コード例 #1
0
ファイル: ex1adj.c プロジェクト: petsc/petsc
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Mat            A;             /* Jacobian matrix */
  Mat            Ap;            /* dfdp */
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  PetscScalar    *u,*v;
  AppCtx         app;
  PetscInt       direction[1];
  PetscBool      terminate[1];
  Vec            lambda[2],mu[2];
  PetscReal      tend;

  FILE           *f;
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");
  app.mode = 1;
  app.lambda1 = 2.75;
  app.lambda2 = 0.36;
  tend = 0.125;
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex1adj options","");CHKERRQ(ierr);
  {
    ierr = PetscOptionsReal("-lambda1","","",app.lambda1,&app.lambda1,NULL);CHKERRQ(ierr);
    ierr = PetscOptionsReal("-lambda2","","",app.lambda2,&app.lambda2,NULL);CHKERRQ(ierr);
    ierr = PetscOptionsReal("-tend","","",tend,&tend,NULL);CHKERRQ(ierr);
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&Ap);CHKERRQ(ierr);
  ierr = MatSetSizes(Ap,n,1,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(Ap,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(Ap);CHKERRQ(ierr);
  ierr = MatSetUp(Ap);CHKERRQ(ierr);
  ierr = MatZeroEntries(Ap);CHKERRQ(ierr); /* initialize to zeros */

  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = 0;
  u[1] = 1;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,(TSIFunction)IFunction,&app);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&app);CHKERRQ(ierr);
  ierr = TSSetRHSJacobianP(ts,Ap,RHSJacobianP,&app);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,tend);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,1./256.);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* Set directions and terminate flags for the two events */
  direction[0] = 0;
  terminate[0] = PETSC_FALSE;
  ierr = TSSetEventHandler(ts,1,direction,terminate,EventFunction,PostEventFunction,(void*)&app);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Run timestepping solver
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(A,&lambda[1],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecZeroEntries(lambda[0]);CHKERRQ(ierr);
  ierr = VecZeroEntries(lambda[1]);CHKERRQ(ierr);
  ierr = VecGetArray(lambda[0],&u);CHKERRQ(ierr);
  u[0] = 1.;
  ierr = VecRestoreArray(lambda[0],&u);CHKERRQ(ierr);
  ierr = VecGetArray(lambda[1],&u);CHKERRQ(ierr);
  u[1] = 1.;
  ierr = VecRestoreArray(lambda[1],&u);CHKERRQ(ierr);

  ierr = MatCreateVecs(Ap,&mu[0],NULL);CHKERRQ(ierr);
  ierr = MatCreateVecs(Ap,&mu[1],NULL);CHKERRQ(ierr);
  ierr = VecZeroEntries(mu[0]);CHKERRQ(ierr);
  ierr = VecZeroEntries(mu[1]);CHKERRQ(ierr);
  ierr = TSSetCostGradients(ts,2,lambda,mu);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  /*
  ierr = VecView(lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(lambda[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  */
  ierr = VecGetArray(mu[0],&u);CHKERRQ(ierr);
  ierr = VecGetArray(mu[1],&v);CHKERRQ(ierr);
  f = fopen("adj_mu.out", "a");
  ierr = PetscFPrintf(PETSC_COMM_WORLD,f,"%20.15lf %20.15lf %20.15lf\n",tend,u[0],v[0]);CHKERRQ(ierr);
  ierr = VecRestoreArray(mu[0],&u);CHKERRQ(ierr);
  ierr = VecRestoreArray(mu[1],&v);CHKERRQ(ierr);
  fclose(f);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = MatDestroy(&Ap);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[1]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[1]);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
コード例 #2
0
ファイル: ex50.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  AppCtx         appctx;                 /* user-defined application context */
  PetscErrorCode ierr;
  PetscInt       i, xs, xm, ind, j, lenglob;
  PetscReal      x, *wrk_ptr1, *wrk_ptr2;
  MatNullSpace   nsp;
  PetscMPIInt    size;

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program and set problem parameters
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  PetscFunctionBegin;

  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;

  /*initialize parameters */
  appctx.param.N    = 10;  /* order of the spectral element */
  appctx.param.E    = 10;  /* number of elements */
  appctx.param.L    = 4.0;  /* length of the domain */
  appctx.param.mu   = 0.01; /* diffusion coefficient */
  appctx.initial_dt = 5e-3;
  appctx.param.steps = PETSC_MAX_INT;
  appctx.param.Tend  = 4;

  ierr = PetscOptionsGetInt(NULL,NULL,"-N",&appctx.param.N,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetInt(NULL,NULL,"-E",&appctx.param.E,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-Tend",&appctx.param.Tend,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-mu",&appctx.param.mu,NULL);CHKERRQ(ierr);
  appctx.param.Le = appctx.param.L/appctx.param.E;

  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (appctx.param.E % size) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_ARG_WRONG,"Number of elements must be divisible by number of processes");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create GLL data structures
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscGLLCreate(appctx.param.N,PETSCGLL_VIA_LINEARALGEBRA,&appctx.SEMop.gll);CHKERRQ(ierr);
  lenglob  = appctx.param.E*(appctx.param.N-1);

  /*
     Create distributed array (DMDA) to manage parallel grid and vectors
     and to set up the ghost point communication pattern.  There are E*(Nl-1)+1
     total grid values spread equally among all the processors, except first and last
  */

  ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC,lenglob,1,1,NULL,&appctx.da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(appctx.da);CHKERRQ(ierr);
  ierr = DMSetUp(appctx.da);CHKERRQ(ierr);
 
  /*
     Extract global and local vectors from DMDA; we use these to store the
     approximate solution.  Then duplicate these for remaining vectors that
     have the same types.
  */

  ierr = DMCreateGlobalVector(appctx.da,&appctx.dat.curr_sol);CHKERRQ(ierr);
  ierr = VecDuplicate(appctx.dat.curr_sol,&appctx.SEMop.grid);CHKERRQ(ierr);
  ierr = VecDuplicate(appctx.dat.curr_sol,&appctx.SEMop.mass);CHKERRQ(ierr);

  ierr = DMDAGetCorners(appctx.da,&xs,NULL,NULL,&xm,NULL,NULL);CHKERRQ(ierr);
  ierr = DMDAVecGetArray(appctx.da,appctx.SEMop.grid,&wrk_ptr1);CHKERRQ(ierr);
  ierr = DMDAVecGetArray(appctx.da,appctx.SEMop.mass,&wrk_ptr2);CHKERRQ(ierr);
  
  /* Compute function over the locally owned part of the grid */
  
    xs=xs/(appctx.param.N-1);
    xm=xm/(appctx.param.N-1);
  
