コード例 #1
0
void setPWMDutyCyclePercent(float percent)
{
	uint8_t index, index2;
	float modulo;

	if (percent > 100)
	{
		percent = 100;
	}

	current_brightness = percent; // used for status packet

#ifdef UART_DEBUG_CALCULATIONS
	UART_PUTF2 ("Percent requested: %d.%02d\r\n", (uint16_t)percent, (uint16_t)(percent * 100) % 100);
#endif
	
	// My OSRAM CFL lamp does not react to the 1..10V input in a linear way.
	// So translate promille to the translated promille value first (if enabled).
	if (use_pwm_translation)
	{
		index = (uint8_t)percent;
		index2 = index >= 100 ? 100 : index + 1;
		modulo = percent - index; // decimal places only, e.g. 0.12 when percent is 73.12
		
		uint8_t t1 = eeprom_read_UIntValue8(EEPROM_BRIGHTNESSTRANSLATIONTABLE_BYTE + index,
			EEPROM_BRIGHTNESSTRANSLATIONTABLE_BIT, 8, 0, 0xFF);
		uint8_t t2 = eeprom_read_UIntValue8(EEPROM_BRIGHTNESSTRANSLATIONTABLE_BYTE + index2,
			EEPROM_BRIGHTNESSTRANSLATIONTABLE_BIT, 8, 0, 0xFF);
		
		percent = linear_interpolate_f(modulo, 0.0, 1.0, t1, t2) * 100 / 255;
		
#ifdef UART_DEBUG_CALCULATIONS	
		UART_PUTF ("  Index 1: %u\r\n", index);
		UART_PUTF ("  Index 2: %u\r\n", index2);
		UART_PUTF ("  Translation value 1: %u\r\n", t1);
		UART_PUTF ("  Translation value 2: %u\r\n", t2);
		UART_PUTF ("  Modulo: 0.%003u\r\n", (uint16_t)(modulo * 1000));
		UART_PUTF2 ("  Percent corrected: %d.%02d\r\n", (uint16_t)percent, (uint16_t)(percent * 100) % 100);
#endif
	}
	
	// convert percentage to corrected percentage
	index = (uint8_t)percent;
	index2 = index >= 100 ? 100 : index + 1;
	modulo = percent - index; // decimal places only, e.g. 0.12 when percent is 73.12

	uint32_t pwm = (uint32_t)linear_interpolate_f(modulo, 0.0, 1.0, pwm_lookup[index], pwm_lookup[index2]);

#ifdef UART_DEBUG_CALCULATIONS	
	UART_PUTF ("    PWM value 1: %u\r\n", pwm_lookup[index]);
	UART_PUTF ("    PWM value 2: %u\r\n", pwm_lookup[index2]);
	UART_PUTF ("    Modulo: 0.%003u\r\n", (uint16_t)(modulo * 1000));
	UART_PUTF ("    PWM value interpolated: %u\r\n", pwm);
#else
	UART_PUTF ("PWM=%u\r\n", pwm);
#endif

	OCR1A = pwm;
}
コード例 #2
0
ファイル: ohc_basestation.c プロジェクト: palashjhabak/ohc
void print_switch_state(uint8_t max)
{
	uint8_t i;
	uint16_t u16;

	for (i = 1; i <= max; i++)
	{
		u16 = getBuf16(4 + i * 2);
		
		UART_PUTF(";Switch %u=", i);
		
		if (u16 & 0b1)
		{
			UART_PUTS("ON");
		}
		else
		{
			UART_PUTS("OFF");
		}
		
		u16 = u16 >> 1;
		
		if (u16)
		{		
			UART_PUTF2(";Timeout %u=%us", i, u16);
		}
	}
}
コード例 #3
0
// Prepare message for humidity
void prepare_humidity_status(uint16_t hum)
{	
	UART_PUTF2("Sending humidity: %u.%u%%\r\n", hum / 10, hum % 10);

	// Set packet content
	pkg_header_init_weather_humidity_status();
	msg_weather_humidity_set_humidity(hum);
}
コード例 #4
0
ファイル: ohc_basestation.c プロジェクト: palashjhabak/ohc
// printf for floating point numbers takes ~1500 bytes program size.
// Therefore, we use a smaller special function instead
// as long it is used so rarely.
void printSigned(int16_t i)
{
	if (i < 0)
	{
		UART_PUTS("-");
		i = -i;
	}
	
