pq(key, 8, e, ctx)) && TEST_BN_eq_word(key->n, N) && TEST_BN_eq_word(key->dmp1, DP) && TEST_BN_eq_word(key->dmq1, DQ) && TEST_BN_eq_word(key->iqmp, QINV) && TEST_true(rsa_check_crt_components(key, ctx)) /* (a) 1 < dP < (p – 1). */ && TEST_true(BN_set_word(key->dmp1, 1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmp1, P-1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmp1, DP)) /* (b) 1 < dQ < (q - 1). */ && TEST_true(BN_set_word(key->dmq1, 1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmq1, Q-1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmq1, DQ)) /* (c) 1 < qInv < p */ && TEST_true(BN_set_word(key->iqmp, 1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->iqmp, P)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->iqmp, QINV)) /* (d) 1 = (dP . e) mod (p - 1)*/ && TEST_true(BN_set_word(key->dmp1, DP+1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmp1, DP)) /* (e) 1 = (dQ . e) mod (q - 1) */ && TEST_true(BN_set_word(key->dmq1, DQ-1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->dmq1, DQ)) /* (f) 1 = (qInv . q) mod p */ && TEST_true(BN_set_word(key->iqmp, QINV+1)) && TEST_false(rsa_check_crt_components(key, ctx)) && TEST_true(BN_set_word(key->iqmp, QINV)) /* check defaults are still valid */ && TEST_true(rsa_check_crt_components(key, ctx)); end: BN_free(e); RSA_free(key); BN_CTX_free(ctx); return ret; }
static int test_int_stack(void) { static int v[] = { 1, 2, -4, 16, 999, 1, -173, 1, 9 }; static int notpresent = -1; const int n = OSSL_NELEM(v); static struct { int value; int unsorted; int sorted; int ex; } finds[] = { { 2, 1, 5, 5 }, { 9, 7, 6, 6 }, { -173, 5, 0, 0 }, { 999, 3, 8, 8 }, { 0, -1, -1, 1 } }; const int n_finds = OSSL_NELEM(finds); static struct { int value; int ex; } exfinds[] = { { 3, 5 }, { 1000, 8 }, { 20, 8 }, { -999, 0 }, { -5, 0 }, { 8, 5 } }; const int n_exfinds = OSSL_NELEM(exfinds); STACK_OF(sint) *s = sk_sint_new_null(); int i; int testresult = 0; /* Check push and num */ for (i = 0; i < n; i++) { if (!TEST_int_eq(sk_sint_num(s), i)) { TEST_info("int stack size %d", i); goto end; } sk_sint_push(s, v + i); } if (!TEST_int_eq(sk_sint_num(s), n)) goto end; /* check the values */ for (i = 0; i < n; i++) if (!TEST_ptr_eq(sk_sint_value(s, i), v + i)) { TEST_info("int value %d", i); goto end; } /* find unsorted -- the pointers are compared */ for (i = 0; i < n_finds; i++) { int *val = (finds[i].unsorted == -1) ? ¬present : v + finds[i].unsorted; if (!TEST_int_eq(sk_sint_find(s, val), finds[i].unsorted)) { TEST_info("int unsorted find %d", i); goto end; } } /* find_ex unsorted */ for (i = 0; i < n_finds; i++) { int *val = (finds[i].unsorted == -1) ? ¬present : v + finds[i].unsorted; if (!TEST_int_eq(sk_sint_find_ex(s, val), finds[i].unsorted)) { TEST_info("int unsorted find_ex %d", i); goto end; } } /* sorting */ if (!TEST_false(sk_sint_is_sorted(s))) goto end; sk_sint_set_cmp_func(s, &int_compare); sk_sint_sort(s); if (!TEST_true(sk_sint_is_sorted(s))) goto end; /* find sorted -- the value is matched so we don't need to locate it */ for (i = 0; i < n_finds; i++) if (!TEST_int_eq(sk_sint_find(s, &finds[i].value), finds[i].sorted)) { TEST_info("int