  /* 
     Build total grid and mass over entire mesh (multi-elemental) 
  */ 

  for (i=xs; i<xs+xm; i++) {
    for (j=0; j<appctx.param.N-1; j++) {
      x = (appctx.param.Le/2.0)*(appctx.SEMop.gll.nodes[j]+1.0)+appctx.param.Le*i; 
      ind=i*(appctx.param.N-1)+j;
      wrk_ptr1[ind]=x;
      wrk_ptr2[ind]=.5*appctx.param.Le*appctx.SEMop.gll.weights[j];
      if (j==0) wrk_ptr2[ind]+=.5*appctx.param.Le*appctx.SEMop.gll.weights[j];
    } 
  }
  ierr = DMDAVecRestoreArray(appctx.da,appctx.SEMop.grid,&wrk_ptr1);CHKERRQ(ierr);
  ierr = DMDAVecRestoreArray(appctx.da,appctx.SEMop.mass,&wrk_ptr2);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
   Create matrix data structure; set matrix evaluation routine.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMSetMatrixPreallocateOnly(appctx.da, PETSC_TRUE);CHKERRQ(ierr);
  ierr = DMCreateMatrix(appctx.da,&appctx.SEMop.stiff);CHKERRQ(ierr);
  ierr = DMCreateMatrix(appctx.da,&appctx.SEMop.grad);CHKERRQ(ierr);
  /*
   For linear problems with a time-dependent f(u,t) in the equation
   u_t = f(u,t), the user provides the discretized right-hand-side
   as a time-dependent matrix.
   */
  ierr = RHSMatrixLaplaciangllDM(appctx.ts,0.0,appctx.dat.curr_sol,appctx.SEMop.stiff,appctx.SEMop.stiff,&appctx);CHKERRQ(ierr);
  ierr = RHSMatrixAdvectiongllDM(appctx.ts,0.0,appctx.dat.curr_sol,appctx.SEMop.grad,appctx.SEMop.grad,&appctx);CHKERRQ(ierr);
   /*
       For linear problems with a time-dependent f(u,t) in the equation
       u_t = f(u,t), the user provides the discretized right-hand-side
       as a time-dependent matrix.
    */
  
  ierr = MatDuplicate(appctx.SEMop.stiff,MAT_COPY_VALUES,&appctx.SEMop.keptstiff);CHKERRQ(ierr);

  /* attach the null space to the matrix, this probably is not needed but does no harm */
  ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,NULL,&nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.stiff,nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.keptstiff,nsp);CHKERRQ(ierr);  
  ierr = MatNullSpaceTest(nsp,appctx.SEMop.stiff,NULL);CHKERRQ(ierr);
  ierr = MatNullSpaceDestroy(&nsp);CHKERRQ(ierr);
  /* attach the null space to the matrix, this probably is not needed but does no harm */
  ierr = MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,NULL,&nsp);CHKERRQ(ierr);
  ierr = MatSetNullSpace(appctx.SEMop.grad,nsp);CHKERRQ(ierr);
  ierr = MatNullSpaceTest(nsp,appctx.SEMop.grad,NULL);CHKERRQ(ierr);
  ierr = MatNullSpaceDestroy(&nsp);CHKERRQ(ierr);

  /* Create the TS solver that solves the ODE and its adjoint; set its options */
  ierr = TSCreate(PETSC_COMM_WORLD,&appctx.ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(appctx.ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(appctx.ts,TSRK);CHKERRQ(ierr);
  ierr = TSSetDM(appctx.ts,appctx.da);CHKERRQ(ierr);
  ierr = TSSetTime(appctx.ts,0.0);CHKERRQ(ierr);
  ierr = TSSetTimeStep(appctx.ts,appctx.initial_dt);CHKERRQ(ierr);
  ierr = TSSetMaxSteps(appctx.ts,appctx.param.steps);CHKERRQ(ierr);
  ierr = TSSetMaxTime(appctx.ts,appctx.param.Tend);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(appctx.ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTolerances(appctx.ts,1e-7,NULL,1e-7,NULL);CHKERRQ(ierr);
  ierr = TSSetSaveTrajectory(appctx.ts);CHKERRQ(ierr);
  ierr = TSSetFromOptions(appctx.ts);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(appctx.ts,NULL,RHSFunction,&appctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(appctx.ts,appctx.SEMop.stiff,appctx.SEMop.stiff,RHSJacobian,&appctx);CHKERRQ(ierr);

  /* Set Initial conditions for the problem  */
  ierr = TrueSolution(appctx.ts,0,appctx.dat.curr_sol,&appctx);CHKERRQ(ierr);

  ierr = TSSetSolutionFunction(appctx.ts,(PetscErrorCode (*)(TS,PetscReal,Vec,void *))TrueSolution,&appctx);CHKERRQ(ierr);
  ierr = TSSetTime(appctx.ts,0.0);CHKERRQ(ierr);
  ierr = TSSetStepNumber(appctx.ts,0);CHKERRQ(ierr);

  ierr = TSSolve(appctx.ts,appctx.dat.curr_sol);CHKERRQ(ierr);

  ierr = MatDestroy(&appctx.SEMop.stiff);CHKERRQ(ierr);
  ierr = MatDestroy(&appctx.SEMop.keptstiff);CHKERRQ(ierr);
  ierr = MatDestroy(&appctx.SEMop.grad);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.SEMop.grid);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.SEMop.mass);CHKERRQ(ierr);
  ierr = VecDestroy(&appctx.dat.curr_sol);CHKERRQ(ierr);
  ierr = PetscGLLDestroy(&appctx.SEMop.gll);CHKERRQ(ierr);
  ierr = DMDestroy(&appctx.da);CHKERRQ(ierr);
  ierr = TSDestroy(&appctx.ts);CHKERRQ(ierr);

  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_summary).
  */
    ierr = PetscFinalize();
    return ierr;
}
コード例 #3
0
ファイル: ex19.c プロジェクト: petsc/petsc
int main(int argc,char **argv)
{
  TS             ts;            /* nonlinear solver */
  Vec            x;             /* solution, residual vectors */
  Mat            A;             /* Jacobian matrix */
  PetscInt       steps;
  PetscReal      ftime   = 0.5;
  PetscBool      monitor = PETSC_FALSE;
  PetscScalar    *x_ptr;
  PetscMPIInt    size;
  struct _n_User user;
  PetscErrorCode ierr;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!");

  ierr = RegisterMyARK2();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  user.next_output = 0.0;
  ierr = PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors, solve same ODE on every process
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);
  ierr = MatCreateVecs(A,&x,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,A,A,IJacobian,&user);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,ftime);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  if (monitor) {
    ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(x,&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -2;   x_ptr[1] = -2.355301397608119909925287735864250951918;
  ierr = VecRestoreArray(x,&x_ptr);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.001);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,x);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %3D, ftime %g\n",steps,(double)ftime);CHKERRQ(ierr);
  ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #4
0
ファイル: ex3.c プロジェクト: petsc/petsc
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Vec            Utrue;
  PetscErrorCode ierr;
  PetscMPIInt    size;
  AppCtx         ctx;
  PetscScalar    *u;
  IS             iss;
  IS             isf;
  PetscInt       *indicess;
  PetscInt       *indicesf;
  PetscInt       n=2;
  PetscReal      error,tt;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