	UART_PUTF2("%d.%02d;", i / 100, i % 100);
}
コード例 #5
0
// Prepare message for humidity and raw value as temperature (only for debugging!)
void prepare_humidity_status_RAW_DBG(uint16_t hum, int16_t raw)
{	
	UART_PUTF2("Sending humidity: %u.%u%%\r\n", hum / 10, hum % 10);
	UART_PUTF ("Sending temperature: %d\r\n", raw);

	// Set packet content
	pkg_header_init_weather_humiditytemperature_status();
	msg_weather_humiditytemperature_set_humidity(hum);
	msg_weather_humiditytemperature_set_temperature(raw);
}
コード例 #6
0
ファイル: uart.c プロジェクト: GrumpyKater/smarthomatic
// printf for floating point numbers takes ~1500 bytes program size.
// Therefore, we use a smaller special function instead
// as long it is used so rarely.
void print_signed(int16_t i)
{
#ifdef UART_DEBUG
	if (i < 0)
	{
		UART_PUTS("-");
		i = -i;
	}
	
	UART_PUTF2("%d.%02d", i / 100, i % 100);
#endif // UART_DEBUG
}
コード例 #7
0
ファイル: uart.c プロジェクト: Phil-adelphia/ohc
void process_cmd(void)
{
	uart_putstr("Processing command: ");
	uart_putstr(cmdbuf);
	UART_PUTS("\r\n");
	
	if ((cmdbuf[0] == 'w') && (strlen(cmdbuf) == 5))
	{
		if (enable_write_eeprom)
		{
			uint16_t adr = hex_to_byte((uint8_t)cmdbuf[1]) * 16 + hex_to_byte((uint8_t)cmdbuf[2]);
			uint8_t val = hex_to_uint8((uint8_t *)cmdbuf, 3);
			UART_PUTF2("Writing data 0x%x to EEPROM pos 0x%x.\r\n", val, adr);
			eeprom_write_byte((uint8_t *)adr, val);
		}
		else
		{
			UART_PUTS("Ignoring EEPROM write, since write mode is DISABLED.\r\n");
		}
	}
	else if ((cmdbuf[0] == 'r') && (strlen(cmdbuf) == 3))
	{
		
		uint16_t adr = hex_to_byte((uint8_t)cmdbuf[1]) * 16 + hex_to_byte((uint8_t)cmdbuf[2]);
		uint8_t val = eeprom_read_byte((uint8_t *)adr);
		UART_PUTF2("EEPROM value at position 0x%x is 0x%x.\r\n", adr, val);
	}
	else if ((cmdbuf[0] == 's') && (strlen(cmdbuf) > 4))
	{
		strcpy(sendbuf, cmdbuf + 1);
		send_data_avail = true;
	}
	else
	{
		UART_PUTS("Unknown command.\r\n");
	}
}
コード例 #8
0
// Show info about the received packets.
// This is only for debugging and only few messages are supported. The definition
// of all packets must be known at the PC program that's processing the data.
void decode_data(uint8_t len)
{
	uint32_t u32, messagegroupid, messageid;
	uint16_t u16;
	
	pkg_header_adjust_offset();

	uint16_t senderid = pkg_header_get_senderid();
	uint32_t packetcounter = pkg_header_get_packetcounter();
	MessageTypeEnum messagetype = pkg_header_get_messagetype();

	UART_PUTF("Packet Data: SenderID=%u;", senderid);
	UART_PUTF("PacketCounter=%lu;", packetcounter);
	UART_PUTF("MessageType=%u;", messagetype);

	// show ReceiverID for all requests
	if ((messagetype == MESSAGETYPE_GET) || (messagetype == MESSAGETYPE_SET) || (messagetype == MESSAGETYPE_SETGET))
	{
		uint16_t receiverid = pkg_headerext_common_get_receiverid();
		UART_PUTF("ReceiverID=%u;", receiverid);
	}
	
	uint16_t acksenderid = 65000;
	uint32_t ackpacketcounter = 0;