sorted find %d", i); goto end; } /* find_ex sorted */ for (i = 0; i < n_finds; i++) if (!TEST_int_eq(sk_sint_find_ex(s, &finds[i].value), finds[i].ex)) { TEST_info("int sorted find_ex present %d", i); goto end; } for (i = 0; i < n_exfinds; i++) if (!TEST_int_eq(sk_sint_find_ex(s, &exfinds[i].value), exfinds[i].ex)){ TEST_info("int sorted find_ex absent %d", i); goto end; } /* shift */ if (!TEST_ptr_eq(sk_sint_shift(s), v + 6)) goto end; testresult = 1; end: sk_sint_free(s); return testresult; }
static int test_tls13ccs(int tst) { SSL_CTX *sctx = NULL, *cctx = NULL; SSL *sssl = NULL, *cssl = NULL; int ret = 0; const char msg[] = "Dummy data"; char buf[80]; size_t written, readbytes; SSL_SESSION *sess = NULL; chseen = shseen = sccsseen = ccsaftersh = ccsbeforesh = 0; sappdataseen = cappdataseen = badccs = badvers = badsessid = 0; chsessidlen = 0; if (!TEST_true(create_ssl_ctx_pair(TLS_server_method(), TLS_client_method(), TLS1_VERSION, 0, &sctx, &cctx, cert, privkey)) || !TEST_true(SSL_CTX_set_max_early_data(sctx, SSL3_RT_MAX_PLAIN_LENGTH))) goto err; /* * Test 0: Simple Handshake * Test 1: Simple Handshake, client middlebox compat mode disabled * Test 2: Simple Handshake, server middlebox compat mode disabled * Test 3: HRR Handshake * Test 4: HRR Handshake, client middlebox compat mode disabled * Test 5: HRR Handshake, server middlebox compat mode disabled * Test 6: Early data handshake * Test 7: Early data handshake, client middlebox compat mode disabled * Test 8: Early data handshake, server middlebox compat mode disabled * Test 9: Early data then HRR * Test 10: Early data then HRR, client middlebox compat mode disabled * Test 11: Early data then HRR, server middlebox compat mode disabled */ switch (tst) { case 0: case 3: case 6: case 9: break; case 1: case 4: case 7: case 10: SSL_CTX_clear_options(cctx, SSL_OP_ENABLE_MIDDLEBOX_COMPAT); break; case 2: case 5: case 8: case 11: SSL_CTX_clear_options(sctx, SSL_OP_ENABLE_MIDDLEBOX_COMPAT); break; default: TEST_error("Invalid test value"); goto err; } if (tst >= 6) { /* Get a session suitable for early_data */ if (!TEST_true(create_ssl_objects(sctx, cctx, &sssl, &cssl, NULL, NULL)) || !TEST_true(create_ssl_connection(sssl, cssl, SSL_ERROR_NONE))) goto err; sess = SSL_get1_session(cssl); if (!TEST_ptr(sess)) goto err; SSL_shutdown(cssl); SSL_shutdown(sssl); SSL_free(sssl); SSL_free(cssl); sssl = cssl = NULL; } if ((tst >= 3 && tst <= 5) || tst >= 9) { /* HRR handshake */ if (!TEST_true(SSL_CTX_set1_groups_list(sctx, "P-256"))) goto err; } s_to_c_fbio = BIO_new(bio_f_watchccs_filter()); c_to_s_fbio = BIO_new(bio_f_watchccs_filter()); if (!TEST_ptr(s_to_c_fbio) || !TEST_ptr(c_to_s_fbio)) { BIO_free(s_to_c_fbio); BIO_free(c_to_s_fbio); goto err; } /* BIOs get freed on error */ if (!TEST_true(create_ssl_objects(sctx, cctx, &sssl, &cssl, s_to_c_fbio, c_to_s_fbio))) goto err; if (tst >= 6) { /* Early data */ if (!TEST_true(SSL_set_session(cssl, sess)) || !TEST_true(SSL_write_early_data(cssl, msg, strlen(msg), &written)) || (tst <= 8 && !TEST_int_eq(SSL_read_early_data(sssl, buf, sizeof(buf), &readbytes), SSL_READ_EARLY_DATA_SUCCESS))) goto