   /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create index for slow part and fast part
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscMalloc1(1,&indicess);CHKERRQ(ierr);
  indicess[0]=0;
  ierr = PetscMalloc1(1,&indicesf);CHKERRQ(ierr);
  indicesf[0]=1;
  ierr = ISCreateGeneral(PETSC_COMM_SELF,1,indicess,PETSC_COPY_VALUES,&iss);CHKERRQ(ierr);
  ierr = ISCreateGeneral(PETSC_COMM_SELF,1,indicesf,PETSC_COPY_VALUES,&isf);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necesary vector
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecCreate(PETSC_COMM_WORLD,&U);CHKERRQ(ierr);
  ierr = VecSetSizes(U,n,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = VecSetFromOptions(U);CHKERRQ(ierr);
  ierr = VecDuplicate(U,&Utrue);
  ierr = VecCopy(U,Utrue);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set initial condition
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = PetscSqrtScalar(2.0);
  u[1] = PetscSqrtScalar(3.0);
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSMPRK);CHKERRQ(ierr);

  ierr = TSSetRHSFunction(ts,NULL,(TSRHSFunction)RHSFunction,&ctx);CHKERRQ(ierr);
  ierr = TSRHSSplitSetIS(ts,"slow",iss);CHKERRQ(ierr);
  ierr = TSRHSSplitSetIS(ts,"fast",isf);CHKERRQ(ierr);
  ierr = TSRHSSplitSetRHSFunction(ts,"slow",NULL,(TSRHSFunctionslow)RHSFunctionslow,&ctx);CHKERRQ(ierr);
  ierr = TSRHSSplitSetRHSFunction(ts,"fast",NULL,(TSRHSFunctionfast)RHSFunctionfast,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ODE options","");CHKERRQ(ierr);
  {
    ctx.Tf = 0.3;
    ctx.dt = 0.01;
    ierr   = PetscOptionsScalar("-Tf","","",ctx.Tf,&ctx.Tf,NULL);CHKERRQ(ierr);
    ierr   = PetscOptionsScalar("-dt","","",ctx.dt,&ctx.dt,NULL);CHKERRQ(ierr);
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,ctx.Tf);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,ctx.dt);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);
  ierr = VecView(U,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Check the error of the Petsc solution
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSGetTime(ts,&tt);CHKERRQ(ierr);
  ierr = sol_true(tt,Utrue);CHKERRQ(ierr);
  ierr = VecAXPY(Utrue,-1.0,U);CHKERRQ(ierr);
  ierr = VecNorm(Utrue,NORM_2,&error);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Print norm2 error
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscPrintf(PETSC_COMM_WORLD,"l2 error norm: %g\n", error);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = VecDestroy(&Utrue);CHKERRQ(ierr);
  ierr = ISDestroy(&iss);CHKERRQ(ierr);
  ierr = ISDestroy(&isf);CHKERRQ(ierr);
  ierr = PetscFree(indicess);CHKERRQ(ierr);
  ierr = PetscFree(indicesf);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
コード例 #5
0
ファイル: solver.c プロジェクト: 0tt3r/QuaC
/*
 * time_step solves for the time_dependence of the system
 * that was previously setup using the add_to_ham and add_lin
 * routines. Solver selection and parameters can be controlled via PETSc
 * command line options. Default solver is TSRK3BS
 *
 * Inputs:
 *       Vec     x:       The density matrix, with appropriate inital conditions
 *       double dt:       initial timestep. For certain explicit methods, this timestep
 *                        can be changed, as those methods have adaptive time steps
 *       double time_max: the maximum time to integrate to
 *       int steps_max:   max number of steps to take
 */
void time_step(Vec x, PetscReal init_time, PetscReal time_max,PetscReal dt,PetscInt steps_max){
  PetscViewer    mat_view;
  TS             ts; /* timestepping context */
  PetscInt       i,j,Istart,Iend,steps,row,col;
  PetscScalar    mat_tmp;
  PetscReal      tmp_real;
  Mat            AA;
  PetscInt       nevents,direction;
  PetscBool      terminate;
  operator       op;
  int            num_pop;
  double         *populations;
  Mat            solve_A,solve_stiff_A;


  PetscLogStagePop();
  PetscLogStagePush(solve_stage);
  if (_lindblad_terms) {
    if (nid==0) {
      printf("Lindblad terms found, using Lindblad solver.\n");
    }
    solve_A = full_A;
    if (_stiff_solver) {
      if(nid==0) printf("ERROR! Lindblad-stiff solver untested.");
      exit(0);
    }
  } else {
    if (nid==0) {
      printf("No Lindblad terms found, using (more efficient) Schrodinger solver.\n");
    }
    solve_A = ham_A;
    solve_stiff_A = ham_stiff_A;
    if (_num_time_dep&&_stiff_solver) {
      if(nid==0) printf("ERROR! Schrodinger-stiff + timedep solver untested.");
      exit(0);
    }
  }

  /* Possibly print dense ham. No stabilization is needed? */
  if (nid==0) {
    /* Print dense ham, if it was asked for */
    if (_print_dense_ham){
      FILE *fp_ham;
      fp_ham = fopen("ham","w");

      if (nid==0){
        for (i=0;i<total_levels;i++){
          for (j=0;j<total_levels;j++){
            fprintf(fp_ham,"%e %e ",PetscRealPart(_hamiltonian[i][j]),PetscImaginaryPart(_hamiltonian[i][j]));
          }
          fprintf(fp_ham,"\n");
        }
      }
      fclose(fp_ham);
      for (i=0;i<total_levels;i++){
        free(_hamiltonian[i]);
      }
      free(_hamiltonian);
      _print_dense_ham = 0;
    }
  }


  /* Remove stabilization if it was previously added */
  if (stab_added){
    if (nid==0) printf("Removing stabilization...\n");
    /*
     * We add 1.0 in the 0th spot and every n+1 after
     */
    if (nid==0) {
      row = 0;
      for (i=0;i<total_levels;i++){
        col = i*(total_levels+1);
        mat_tmp = -1.0 + 0.*PETSC_i;
        MatSetValue(full_A,row,col,mat_tmp,ADD_VALUES);
      }
    }
  }

  MatGetOwnershipRange(solve_A,&Istart,&Iend);
  /*
   * Explicitly add 0.0 to all diagonal elements;
   * this fixes a 'matrix in wrong state' message that PETSc
   * gives if the diagonal was never initialized.
   */
  //if (nid==0) printf("Adding 0 to diagonal elements...\n");
  for (i=Istart;i<Iend;i++){
    mat_tmp = 0 + 0.*PETSC_i;
    MatSetValue(solve_A,i,i,mat_tmp,ADD_VALUES);
  }
  if(_stiff_solver){
    MatGetOwnershipRange(solve_stiff_A,&Istart,&Iend);
    for (i=Istart;i<Iend;i++){
      mat_tmp = 0 + 0.*PETSC_i;
      MatSetValue(solve_stiff_A,i,i,mat_tmp,ADD_VALUES);
    }

  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -*
   *       Create the timestepping solver and set various options       *
   *- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
   * Create timestepping solver context
   */
  TSCreate(PETSC_COMM_WORLD,&ts);
  TSSetProblemType(ts,TS_LINEAR);