	// show AckSenderID, AckPacketCounter and Error for "Ack" and "AckStatus"
	if ((messagetype == MESSAGETYPE_ACK) || (messagetype == MESSAGETYPE_ACKSTATUS))
	{
		acksenderid = pkg_headerext_common_get_acksenderid();
		ackpacketcounter = pkg_headerext_common_get_ackpacketcounter();
		uint8_t error = pkg_headerext_common_get_error();
		UART_PUTF("AckSenderID=%u;", acksenderid);
		UART_PUTF("AckPacketCounter=%lu;", ackpacketcounter);
		UART_PUTF("Error=%u;", error);
	}

	// show MessageGroupID and MessageID for all MessageTypes except "Ack"
	if (messagetype != MESSAGETYPE_ACK)
	{
		messagegroupid = pkg_headerext_common_get_messagegroupid();
		messageid = pkg_headerext_common_get_messageid();
		UART_PUTF("MessageGroupID=%u;", messagegroupid);
		UART_PUTF("MessageID=%u;", messageid);
	}
	
	// show raw message data for all MessageTypes with data (= all except "Get" and "Ack")
	if ((messagetype != MESSAGETYPE_GET) && (messagetype != MESSAGETYPE_ACK))
	{
		uint8_t i;
		uint8_t start = __HEADEROFFSETBITS / 8;
		uint8_t shift = __HEADEROFFSETBITS % 8;
		uint16_t count = (((uint16_t)len * 8) - __HEADEROFFSETBITS + 7) / 8;
	
		//UART_PUTF4("\r\n\r\nLEN=%u, START=%u, SHIFT=%u, COUNT=%u\r\n\r\n", len, start, shift, count);
	
		UART_PUTS("MessageData=");
	
		for (i = start; i < start + count; i++)
		{
			UART_PUTF("%02x", array_read_UIntValue8(i, shift, 8, 0, 255, bufx));
		}
		
		UART_PUTS(";");

		// additionally decode the message data for a small number of messages
		switch (messagegroupid)
		{
			case MESSAGEGROUP_GENERIC:

				switch (messageid)
				{
					case MESSAGEID_GENERIC_VERSION:
						UART_PUTF("Major=%u;", msg_generic_version_get_major());
						UART_PUTF("Minor=%u;", msg_generic_version_get_minor());
						UART_PUTF("Patch=%u;", msg_generic_version_get_patch());
						UART_PUTF("Hash=%08lx;", msg_generic_version_get_hash());
						break;
						
					case MESSAGEID_GENERIC_BATTERYSTATUS:
						UART_PUTF("Percentage=%u;", msg_generic_batterystatus_get_percentage());
						break;
						
					/*DateTime Status:
					UART_PUTS("Command Name=DateTime Status;");
					UART_PUTF3("Date=%u-%02u-%02u;", bufx[6] + 2000, bufx[7], bufx[8]);
					UART_PUTF3("Time=%02u:%02u:%02u", bufx[9], bufx[10], bufx[11]);*/
				
					default:
						break;
				}
				
				break;

			case MESSAGEGROUP_WEATHER:
				
				switch (messageid)
				{
					case MESSAGEID_WEATHER_TEMPERATURE:
						UART_PUTS("Temperature=");
						print_signed(msg_weather_temperature_get_temperature());
						UART_PUTS(";");
						break;
					case MESSAGEID_WEATHER_HUMIDITYTEMPERATURE:
						u16 = msg_weather_humiditytemperature_get_humidity();
						UART_PUTF2("Humidity=%u.%u;Temperature=", u16 / 10, u16 % 10);
						print_signed(msg_weather_humiditytemperature_get_temperature());
						UART_PUTS(";");
						break;
					case MESSAGEID_WEATHER_BAROMETRICPRESSURETEMPERATURE:
						u32 = msg_weather_barometricpressuretemperature_get_barometricpressure();
						UART_PUTF("Pressure=%ld;Temperature=", u32);
						print_signed(msg_weather_barometricpressuretemperature_get_temperature());
						UART_PUTS(";");
						break;
					default:
						break;
				}
				
				break;

			case MESSAGEGROUP_POWERSWITCH:
				
				switch (messageid)
				{
					case MESSAGEID_POWERSWITCH_SWITCHSTATE:
						UART_PUTF("On=%u;", msg_powerswitch_switchstate_get_on());
						UART_PUTF("TimeoutSec=%u;", msg_powerswitch_switchstate_get_timeoutsec());
						break;
					default:
						break;
				}
				
				break;
			
			default:
				break;
		}
	}

	UART_PUTS("\r\n");
	