err; if (tst <= 8) { if (!TEST_int_gt(SSL_connect(cssl), 0)) goto err; } else { if (!TEST_int_le(SSL_connect(cssl), 0)) goto err; } if (!TEST_int_eq(SSL_read_early_data(sssl, buf, sizeof(buf), &readbytes), SSL_READ_EARLY_DATA_FINISH)) goto err; } /* Perform handshake (or complete it if doing early data ) */ if (!TEST_true(create_ssl_connection(sssl, cssl, SSL_ERROR_NONE))) goto err; /* * Check there were no unexpected CCS messages, all record versions * were as expected, and that the session ids were reflected by the server * correctly. */ if (!TEST_false(badccs) || !TEST_false(badvers) || !TEST_false(badsessid)) goto err; switch (tst) { case 0: if (!TEST_true(sccsseen) || !TEST_true(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 1: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_eq(chsessidlen, 0)) goto err; break; case 2: if (!TEST_false(sccsseen) || !TEST_true(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 3: if (!TEST_true(sccsseen) || !TEST_true(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 4: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_eq(chsessidlen, 0)) goto err; break; case 5: if (!TEST_false(sccsseen) || !TEST_true(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 6: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_true(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 7: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_eq(chsessidlen, 0)) goto err; break; case 8: if (!TEST_false(sccsseen) || !TEST_false(ccsaftersh) || !TEST_true(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 9: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_true(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; case 10: if (!TEST_true(sccsseen) || !TEST_false(ccsaftersh) || !TEST_false(ccsbeforesh) || !TEST_size_t_eq(chsessidlen, 0)) goto err; break; case 11: if (!TEST_false(sccsseen) || !TEST_false(ccsaftersh) || !TEST_true(ccsbeforesh) || !TEST_size_t_gt(chsessidlen, 0)) goto err; break; default: TEST_error("Invalid test value"); goto err; } ret = 1; err: SSL_SESSION_free(sess); SSL_free(sssl); SSL_free(cssl); SSL_CTX_free(sctx); SSL_CTX_free(cctx); return ret; }
static int test_builtin(void) { EC_builtin_curve *curves = NULL; size_t crv_len = 0, n = 0; EC_KEY *eckey = NULL, *wrong_eckey = NULL; EC_GROUP *group; ECDSA_SIG *ecdsa_sig = NULL, *modified_sig = NULL; unsigned char digest[20], wrong_digest[20]; unsigned char *signature = NULL; const unsigned char *sig_ptr; unsigned char *sig_ptr2; unsigned char *raw_buf = NULL; const BIGNUM *sig_r, *sig_s; BIGNUM *modified_r = NULL, *modified_s = NULL; BIGNUM *unmodified_r = NULL, *unmodified_s = NULL; unsigned int sig_len, degree, r_len, s_len, bn_len, buf_len; int nid, ret = 0; /* fill digest values with some random data */ if (!TEST_true(RAND_bytes(digest, 20)) || !TEST_true(RAND_bytes(wrong_digest, 20))) goto builtin_err; /* create and verify a ecdsa signature with every available curve */ /* get a list of all internal curves */ crv_len = EC_get_builtin_curves(NULL, 0); if (!TEST_ptr(curves = OPENSSL_malloc(sizeof(*curves) * crv_len)) || !TEST_true(EC_get_builtin_curves(curves, crv_len))) goto