  /*
   * Set function to get information at every timestep
   */
  if (_ts_monitor!=NULL){
    TSMonitorSet(ts,_ts_monitor,_tsctx,NULL);
  }
  /*
   * Set up ODE system
   */

  TSSetRHSFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL);

  if(_stiff_solver) {
    /* TSSetIFunction(ts,NULL,TSComputeRHSFunctionLinear,NULL); */
    if (nid==0) {
      printf("Stiff solver not implemented!\n");
      exit(0);
    }
    if(nid==0) printf("Using stiff solver - TSROSW\n");
  }

  if(_num_time_dep+_num_time_dep_lin) {

    for(i=0;i<_num_time_dep;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_ham(tmp_real,solve_A,_time_dep_list[i].num_ops,_time_dep_list[i].ops);
    }

    for(i=0;i<_num_time_dep_lin;i++){
      tmp_real = 0.0;
      _add_ops_to_mat_lin(tmp_real,solve_A,_time_dep_list_lin[i].num_ops,_time_dep_list_lin[i].ops);
    }

    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (nid==0) printf("Matrix Assembled.\n");

    MatDuplicate(solve_A,MAT_COPY_VALUES,&AA);
    MatAssemblyBegin(AA,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(AA,MAT_FINAL_ASSEMBLY);

    TSSetRHSJacobian(ts,AA,AA,_RHS_time_dep_ham_p,NULL);
  } else {
    /* Tell PETSc to assemble the matrix */
    MatAssemblyBegin(solve_A,MAT_FINAL_ASSEMBLY);
    MatAssemblyEnd(solve_A,MAT_FINAL_ASSEMBLY);
    if (_stiff_solver){
      MatAssemblyBegin(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      MatAssemblyEnd(solve_stiff_A,MAT_FINAL_ASSEMBLY);
      /* TSSetIJacobian(ts,solve_stiff_A,solve_stiff_A,TSComputeRHSJacobianConstant,NULL); */
      if (nid==0) {
        printf("Stiff solver not implemented!\n");
        exit(0);
      }
    }
    if (nid==0) printf("Matrix Assembled.\n");
    TSSetRHSJacobian(ts,solve_A,solve_A,TSComputeRHSJacobianConstant,NULL);
  }

  /* Print information about the matrix. */
  PetscViewerASCIIOpen(PETSC_COMM_WORLD,NULL,&mat_view);
  PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_INFO);
  /* PetscViewerPushFormat(mat_view,PETSC_VIEWER_ASCII_MATLAB); */
  /* MatView(solve_A,mat_view); */

  /* PetscInt          ncols; */
  /* const PetscInt    *cols; */
  /* const PetscScalar *vals; */

  /* for(i=0;i<total_levels*total_levels;i++){ */
  /*   MatGetRow(solve_A,i,&ncols,&cols,&vals); */
  /*   for (j=0;j<ncols;j++){ */

  /*     if(PetscAbsComplex(vals[j])>1e-5){ */
  /*       printf("%d %d %lf %lf\n",i,cols[j],vals[j]); */
  /*     } */
  /*   } */
  /*   MatRestoreRow(solve_A,i,&ncols,&cols,&vals); */
  /* } */

  if(_stiff_solver){
    MatView(solve_stiff_A,mat_view);
  }
  PetscViewerPopFormat(mat_view);
  PetscViewerDestroy(&mat_view);

  TSSetTimeStep(ts,dt);

  /*
   * Set default options, can be changed at runtime
   */

  TSSetMaxSteps(ts,steps_max);
  TSSetMaxTime(ts,time_max);
  TSSetTime(ts,init_time);
  TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);
  if (_stiff_solver) {
    TSSetType(ts,TSROSW);
  } else {
    TSSetType(ts,TSRK);
    TSRKSetType(ts,TSRK3BS);
  }

  /* If we have gates to apply, set up the event handler. */
  if (_num_quantum_gates > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QG_EventFunction,_QG_PostEventFunction,NULL);
  }

  if (_num_circuits > 0) {
    nevents   =  1; //Only one event for now (did we cross a gate?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_QC_EventFunction,_QC_PostEventFunction,NULL);
  }

  if (_discrete_ec > 0) {
    nevents   =  1; //Only one event for now (did we cross an ec step?)
    direction = -1; //We only want to count an event if we go from positive to negative
    terminate = PETSC_FALSE; //Keep time stepping after we passed our event
    /* Arguments are: ts context, nevents, direction of zero crossing, whether to terminate,
     * a function to check event status, a function to apply events, private data context.
     */
    TSSetEventHandler(ts,nevents,&direction,&terminate,_DQEC_EventFunction,_DQEC_PostEventFunction,NULL);
  }

  /* if (_lindblad_terms) { */
  /*   nevents   =  1; //Only one event for now (did we cross a gate?) */
  /*   direction =  0; //We only want to count an event if we go from positive to negative */
  /*   terminate = PETSC_FALSE; //Keep time stepping after we passed our event */
  /*   TSSetEventHandler(ts,nevents,&direction,&terminate,_Normalize_EventFunction,_Normalize_PostEventFunction,NULL); */
  /* } */
  TSSetFromOptions(ts);
  TSSolve(ts,x);
  TSGetStepNumber(ts,&steps);

  num_pop = get_num_populations();
  populations = malloc(num_pop*sizeof(double));
  get_populations(x,&populations);
  /* if(nid==0){ */
  /*   printf("Final populations: "); */
  /*   for(i=0;i<num_pop;i++){ */
  /*     printf(" %e ",populations[i]); */
  /*   } */
  /*   printf("\n"); */
  /* } */

  /* PetscPrintf(PETSC_COMM_WORLD,"Steps %D\n",steps); */

  /* Free work space */
  TSDestroy(&ts);
  if(_num_time_dep+_num_time_dep_lin){
    MatDestroy(&AA);
  }
  free(populations);
  PetscLogStagePop();
  PetscLogStagePush(post_solve_stage);

  return;
}
コード例 #6
0
ファイル: heat.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  TS             ts;                           /* time integrator */
  Vec            x,r;                          /* solution, residual vectors */
  PetscInt       steps,Mx;
  PetscErrorCode ierr;
  DM             da;
  PetscReal      dt;
  UserCtx        ctx;
  PetscBool      mymonitor;
  PetscViewer    viewer;
  PetscBool      flg;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ctx.kappa     = 1.0;
  ierr          = PetscOptionsGetReal(NULL,NULL,"-kappa",&ctx.kappa,NULL);CHKERRQ(ierr);
  ctx.allencahn = PETSC_FALSE;
  ierr          = PetscOptionsHasName(NULL,NULL,"-allen-cahn",&ctx.allencahn);CHKERRQ(ierr);
  ierr          = PetscOptionsHasName(NULL,NULL,"-mymonitor",&mymonitor);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create distributed array (DMDA) to manage parallel grid and vectors
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_PERIODIC, 10,1,2,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,0,"Heat equation: u");CHKERRQ(ierr);
  ierr = DMDAGetInfo(da,0,&Mx,0,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
  dt   = 1.0/(ctx.kappa*Mx*Mx);

