コード例 #1
0
ファイル: cmodel.cpp プロジェクト: Sophiealex/jgt-code
void CModel::FacetHarmonics(int fh, int bw, double r, gsl_complex *coeff){
  int i, j, sign;
  gsl_complex err;
  
  Triangle_3 tr;
  tr = Triangle_3(plist[flist[fh*3+0]],plist[flist[fh*3+1]],plist[flist[fh*3+2]]);
  Tetrahedron_3 tetr;
  tetr = Tetrahedron_3(Point_3(0.0, 0.0, 0.0),plist[flist[fh*3+0]],plist[flist[fh*3+1]],plist[flist[fh*3+2]]);
  if(tetr.is_degenerate()) return;
  sign = (tetr.volume()<0 ? -1 : 1);
  
  for(i=0; i<bw; i++){
    for(j=0; j<=i; j++){
      Integrate(i, j, r, tetr, &coeff[i*bw+j], &err);
      coeff[i*bw+j] = gsl_complex_mul_real(coeff[i*bw+j], (double)sign);
    }
  }
}
コード例 #2
0
ファイル: intersect.cpp プロジェクト: SoumyajitG/VolRoverN
  bool
  does_intersect_convex_polygon_segment_3_in_3d(const vector<Point>& conv_poly, 
						const Segment& s)
  {
    // dissect the polygon into a set of triangles with common apex at the centroid.
    Vector centroid = CGAL::NULL_VECTOR;
    vector<Triangle_3> t;
    for(int i = 0; i < (int)conv_poly.size(); i ++)
      centroid = centroid + (conv_poly[i] - CGAL::ORIGIN);
    centroid = (1./(int)conv_poly.size()) * centroid;
  
    for(int i = 0; i < (int)conv_poly.size(); i ++)
      t.push_back(Triangle_3(CGAL::ORIGIN + centroid, 
                             conv_poly[i], conv_poly[(i+1)%((int)conv_poly.size())]));

    //CGAL::Failure_function old_ff = CGAL::set_error_handler(failure_func);
    //CGAL::Failure_behaviour old_fb = CGAL::set_error_behaviour(CGAL::CONTINUE);

    // Now for every triangle in t check if the Delaunay edge e intersects it.
    // use CGAL routine.
    bool is_degenerate_poly = true;
    for(int i = 0; i < (int)t.size(); i ++)
      {
	cgal_failed = false;
	bool intersect_result = CGAL::do_intersect(t[i], s);
	if(cgal_failed) continue;
	is_degenerate_poly = false;

	if(intersect_result)
	  {
	    //CGAL::set_error_handler(old_ff);
	    //CGAL::set_error_behaviour(old_fb);
	    is_degenerate_poly = false;
	    return true;
	  }
      }
    //CGAL::set_error_handler(old_ff);
    //CGAL::set_error_behaviour(old_fb);

    if(is_degenerate_poly) cerr << "+";

    return false;
  }
コード例 #3
0
ファイル: robust_cc.cpp プロジェクト: SoumyajitG/VolRoverN
// -------------------------------------------------------------
// dg_voronoi_point
// -------------------------------------------------------------
// This function computes a voronoi point when some degeneracies
// have been discovered about the four points of a tetrahedron.
//
// In this function we assume that the degeneracies occured
// because of the coplanarity. We approximate the circumcenter
// of the tetrahedron by the circumcenter of one of the triangular
// facets.
// -------------------------------------------------------------
Point
dg_voronoi_point(const Point &a,
                 const Point &b,
                 const Point &c,
                 const Point &d,
                 bool &is_correct_computation)
{

    // First, we check if our assumption is correct.
    // This is more of a debugging purpose than of
    // actual computation.
    Tetrahedron t = Tetrahedron(a,b,c,d);
    if( ! t.is_degenerate() )
    {
        // cerr << "error in the assumption of coplanarity." << endl;
        /*
        // debug
        cout << "{OFF " << endl;
        cout << "4 4 0" << endl;
        cout << a << "\n" << b << "\n" << c << "\n" << d << endl;
        cout << "3\t0 1 2" << endl;
        cout << "3\t0 2 3" << endl;
        cout << "3\t0 3 1" << endl;
        cout << "3\t1 2 3" << endl;
        cout << "}" << endl;
        // end debug
        */
    }

    // Approximate the circumcenter of the tetrahedron with that of
    // one of its triangular facets. The facet should not be collinear.
    // The following boolean variable will keep track if we have found
    // a valid circumcenter (of a triangle) to replace that of a
    // tetrahedron.
    Point cc = CGAL::ORIGIN;
    is_correct_computation = false;
    Point p[4] = {a,b,c,d};
    for(int i = 0; i < 4; i ++)
    {
        // first check if the facet is degenerate or not.
        Triangle_3 t = Triangle_3(p[(i+1)%4], p[(i+2)%4], p[(i+3)%4]);
        if( t.is_degenerate() ) continue;

        // since we found a non-degenerate triangle we can now compute
        // its circumcenter and we will be done.
        cc = nondg_cc_tr_3(p[(i+1)%4], p[(i+2)%4], p[(i+3)%4], is_correct_computation);

        if( is_correct_computation )
            break;
    }

    if( is_correct_computation )
    {
        if(cc == CGAL::ORIGIN) cerr << "<dg_vp : returning cc as ORIGIN>" << endl;
        return cc;
    }

    cerr << "four points are colinear. " << endl;

    // for the time being, I just average the four points. What should be
    // the circumcenter of a tetrahedron whose four points are collinear ?
    cc = CGAL::ORIGIN +
         ( 0.25*Vector
           (
               a[0]+b[0]+c[0]+d[0],
               a[1]+b[1]+c[1]+d[1],
               a[2]+b[2]+c[2]+d[2]
           )
         );

    if(cc == CGAL::ORIGIN) cerr << "<dg_vp : returning cc as ORIGIN>" << endl;
    return cc;
}