builtin_err; /* now create and verify a signature for every curve */ for (n = 0; n < crv_len; n++) { unsigned char dirt, offset; nid = curves[n].nid; if (nid == NID_ipsec4 || nid == NID_X25519) continue; /* create new ecdsa key (== EC_KEY) */ if (!TEST_ptr(eckey = EC_KEY_new()) || !TEST_ptr(group = EC_GROUP_new_by_curve_name(nid)) || !TEST_true(EC_KEY_set_group(eckey, group))) goto builtin_err; EC_GROUP_free(group); degree = EC_GROUP_get_degree(EC_KEY_get0_group(eckey)); if (degree < 160) { /* drop the curve */ EC_KEY_free(eckey); eckey = NULL; continue; } TEST_info("testing %s", OBJ_nid2sn(nid)); /* create key */ if (!TEST_true(EC_KEY_generate_key(eckey))) goto builtin_err; /* create second key */ if (!TEST_ptr(wrong_eckey = EC_KEY_new()) || !TEST_ptr(group = EC_GROUP_new_by_curve_name(nid)) || !TEST_true(EC_KEY_set_group(wrong_eckey, group))) goto builtin_err; EC_GROUP_free(group); if (!TEST_true(EC_KEY_generate_key(wrong_eckey))) goto builtin_err; /* check key */ if (!TEST_true(EC_KEY_check_key(eckey))) goto builtin_err; /* create signature */ sig_len = ECDSA_size(eckey); if (!TEST_ptr(signature = OPENSSL_malloc(sig_len)) || !TEST_true(ECDSA_sign(0, digest, 20, signature, &sig_len, eckey))) goto builtin_err; /* verify signature */ if (!TEST_int_eq(ECDSA_verify(0, digest, 20, signature, sig_len, eckey), 1)) goto builtin_err; /* verify signature with the wrong key */ if (!TEST_int_ne(ECDSA_verify(0, digest, 20, signature, sig_len, wrong_eckey), 1)) goto builtin_err; /* wrong digest */ if (!TEST_int_ne(ECDSA_verify(0, wrong_digest, 20, signature, sig_len, eckey), 1)) goto builtin_err; /* wrong length */ if (!TEST_int_ne(ECDSA_verify(0, digest, 20, signature, sig_len - 1, eckey), 1)) goto builtin_err; /* * Modify a single byte of the signature: to ensure we don't garble * the ASN1 structure, we read the raw signature and modify a byte in * one of the bignums directly. */ sig_ptr = signature; if (!TEST_ptr(ecdsa_sig = d2i_ECDSA_SIG(NULL, &sig_ptr, sig_len))) goto builtin_err; ECDSA_SIG_get0(ecdsa_sig, &sig_r, &sig_s); /* Store the two BIGNUMs in raw_buf. */ r_len = BN_num_bytes(sig_r); s_len = BN_num_bytes(sig_s); bn_len = (degree + 7) / 8; if (!TEST_false(r_len > bn_len) || !TEST_false(s_len > bn_len)) goto builtin_err; buf_len = 2 * bn_len; if (!TEST_ptr(raw_buf = OPENSSL_zalloc(buf_len))) goto builtin_err; BN_bn2bin(sig_r, raw_buf + bn_len - r_len); BN_bn2bin(sig_s, raw_buf + buf_len - s_len); /* Modify a single byte in the buffer. */ offset = raw_buf[10] % buf_len; dirt = raw_buf[11] ? raw_buf[11] : 1; raw_buf[offset] ^= dirt; /* Now read the BIGNUMs back in from raw_buf. */ if (!TEST_ptr(modified_sig = ECDSA_SIG_new())) goto builtin_err; if (!TEST_ptr(modified_r = BN_bin2bn(raw_buf, bn_len, NULL)) || !TEST_ptr(modified_s = BN_bin2bn(raw_buf + bn_len, bn_len, NULL)) || !TEST_true(ECDSA_SIG_set0(modified_sig, modified_r, modified_s))) { BN_free(modified_r); BN_free(modified_s); goto builtin_err; } sig_ptr2 = signature; sig_len = i2d_ECDSA_SIG(modified_sig, &sig_ptr2); if (!TEST_false(ECDSA_verify(0, digest, 20, signature, sig_len, eckey))) goto