  /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Extract global vectors from DMDA; then duplicate for remaining
     vectors that are the same types
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMCreateGlobalVector(da,&x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&r);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(ts,NULL,FormFunction,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Customize nonlinear solver
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = FormInitialSolution(da,x);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,.02);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_INTERPOLATE);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,x);CHKERRQ(ierr);


  if (mymonitor) {
    ctx.ports = NULL;
    ierr      = TSMonitorSet(ts,MyMonitor,&ctx,MyDestroy);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,x);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);
  ierr = PetscOptionsHasName(NULL,NULL,"-square_initial",&flg);CHKERRQ(ierr);
  if (flg) {
    ierr  = PetscViewerBinaryOpen(PETSC_COMM_WORLD,"InitialSolution.heat",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
    ierr  = VecView(x,viewer);CHKERRQ(ierr);
    ierr  = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&x);CHKERRQ(ierr);
  ierr = VecDestroy(&r);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #7
0
ファイル: ex6.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  AppCtx         appctx;                 /* user-defined application context */
  TS             ts;                     /* timestepping context */
  Vec            U;                      /* approximate solution vector */
  PetscErrorCode ierr;
  PetscReal      dt;
  DM             da;
  PetscInt       M;
  PetscMPIInt    rank;
  PetscBool      useLaxWendroff = PETSC_TRUE;

  /* Initialize program and set problem parameters */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);

  appctx.a  = -1.0;
  ierr      = PetscOptionsGetReal(NULL,NULL,"-a",&appctx.a,NULL);CHKERRQ(ierr);

  ierr = DMDACreate1d(PETSC_COMM_WORLD,DM_BOUNDARY_PERIODIC, 60, 1, 1,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);

  /* Create vector data structures for approximate and exact solutions */
  ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr);

  /* Create timestepping solver context */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);

  /* Function evaluation */
  ierr = PetscOptionsGetBool(NULL,NULL,"-useLaxWendroff",&useLaxWendroff,NULL);CHKERRQ(ierr);
  if (useLaxWendroff) {
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"... Use Lax-Wendroff finite volume\n");CHKERRQ(ierr);
    }
    ierr = TSSetIFunction(ts,NULL,IFunction_LaxWendroff,&appctx);CHKERRQ(ierr);
  } else {
    if (!rank) {
      ierr = PetscPrintf(PETSC_COMM_SELF,"... Use Lax-LaxFriedrichs finite difference\n");CHKERRQ(ierr);
    }
    ierr = TSSetIFunction(ts,NULL,IFunction_LaxFriedrichs,&appctx);CHKERRQ(ierr);
  }

  /* Customize timestepping solver */
  ierr = DMDAGetInfo(da,PETSC_IGNORE,&M,0,0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
  dt = 1.0/(PetscAbsReal(appctx.a)*M);
  ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
  ierr = TSSetMaxSteps(ts,100);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,100.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* Evaluate initial conditions */
  ierr = InitialConditions(ts,U,&appctx);CHKERRQ(ierr);

  /* For testing accuracy of TS with already known solution, e.g., '-ts_monitor_lg_error' */
  ierr = TSSetSolutionFunction(ts,(PetscErrorCode (*)(TS,PetscReal,Vec,void*))Solution,&appctx);CHKERRQ(ierr);

  /* Run the timestepping solver */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* Free work space */
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #8
0
ファイル: ex5.c プロジェクト: petsc/petsc
int main(int argc,char **argv)
{
  TS                ts;            /* ODE integrator */
  Vec               U;             /* solution will be stored here */
  Mat               A;             /* Jacobian matrix */
  PetscErrorCode    ierr;
  PetscMPIInt       size;
  PetscInt          n = 2,idx;
  AppCtx            user;
  PetscScalar       *u;
  SNES              snes;
  PetscScalar       *mat;
  const PetscScalar *x,*rmat;
  Mat               B;
  PetscScalar       *amat;
  PetscViewer       viewer;



  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  /* Create wind speed data using Weibull distribution */
  ierr = WindSpeeds(&user);CHKERRQ(ierr);
  /* Set parameters for wind turbine and induction generator */
  ierr = SetWindTurbineParams(&user);CHKERRQ(ierr);
  ierr = SetInductionGeneratorParams(&user);CHKERRQ(ierr);

  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = vwa;
  u[1] = s;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);

  /* Create matrix to save solutions at each time step */
  user.stepnum = 0;

  ierr = MatCreateSeqDense(PETSC_COMM_SELF,3,2010,NULL,&user.Sol);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,(TSIFunction) IFunction,&user);CHKERRQ(ierr);

  ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr);
  ierr = SNESSetJacobian(snes,A,A,SNESComputeJacobianDefault,NULL);CHKERRQ(ierr);
  /*  ierr = TSSetIJacobian(ts,A,A,(TSIJacobian)IJacobian,&user);CHKERRQ(ierr); */
  ierr = TSSetApplicationContext(ts,&user);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* Save initial solution */
  idx=3*user.stepnum;

  ierr = MatDenseGetArray(user.Sol,&mat);CHKERRQ(ierr);
  ierr = VecGetArrayRead(U,&x);CHKERRQ(ierr);

  mat[idx] = 0.0;

  ierr = PetscMemcpy(mat+idx+1,x,2*sizeof(PetscScalar));CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(user.Sol,&mat);CHKERRQ(ierr);
  ierr = VecRestoreArrayRead(U,&x);CHKERRQ(ierr);
  user.stepnum++;


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,20.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSetPostStep(ts,SaveSolution);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  ierr = MatCreateSeqDense(PETSC_COMM_SELF,3,user.stepnum,NULL,&B);CHKERRQ(ierr);
  ierr = MatDenseGetArrayRead(user.Sol,&rmat);CHKERRQ(ierr);
  ierr = MatDenseGetArray(B,&amat);CHKERRQ(ierr);
  ierr = PetscMemcpy(amat,rmat,user.stepnum*3*sizeof(PetscScalar));CHKERRQ(ierr);
  ierr = MatDenseRestoreArray(B,&amat);CHKERRQ(ierr);
  ierr = MatDenseRestoreArrayRead(user.Sol,&rmat);CHKERRQ(ierr);