builtin_err; /* Sanity check: undo the modification and verify signature. */ raw_buf[offset] ^= dirt; if (!TEST_ptr(unmodified_r = BN_bin2bn(raw_buf, bn_len, NULL)) || !TEST_ptr(unmodified_s = BN_bin2bn(raw_buf + bn_len, bn_len, NULL)) || !TEST_true(ECDSA_SIG_set0(modified_sig, unmodified_r, unmodified_s))) { BN_free(unmodified_r); BN_free(unmodified_s); goto builtin_err; } sig_ptr2 = signature; sig_len = i2d_ECDSA_SIG(modified_sig, &sig_ptr2); if (!TEST_true(ECDSA_verify(0, digest, 20, signature, sig_len, eckey))) goto builtin_err; /* cleanup */ ERR_clear_error(); OPENSSL_free(signature); signature = NULL; EC_KEY_free(eckey); eckey = NULL; EC_KEY_free(wrong_eckey); wrong_eckey = NULL; ECDSA_SIG_free(ecdsa_sig); ecdsa_sig = NULL; ECDSA_SIG_free(modified_sig); modified_sig = NULL; OPENSSL_free(raw_buf); raw_buf = NULL; } ret = 1; builtin_err: EC_KEY_free(eckey); EC_KEY_free(wrong_eckey); ECDSA_SIG_free(ecdsa_sig); ECDSA_SIG_free(modified_sig); OPENSSL_free(signature); OPENSSL_free(raw_buf); OPENSSL_free(curves); return ret; }
static int dh_test(void) { BN_GENCB *_cb = NULL; DH *a = NULL; DH *b = NULL; const BIGNUM *ap = NULL, *ag = NULL, *apub_key = NULL; const BIGNUM *bpub_key = NULL; BIGNUM *bp = NULL, *bg = NULL; unsigned char *abuf = NULL; unsigned char *bbuf = NULL; int i, alen, blen, aout, bout; int ret = 0; RAND_seed(rnd_seed, sizeof rnd_seed); if (!TEST_ptr(_cb = BN_GENCB_new())) goto err; BN_GENCB_set(_cb, &cb, NULL); if (!TEST_ptr(a = DH_new()) || !TEST_true(DH_generate_parameters_ex(a, 64, DH_GENERATOR_5, _cb))) goto err; if (!DH_check(a, &i)) goto err; if (!TEST_false(i & DH_CHECK_P_NOT_PRIME) || !TEST_false(i & DH_CHECK_P_NOT_SAFE_PRIME) || !TEST_false(i & DH_UNABLE_TO_CHECK_GENERATOR) || !TEST_false(i & DH_NOT_SUITABLE_GENERATOR)) goto err; DH_get0_pqg(a, &ap, NULL, &ag); if (!TEST_ptr(b = DH_new())) goto err; if (!TEST_ptr(bp = BN_dup(ap)) || !TEST_ptr(bg = BN_dup(ag)) || !TEST_true(DH_set0_pqg(b, bp, NULL, bg))) goto err; bp = bg = NULL; if (!DH_generate_key(a)) goto err; DH_get0_key(a, &apub_key, NULL); if (!DH_generate_key(b)) goto err; DH_get0_key(b, &bpub_key, NULL); alen = DH_size(a); if (!TEST_ptr(abuf = OPENSSL_malloc(alen)) || !TEST_true((aout = DH_compute_key(abuf, bpub_key, a)) != -1)) goto err; blen = DH_size(b); if (!TEST_ptr(bbuf = OPENSSL_malloc(blen)) || !TEST_true((bout = DH_compute_key(bbuf, apub_key, b)) != -1)) goto err; if (!TEST_true(aout >= 4) || !TEST_mem_eq(abuf, aout, bbuf, bout)) goto err; ret = 1; err: OPENSSL_free(abuf); OPENSSL_free(bbuf); DH_free(b); DH_free(a); BN_free(bp); BN_free(bg); BN_GENCB_free(_cb); return ret; }
static int test_client_hello(int currtest) { SSL_CTX *ctx; SSL *con = NULL; BIO *rbio; BIO *wbio; long len; unsigned char *data; PACKET pkt = {0}, pkt2 = {0}, pkt3 = {0}; char *dummytick = "Hello World!"; unsigned int type = 0; int testresult = 0; size_t msglen; BIO *sessbio = NULL; SSL_SESSION *sess = NULL; #ifdef OPENSSL_NO_TLS1_3 if (currtest == TEST_ADD_PADDING_AND_PSK) return 1; #endif /* * For each test set up an SSL_CTX and SSL and see what ClientHello gets * produced when we try to connect */ ctx = SSL_CTX_new(TLS_method()); if (!TEST_ptr(ctx)) goto end; switch(currtest) { case TEST_SET_SESSION_TICK_DATA_VER_NEG: /* Testing for session tickets <= TLS1.2; not relevant for 1.3 */ if (!TEST_true(SSL_CTX_set_max_proto_version(ctx, TLS1_2_VERSION))) goto end; break; case TEST_ADD_PADDING_AND_PSK: case TEST_ADD_PADDING: case TEST_PADDING_NOT_NEEDED: SSL_CTX_set_options(ctx, SSL_OP_TLSEXT_PADDING); /* * Add lots of ciphersuites so that the ClientHello is at least * F5_WORKAROUND_MIN_MSG_LEN bytes long - meaning padding will be * needed. Also add some dummy ALPN protocols in case we still don't * have enough. */ if (currtest == TEST_ADD_PADDING && (!TEST_true(SSL_CTX_set_cipher_list(ctx, "ALL")) || !TEST_false(SSL_CTX_set_alpn_protos(ctx, (unsigned char *)alpn_prots, sizeof(alpn_prots) - 1)))) goto end; break; default: goto end; } con = SSL_new(ctx); if (!TEST_ptr(con)) goto end; if (currtest == TEST_ADD_PADDING_AND_PSK) { sessbio = BIO_new_file(sessionfile, "r"); if (!TEST_ptr(sessbio)) { TEST_info("Unable to open session.pem"); goto end; } sess = PEM_read_bio_SSL_SESSION(sessbio, NULL, NULL, NULL); if (!TEST_ptr(sess)) { TEST_info("Unable to load SSL_SESSION"); goto end; } /* * We reset the creation time so that we don't discard the session as * too old. */ if (!TEST_true(SSL_SESSION_set_time(sess, time(NULL))) || !TEST_true(SSL_set_session(con, sess))) goto end; } rbio = BIO_new(BIO_s_mem()); wbio = BIO_new(BIO_s_mem()); if (!TEST_ptr(rbio)|| !TEST_ptr(wbio)) { BIO_free(rbio); BIO_free(wbio); goto end; } SSL_set_bio(con, rbio, wbio); SSL_set_connect_state(con); if (currtest == TEST_SET_SESSION_TICK_DATA_VER_NEG) { if (!TEST_true(SSL_set_session_ticket_ext(con, dummytick, strlen(dummytick)))) goto end; } if (!TEST_int_le(SSL_connect(con), 0)) { /* This shouldn't succeed because we don't have a server! */ goto end; } len = BIO_get_mem_data(wbio, (char **)&data); if (!TEST_true(PACKET_buf_init(&pkt, data, len)) /* Skip the record header */ || !PACKET_forward(&pkt, SSL3_RT_HEADER_LENGTH)) goto end; msglen = PACKET_remaining(&pkt); /* Skip the handshake message header */ if (!TEST_true(PACKET_forward(&pkt, SSL3_HM_HEADER_LENGTH)) /* Skip client version and random */ || !TEST_true(PACKET_forward(&pkt, CLIENT_VERSION_LEN + SSL3_RANDOM_SIZE)) /* Skip session id */ || !TEST_true(PACKET_get_length_prefixed_1(&pkt, &pkt2)) /* Skip ciphers */ || !TEST_true(PACKET_get_length_prefixed_2(&pkt, &pkt2)) /* Skip compression */ || !TEST_true(PACKET_get_length_prefixed_1(&pkt, &pkt2)) /* Extensions len */ || !TEST_true(PACKET_as_length_prefixed_2(&pkt, &pkt2))) goto end; /* Loop through all extensions */ while (PACKET_remaining(&pkt2)) { if (!TEST_true(PACKET_get_net_2(&pkt2, &type)) || !TEST_true(PACKET_get_length_prefixed_2(&pkt2, &pkt3))) goto end; if (type == TLSEXT_TYPE_session_ticket) { if (currtest == TEST_SET_SESSION_TICK_DATA_VER_NEG) { if (TEST_true(PACKET_equal(&pkt3, dummytick, strlen(dummytick)))) { /* Ticket data is as we expected */ testresult = 1; } goto end; } } if (type == TLSEXT_TYPE_padding) { if (!TEST_false(currtest == TEST_PADDING_NOT_NEEDED)) goto end; else if (TEST_true(currtest == TEST_ADD_PADDING || currtest == TEST_ADD_PADDING_AND_PSK)) testresult = TEST_true(msglen == F5_WORKAROUND_MAX_MSG_LEN); } } if (currtest == TEST_PADDING_NOT_NEEDED) testresult = 1; end: SSL_free(con); SSL_CTX_free(ctx); SSL_SESSION_free(sess); BIO_free(sessbio); return testresult; }