  ierr = PetscViewerBinaryOpen(PETSC_COMM_SELF,"out.bin",FILE_MODE_WRITE,&viewer);CHKERRQ(ierr);
  ierr = MatView(B,viewer);CHKERRQ(ierr);
  ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr);
  ierr = MatDestroy(&user.Sol);CHKERRQ(ierr);
  ierr = MatDestroy(&B);CHKERRQ(ierr);
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&user.wind_data);CHKERRQ(ierr);
  ierr = VecDestroy(&user.t_wind);CHKERRQ(ierr);
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #9
0
ファイル: ex20adj.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  TS             ts;            /* nonlinear solver */
  PetscBool      monitor = PETSC_FALSE;
  PetscScalar    *x_ptr,*y_ptr;
  PetscMPIInt    size;
  struct _n_User user;
  PetscErrorCode ierr;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_SELF,1,"This is a uniprocessor example only!");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  user.next_output = 0.0;
  user.mu          = 1.0e6;
  user.steps       = 0;
  user.ftime       = 0.5;
  ierr = PetscOptionsGetBool(NULL,NULL,"-monitor",&monitor,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetReal(NULL,NULL,"-mu",&user.mu,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors, solve same ODE on every process
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&user.A);CHKERRQ(ierr);
  ierr = MatSetSizes(user.A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr);
  ierr = MatSetFromOptions(user.A);CHKERRQ(ierr);
  ierr = MatSetUp(user.A);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.A,&user.x,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&user.Jacp);CHKERRQ(ierr);
  ierr = MatSetSizes(user.Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr);
  ierr = MatSetFromOptions(user.Jacp);CHKERRQ(ierr);
  ierr = MatSetUp(user.Jacp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSCN);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr);
  ierr = TSSetIJacobian(ts,user.A,user.A,IJacobian,&user);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,user.ftime);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  if (monitor) {
    ierr = TSMonitorSet(ts,Monitor,&user,NULL);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecGetArray(user.x,&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 2.0;   x_ptr[1] = -0.66666654321;
  ierr = VecRestoreArray(user.x,&x_ptr);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.0001);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set runtime options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  ierr = TSSolve(ts,user.x);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&user.ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&user.steps);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreateVecs(user.A,&user.lambda[0],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(user.lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 1.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(user.lambda[0],&y_ptr);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.A,&user.lambda[1],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.lambda[1],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 1.0;
  ierr = VecRestoreArray(user.lambda[1],&y_ptr);CHKERRQ(ierr);

  ierr = MatCreateVecs(user.Jacp,&user.mup[0],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.mup[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 0.0;
  ierr = VecRestoreArray(user.mup[0],&x_ptr);CHKERRQ(ierr);
  ierr = MatCreateVecs(user.Jacp,&user.mup[1],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(user.mup[1],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = 0.0;
  ierr = VecRestoreArray(user.mup[1],&x_ptr);CHKERRQ(ierr);

  ierr = TSSetCostGradients(ts,2,user.lambda,user.mup);CHKERRQ(ierr);

  /*   Set RHS JacobianP */
  ierr = TSSetRHSJacobianP(ts,user.Jacp,RHSJacobianP,&user);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[y(tf)]/d[y0]  d[y(tf)]/d[z0]\n");CHKERRQ(ierr);
  ierr = VecView(user.lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[z(tf)]/d[y0]  d[z(tf)]/d[z0]\n");CHKERRQ(ierr);
  ierr = VecView(user.lambda[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt parameters: d[y(tf)]/d[mu]\n");CHKERRQ(ierr);
  ierr = VecView(user.mup[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensivitity wrt parameters: d[z(tf)]/d[mu]\n");CHKERRQ(ierr);
  ierr = VecView(user.mup[1],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&user.A);CHKERRQ(ierr);
  ierr = MatDestroy(&user.Jacp);CHKERRQ(ierr);
  ierr = VecDestroy(&user.x);CHKERRQ(ierr);
  ierr = VecDestroy(&user.lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.lambda[1]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.mup[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&user.mup[1]);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return(ierr);
}
コード例 #10
0
ファイル: ex4.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  TS             ts;                  /* nonlinear solver */
  Vec            U;                   /* solution, residual vectors */
  PetscErrorCode ierr;
  DM             da;
  AppCtx         appctx;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;

  appctx.epsilon = 1.0e-3;
  appctx.delta   = 1.0;
  appctx.alpha   = 10.0;
  appctx.beta    = 4.0;
  appctx.gamma   = 1.0;
  appctx.kappa   = .75;
  appctx.lambda  = 1.0;
  appctx.mu      = 100.;
  appctx.cstar   = .2;
  appctx.upwind  = PETSC_TRUE;

  ierr = PetscOptionsGetScalar(NULL,NULL,"-delta",&appctx.delta,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsGetBool(NULL,NULL,"-upwind",&appctx.upwind,NULL);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create distributed array (DMDA) to manage parallel grid and vectors
  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMDACreate1d(PETSC_COMM_WORLD, DM_BOUNDARY_NONE,8,2,1,NULL,&da);CHKERRQ(ierr);
  ierr = DMSetFromOptions(da);CHKERRQ(ierr);
  ierr = DMSetUp(da);CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,0,"rho");CHKERRQ(ierr);
  ierr = DMDASetFieldName(da,1,"c");CHKERRQ(ierr);

  /*  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Extract global vectors from DMDA; then duplicate for remaining
     vectors that are the same types
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = DMCreateGlobalVector(da,&U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);
  ierr = TSSetDM(ts,da);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetIFunction(ts,NULL,IFunction,&appctx);CHKERRQ(ierr);


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = InitialConditions(da,U);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetTimeStep(ts,.0001);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,1.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = DMDestroy(&da);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #11
0
ファイル: ex40.c プロジェクト: firedrakeproject/petsc
int main(int argc,char **argv)
{
  TS             ts;            /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  PetscScalar    *u;
  AppCtx         app;
  PetscInt       direction[2];
  PetscBool      terminate[2];
  PetscBool      rhs_form=PETSC_FALSE,hist=PETSC_TRUE;
  TSAdapt        adapt;

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  app.nbounces = 0;
  app.maxbounces = 10;
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"ex40 options","");CHKERRQ(ierr);
  ierr = PetscOptionsInt("-maxbounces","","",app.maxbounces,&app.maxbounces,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsBool("-test_adapthistory","","",hist,&hist,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSROSW);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set ODE routines
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  /* Users are advised against the following branching and code duplication.
     For problems without a mass matrix like the one at hand, the RHSFunction
     (and companion RHSJacobian) interface is enough to support both explicit
     and implicit timesteppers. This tutorial example also deals with the
     IFunction/IJacobian interface for demonstration and testing purposes. */
  ierr = PetscOptionsGetBool(NULL,NULL,"-rhs-form",&rhs_form,NULL);CHKERRQ(ierr);
  if (rhs_form) {
    ierr = TSSetRHSFunction(ts,NULL,RHSFunction,NULL);CHKERRQ(ierr);
    ierr = TSSetRHSJacobian(ts,NULL,NULL,RHSJacobian,NULL);CHKERRQ(ierr);
  } else {
    Mat A; /* Jacobian matrix */
    ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
    ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
    ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
    ierr = MatSetFromOptions(A);CHKERRQ(ierr);
    ierr = MatSetUp(A);CHKERRQ(ierr);
    ierr = TSSetIFunction(ts,NULL,IFunction,NULL);CHKERRQ(ierr);
    ierr = TSSetIJacobian(ts,A,A,IJacobian,NULL);CHKERRQ(ierr);
    ierr = MatDestroy(&A);CHKERRQ(ierr);
  }

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecCreate(PETSC_COMM_WORLD,&U);CHKERRQ(ierr);
  ierr = VecSetSizes(U,n,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = VecSetUp(U);CHKERRQ(ierr);
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  u[0] = 0.0;
  u[1] = 20.0;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,30.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.1);CHKERRQ(ierr);
  /* The adapative time step controller could take very large timesteps resulting in
     the same event occuring multiple times in the same interval. A maximum step size
     limit is enforced here to avoid this issue. */
  ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
  ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);