/* * Perform extensive error checking as required by SP800-90. * Induce several failure modes and check an error condition is set. */ static int error_check(DRBG_SELFTEST_DATA *td) { static char zero[sizeof(RAND_DRBG)]; RAND_DRBG *drbg = NULL; TEST_CTX t; unsigned char buff[1024]; unsigned int generate_counter_tmp; int ret = 0; if (!TEST_ptr(drbg = RAND_DRBG_new(0, 0, NULL))) goto err; /* * Personalisation string tests */ /* Test detection of too large personlisation string */ if (!init(drbg, td, &t) || RAND_DRBG_instantiate(drbg, td->pers, drbg->max_perslen + 1) > 0) goto err; /* * Entropy source tests */ /* Test entropy source failure detecion: i.e. returns no data */ t.entropylen = 0; if (TEST_int_le(RAND_DRBG_instantiate(drbg, td->pers, td->perslen), 0)) goto err; /* Try to generate output from uninstantiated DRBG */ if (!TEST_false(RAND_DRBG_generate(drbg, buff, td->exlen, 0, td->adin, td->adinlen)) || !uninstantiate(drbg)) goto err; /* Test insufficient entropy */ t.entropylen = drbg->min_entropylen - 1; if (!init(drbg, td, &t) || RAND_DRBG_instantiate(drbg, td->pers, td->perslen) > 0 || !uninstantiate(drbg)) goto err; /* Test too much entropy */ t.entropylen = drbg->max_entropylen + 1; if (!init(drbg, td, &t) || RAND_DRBG_instantiate(drbg, td->pers, td->perslen) > 0 || !uninstantiate(drbg)) goto err; /* * Nonce tests */ /* Test too small nonce */ if (drbg->min_noncelen) { t.noncelen = drbg->min_noncelen - 1; if (!init(drbg, td, &t) || RAND_DRBG_instantiate(drbg, td->pers, td->perslen) > 0 || !uninstantiate(drbg)) goto err; } /* Test too large nonce */ if (drbg->max_noncelen) { t.noncelen = drbg->max_noncelen + 1; if (!init(drbg, td, &t) || RAND_DRBG_instantiate(drbg, td->pers, td->perslen) > 0 || !uninstantiate(drbg)) goto err; } /* Instantiate with valid data, Check generation is now OK */ if (!instantiate(drbg, td, &t) || !TEST_true(RAND_DRBG_generate(drbg, buff, td->exlen, 0, td->adin, td->adinlen))) goto err; /* Request too much data for one request */ if (!TEST_false(RAND_DRBG_generate(drbg, buff, drbg->max_request + 1, 0, td->adin, td->adinlen))) goto err; /* Try too large additional input */ if (!TEST_false(RAND_DRBG_generate(drbg, buff, td->exlen, 0, td->adin, drbg->max_adinlen + 1))) goto err; /* * Check prediction resistance request fails if entropy source * failure. */ t.entropylen = 0; if (TEST_false(RAND_DRBG_generate(drbg, buff, td->exlen, 1, td->adin, td->adinlen)) || !uninstantiate(drbg)) goto err; /* Instantiate again with valid data */ if (!instantiate(drbg, td, &t)) goto err; generate_counter_tmp = drbg->generate_counter; drbg->generate_counter = drbg->reseed_interval; /* Generate output and check entropy has been requested for reseed */ t.entropycnt = 0; if (!TEST_true(RAND_DRBG_generate(drbg, buff, td->exlen, 0, td->adin, td->adinlen)) || !TEST_int_eq(t.entropycnt, 1) || !TEST_int_eq(drbg->generate_counter, generate_counter_tmp + 1) || !uninstantiate(drbg)) goto err; /* * Check prediction resistance request fails if entropy source * failure. */ t.entropylen = 0; if (!TEST_false(RAND_DRBG_generate(drbg, buff, td->exlen, 1, td->adin, td->adinlen)) || !uninstantiate(drbg)) goto err; /* Test reseed counter works */ if (!instantiate(drbg, td, &t)) goto err; generate_counter_tmp = drbg->generate_counter; drbg->generate_counter = drbg->reseed_interval; /* Generate output and check entropy has been requested for reseed */ t.entropycnt = 0; if (!TEST_true(RAND_DRBG_generate(drbg, buff, td->exlen, 0, td->adin, td->adinlen)) || !TEST_int_eq(t.entropycnt, 1) || !TEST_int_eq(drbg->generate_counter, generate_counter_tmp + 1) || !uninstantiate(drbg)) goto err; /* * Explicit reseed tests */ /* Test explicit reseed with too large additional input */ if (!init(drbg, td, &t) || RAND_DRBG_reseed(drbg, td->adin, drbg->max_adinlen + 1, 0) > 0) goto err; /* Test explicit reseed with entropy source failure */ t.entropylen = 0; if (!TEST_int_le(RAND_DRBG_reseed(drbg, td->adin, td->adinlen, 0), 0) || !uninstantiate(drbg)) goto err; /* Test explicit reseed with too much entropy */ if (!init(drbg, td, &t)) goto err; t.entropylen = drbg->max_entropylen + 1; if (!TEST_int_le(RAND_DRBG_reseed(drbg, td->adin, td->adinlen, 0), 0) || !uninstantiate(drbg)) goto err; /* Test explicit reseed with too little entropy */ if (!init(drbg, td, &t)) goto err; t.entropylen = drbg->min_entropylen - 1; if (!TEST_int_le(RAND_DRBG_reseed(drbg, td->adin, td->adinlen, 0), 0) || !uninstantiate(drbg)) goto err; /* Standard says we have to check uninstantiate really zeroes */ if (!TEST_mem_eq(zero, sizeof(drbg->data), &drbg->data, sizeof(drbg->data))) goto err; ret = 1; err: uninstantiate(drbg); RAND_DRBG_free(drbg); return ret; }
static int test_bad_asn1() { BIO *bio = NULL; ASN1_VALUE *value = NULL; int ret = 0; unsigned char buf[2048]; const unsigned char *buf_ptr = buf; unsigned char *der = NULL; int derlen; int len; bio = BIO_new_file(test_file, "r"); if (!TEST_ptr(bio)) return 0; if (expected_error == ASN1_BIO) { if (TEST_ptr_null(ASN1_item_d2i_bio(item_type, bio, NULL))) ret = 1; goto err; } /* * Unless we are testing it we don't use ASN1_item_d2i_bio because it * performs sanity checks on the input and can reject it before the * decoder is called. */ len = BIO_read(bio, buf, sizeof buf); if (!TEST_int_ge(len, 0)) goto err; value = ASN1_item_d2i(NULL, &buf_ptr, len, item_type); if (value == NULL) { if (TEST_int_eq(expected_error, ASN1_DECODE)) ret = 1; goto err; } derlen = ASN1_item_i2d(value, &der, item_type); if (der == NULL || derlen < 0) { if (TEST_int_eq(expected_error, ASN1_ENCODE)) ret = 1; goto err; } if (derlen != len || memcmp(der, buf, derlen) != 0) { if (TEST_int_eq(expected_error, ASN1_COMPARE)) ret = 1; goto err; } if (TEST_int_eq(expected_error, ASN1_OK)) ret = 1; err: /* Don't indicate success for memory allocation errors */ if (ret == 1 && !TEST_false(ERR_GET_REASON(ERR_peek_error()) == ERR_R_MALLOC_FAILURE)) ret = 0; BIO_free(bio); OPENSSL_free(der); ASN1_item_free(value, item_type); return ret; }