  /* Set directions and terminate flags for the two events */
  direction[0] = -1;            direction[1] = -1;
  terminate[0] = PETSC_FALSE;   terminate[1] = PETSC_TRUE;
  ierr = TSSetEventHandler(ts,2,direction,terminate,EventFunction,PostEventFunction,(void*)&app);CHKERRQ(ierr);

  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Run timestepping solver
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSolve(ts,U);CHKERRQ(ierr);

  if (hist) { /* replay following history */
    TSTrajectory tj;
    PetscReal    tf,t0,dt;

    app.nbounces = 0;
    ierr = TSGetTime(ts,&tf);CHKERRQ(ierr);
    ierr = TSSetMaxTime(ts,tf);CHKERRQ(ierr);
    ierr = TSSetStepNumber(ts,0);CHKERRQ(ierr);
    ierr = TSRestartStep(ts);CHKERRQ(ierr);
    ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
    ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
    ierr = TSGetAdapt(ts,&adapt);CHKERRQ(ierr);
    ierr = TSAdaptSetType(adapt,TSADAPTHISTORY);CHKERRQ(ierr);
    ierr = TSGetTrajectory(ts,&tj);CHKERRQ(ierr);
    ierr = TSAdaptHistorySetTrajectory(adapt,tj,PETSC_FALSE);CHKERRQ(ierr);
    ierr = TSAdaptHistoryGetStep(adapt,0,&t0,&dt);CHKERRQ(ierr);
    /* this example fails with single (or smaller) precision */
#if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL__FP16)
    ierr = TSAdaptSetType(adapt,TSADAPTBASIC);CHKERRQ(ierr);
    ierr = TSAdaptSetStepLimits(adapt,0.0,0.5);CHKERRQ(ierr);
    ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
#endif
    ierr = TSSetTime(ts,t0);CHKERRQ(ierr);
    ierr = TSSetTimeStep(ts,dt);CHKERRQ(ierr);
    ierr = TSResetTrajectory(ts);CHKERRQ(ierr);
    ierr = VecGetArray(U,&u);CHKERRQ(ierr);
    u[0] = 0.0;
    u[1] = 20.0;
    ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
    ierr = TSSolve(ts,U);CHKERRQ(ierr);
  }
  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);

  ierr = PetscFinalize();
  return ierr;
}
コード例 #12
0
ファイル: ex43.c プロジェクト: firedrakeproject/petsc
int main(int argc, char *argv[])
{
  PetscMPIInt    size;
  TS             ts;
  Vec            R;
  Mat            J;
  Vec            U,V;
  PetscScalar    *u,*v;
  UserParams     user = {/*Omega=*/ 1, /*Xi=*/ 0, /*u0=*/ 1, /*,v0=*/ 0};
  PetscErrorCode ierr;

  ierr = PetscInitialize(&argc,&argv,NULL,help);CHKERRQ(ierr);
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  ierr = PetscOptionsBegin(PETSC_COMM_SELF,"","ex43 options","");CHKERRQ(ierr);
  ierr = PetscOptionsReal("-frequency","Natual frequency",__FILE__,user.Omega,&user.Omega,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-damping","Damping coefficient",__FILE__,user.Xi,&user.Xi,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-initial_u","Initial displacement",__FILE__,user.u0,&user.u0,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsReal("-initial_v","Initial velocity",__FILE__,user.v0,&user.v0,NULL);CHKERRQ(ierr);
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  ierr = TSCreate(PETSC_COMM_SELF,&ts);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSALPHA2);CHKERRQ(ierr);
  ierr = TSSetMaxTime(ts,5*(2*PETSC_PI));CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,0.01);CHKERRQ(ierr);

  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&R);CHKERRQ(ierr);
  ierr = VecSetUp(R);CHKERRQ(ierr);
  ierr = MatCreateSeqDense(PETSC_COMM_SELF,1,1,NULL,&J);CHKERRQ(ierr);
  ierr = MatSetUp(J);CHKERRQ(ierr);
  if (user.Xi) {
    ierr = TSSetI2Function(ts,R,Residual2,&user);CHKERRQ(ierr);
    ierr = TSSetI2Jacobian(ts,J,J,Tangent2,&user);CHKERRQ(ierr);
  } else {
    ierr = TSSetIFunction(ts,R,Residual1,&user);CHKERRQ(ierr);
    ierr = TSSetIJacobian(ts,J,J,Tangent1,&user);CHKERRQ(ierr);
  }
  ierr = VecDestroy(&R);CHKERRQ(ierr);
  ierr = MatDestroy(&J);CHKERRQ(ierr);
  ierr = TSSetSolutionFunction(ts,Solution,&user);CHKERRQ(ierr);

  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&U);CHKERRQ(ierr);
  ierr = VecCreateSeq(PETSC_COMM_SELF,1,&V);CHKERRQ(ierr);
  ierr = VecGetArray(U,&u);CHKERRQ(ierr);
  ierr = VecGetArray(V,&v);CHKERRQ(ierr);
  u[0] = user.u0;
  v[0] = user.v0;
  ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
  ierr = VecRestoreArray(V,&v);CHKERRQ(ierr);

  ierr = TS2SetSolution(ts,U,V);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);
  ierr = TSSolve(ts,NULL);CHKERRQ(ierr);

  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = VecDestroy(&V);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}
コード例 #13
0
ファイル: ex9adj.c プロジェクト: petsc/petsc
int main(int argc,char **argv)
{
  TS             ts,quadts;     /* ODE integrator */
  Vec            U;             /* solution will be stored here */
  Mat            A;             /* Jacobian matrix */
  Mat            Jacp;          /* Jacobian matrix */
  Mat            DRDU,DRDP;
  PetscErrorCode ierr;
  PetscMPIInt    size;
  PetscInt       n = 2;
  AppCtx         ctx;
  PetscScalar    *u;
  PetscReal      du[2] = {0.0,0.0};
  PetscBool      ensemble = PETSC_FALSE,flg1,flg2;
  PetscReal      ftime;
  PetscInt       steps;
  PetscScalar    *x_ptr,*y_ptr;
  Vec            lambda[1],q,mu[1];

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Initialize program
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscInitialize(&argc,&argv,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size > 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"Only for sequential runs");

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Create necessary matrix and vectors
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,n,n,PETSC_DETERMINE,PETSC_DETERMINE);CHKERRQ(ierr);
  ierr = MatSetType(A,MATDENSE);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&U,NULL);CHKERRQ(ierr);

  ierr = MatCreate(PETSC_COMM_WORLD,&Jacp);CHKERRQ(ierr);
  ierr = MatSetSizes(Jacp,PETSC_DECIDE,PETSC_DECIDE,2,1);CHKERRQ(ierr);
  ierr = MatSetFromOptions(Jacp);CHKERRQ(ierr);
  ierr = MatSetUp(Jacp);CHKERRQ(ierr);

  ierr = MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,&DRDP);CHKERRQ(ierr);
  ierr = MatSetUp(DRDP);CHKERRQ(ierr);
  ierr = MatCreateDense(PETSC_COMM_WORLD,PETSC_DECIDE,PETSC_DECIDE,1,1,NULL,&DRDU);CHKERRQ(ierr);
  ierr = MatSetUp(DRDU);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Set runtime options
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Swing equation options","");CHKERRQ(ierr);
  {
    ctx.beta    = 2;
    ctx.c       = 10000.0;
    ctx.u_s     = 1.0;
    ctx.omega_s = 1.0;
    ctx.omega_b = 120.0*PETSC_PI;
    ctx.H       = 5.0;
    ierr        = PetscOptionsScalar("-Inertia","","",ctx.H,&ctx.H,NULL);CHKERRQ(ierr);
    ctx.D       = 5.0;
    ierr        = PetscOptionsScalar("-D","","",ctx.D,&ctx.D,NULL);CHKERRQ(ierr);
    ctx.E       = 1.1378;
    ctx.V       = 1.0;
    ctx.X       = 0.545;
    ctx.Pmax    = ctx.E*ctx.V/ctx.X;;
    ierr        = PetscOptionsScalar("-Pmax","","",ctx.Pmax,&ctx.Pmax,NULL);CHKERRQ(ierr);
    ctx.Pm      = 1.1;
    ierr        = PetscOptionsScalar("-Pm","","",ctx.Pm,&ctx.Pm,NULL);CHKERRQ(ierr);
    ctx.tf      = 0.1;
    ctx.tcl     = 0.2;
    ierr        = PetscOptionsReal("-tf","Time to start fault","",ctx.tf,&ctx.tf,NULL);CHKERRQ(ierr);
    ierr        = PetscOptionsReal("-tcl","Time to end fault","",ctx.tcl,&ctx.tcl,NULL);CHKERRQ(ierr);
    ierr        = PetscOptionsBool("-ensemble","Run ensemble of different initial conditions","",ensemble,&ensemble,NULL);CHKERRQ(ierr);
    if (ensemble) {
      ctx.tf      = -1;
      ctx.tcl     = -1;
    }

    ierr = VecGetArray(U,&u);CHKERRQ(ierr);
    u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax);
    u[1] = 1.0;
    ierr = PetscOptionsRealArray("-u","Initial solution","",u,&n,&flg1);CHKERRQ(ierr);
    n    = 2;
    ierr = PetscOptionsRealArray("-du","Perturbation in initial solution","",du,&n,&flg2);CHKERRQ(ierr);
    u[0] += du[0];
    u[1] += du[1];
    ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
    if (flg1 || flg2) {
      ctx.tf      = -1;
      ctx.tcl     = -1;
    }
  }
  ierr = PetscOptionsEnd();CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Create timestepping solver context
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr);
  ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr);
  ierr = TSSetType(ts,TSRK);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(ts,NULL,(TSRHSFunction)RHSFunction,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(ts,A,A,(TSRHSJacobian)RHSJacobian,&ctx);CHKERRQ(ierr);
  ierr = TSCreateQuadratureTS(ts,PETSC_TRUE,&quadts);CHKERRQ(ierr);
  ierr = TSSetRHSFunction(quadts,NULL,(TSRHSFunction)CostIntegrand,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobian(quadts,DRDU,DRDU,(TSRHSJacobian)DRDUJacobianTranspose,&ctx);CHKERRQ(ierr);
  ierr = TSSetRHSJacobianP(quadts,DRDP,(TSRHSJacobianP)DRDPJacobianTranspose,&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set initial conditions
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSolution(ts,U);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    Save trajectory of solution so that TSAdjointSolve() may be used
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetSaveTrajectory(ts);CHKERRQ(ierr);

  ierr = MatCreateVecs(A,&lambda[0],NULL);CHKERRQ(ierr);
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr);

  ierr = MatCreateVecs(Jacp,&mu[0],NULL);CHKERRQ(ierr);
  ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -1.0;
  ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr);
  ierr = TSSetCostGradients(ts,1,lambda,mu);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Set solver options
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = TSSetMaxTime(ts,10.0);CHKERRQ(ierr);
  ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP);CHKERRQ(ierr);
  ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
  ierr = TSSetFromOptions(ts);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Solve nonlinear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  if (ensemble) {
    for (du[1] = -2.5; du[1] <= .01; du[1] += .1) {
      ierr = VecGetArray(U,&u);CHKERRQ(ierr);
      u[0] = PetscAsinScalar(ctx.Pm/ctx.Pmax);
      u[1] = ctx.omega_s;
      u[0] += du[0];
      u[1] += du[1];
      ierr = VecRestoreArray(U,&u);CHKERRQ(ierr);
      ierr = TSSetTimeStep(ts,.01);CHKERRQ(ierr);
      ierr = TSSolve(ts,U);CHKERRQ(ierr);
    }
  } else {
    ierr = TSSolve(ts,U);CHKERRQ(ierr);
  }
  ierr = VecView(U,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr);
  ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Adjoint model starts here
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  /*   Set initial conditions for the adjoint integration */
  ierr = VecGetArray(lambda[0],&y_ptr);CHKERRQ(ierr);
  y_ptr[0] = 0.0; y_ptr[1] = 0.0;
  ierr = VecRestoreArray(lambda[0],&y_ptr);CHKERRQ(ierr);

  ierr = VecGetArray(mu[0],&x_ptr);CHKERRQ(ierr);
  x_ptr[0] = -1.0;
  ierr = VecRestoreArray(mu[0],&x_ptr);CHKERRQ(ierr);

  /*   Set RHS JacobianP */
  ierr = TSSetRHSJacobianP(ts,Jacp,RHSJacobianP,&ctx);CHKERRQ(ierr);

  ierr = TSAdjointSolve(ts);CHKERRQ(ierr);

  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n sensitivity wrt initial conditions: d[Psi(tf)]/d[phi0]  d[Psi(tf)]/d[omega0]\n");CHKERRQ(ierr);
  ierr = VecView(lambda[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecView(mu[0],PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = TSGetCostIntegral(ts,&q);CHKERRQ(ierr);
  ierr = VecView(q,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
  ierr = VecGetArray(q,&x_ptr);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"\n cost function=%g\n",(double)(x_ptr[0]-ctx.Pm));CHKERRQ(ierr);
  ierr = VecRestoreArray(q,&x_ptr);CHKERRQ(ierr);

  ierr = ComputeSensiP(lambda[0],mu[0],&ctx);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     Free work space.  All PETSc objects should be destroyed when they are no longer needed.
   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = MatDestroy(&Jacp);CHKERRQ(ierr);
  ierr = MatDestroy(&DRDU);CHKERRQ(ierr);
  ierr = MatDestroy(&DRDP);CHKERRQ(ierr);
  ierr = VecDestroy(&U);CHKERRQ(ierr);
  ierr = VecDestroy(&lambda[0]);CHKERRQ(ierr);
  ierr = VecDestroy(&mu[0]);CHKERRQ(ierr);
  ierr = TSDestroy(&ts);CHKERRQ(ierr);
  ierr = PetscFinalize();
  return ierr;
}