	// Detect and process Acknowledges to base station, whose requests have to be removed from the request queue
	if ((messagetype == MESSAGETYPE_ACK) || (messagetype == MESSAGETYPE_ACKSTATUS))
	{
		if (acksenderid == device_id) // request sent from base station
		{
			remove_request(senderid, device_id, ackpacketcounter);
		}
	}
}
コード例 #9
0
ファイル: ohc_basestation.c プロジェクト: palashjhabak/ohc
// Show info about the received packets.
// This is only for debugging. The definition of all packets must be known at the PC program
// that's processing the data.
void decode_data(uint8_t len)
{
	uint16_t u16;
	int16_t s16;
	uint32_t u32;	

	UART_PUTF("Sender ID=%u;", bufx[0]);
	UART_PUTF("Packet Counter=%lu;", getBuf32(1));
	uint8_t cmd = bufx[5];
	UART_PUTF("Command ID=%u;", cmd);

	switch (cmd)
	{
		case 1: // Generic Acknowledge
			u32 = getBuf32(7);
			UART_PUTS("Command Name=Generic Acknowledge;");
			UART_PUTF("Request Sender ID=%u;", bufx[6]);
			UART_PUTF("Request Packet Counter=%lu\r\n", u32);
			remove_request(bufx[0], bufx[6], u32);
			break;

		case 10: // Temperature Sensor Status
			UART_PUTS("Command Name=Temperature Sensor Status;");
			s16 = (int16_t)getBuf16(7);
			UART_PUTF("Battery=%u;", bufx[6]);
			UART_PUTS("Temperature=");
			printSigned(s16);
			u16 = getBuf16(9);
			UART_PUTF2("Humidity=%u.%02u;", u16 / 100, u16 % 100);
			UART_PUTF("Brightness=%u", bufx[11]);
			break;
			
		case 20: // Power Switch Status
			UART_PUTS("Command Name=Power Switch Status");
			print_switch_state(3);
			break;

		case 21: // Power Switch Status Extended
			UART_PUTS("Command Name=Power Switch Status Extended");
			print_switch_state(8);
			break;

		case 30: // DateTime Status
			UART_PUTS("Command Name=DateTime Status;");
			UART_PUTF3("Date=%u-%02u-%02u;", bufx[6] + 2000, bufx[7], bufx[8]);
			UART_PUTF3("Time=%02u:%02u:%02u", bufx[9], bufx[10], bufx[11]);
			break;
		
		case 140: // Power Switch Request
			UART_PUTS("Command Name=Power Switch Request;");
			uint16_t u16 = getBuf16(8);
			UART_PUTF("Receiver ID=%u;", bufx[6]);
			UART_PUTF("Switch Bitmask=%u;", bufx[7]); // TODO: Set binary mode like 00010110
			UART_PUTF("Requested State=%u;", u16 & 0b1);
			UART_PUTF("Timeout=%u", u16 >> 1);
			break;
			
		case 141: // Dimmer Request
			UART_PUTS("Command Name=Dimmer Request;");
			UART_PUTF("Receiver ID=%u;", bufx[6]);
			UART_PUTF("Animation Mode=%u;", bufx[7] >> 5);
			UART_PUTF("Dimmer Bitmask=%u;", bufx[7] & 0b111);
			UART_PUTF("Timeout=%u;", getBuf16(8));
			UART_PUTF("Start Brightness=%u;", bufx[10]);
			UART_PUTF("End Brightness=%u", bufx[11]);
			break;
			
		default:
			UART_PUTS("Command Name=Unknown;");
			UART_PUTS("Data=");
			printbytearray(bufx + 6, len - 6);
	}

	if (cmd != 1)
	{
		UART_PUTS("\r\n");
	}
}
コード例 #10
0
ファイル: shc_dimmer.c プロジェクト: GoHoHa/smarthomatic
int main(void)
{
	uint16_t send_status_timeout = 25;
	uint32_t station_packetcounter;
	uint32_t pos;
	uint8_t button_state = 0;
	uint8_t manual_dim_direction = 0;

	// delay 1s to avoid further communication with uart or RFM12 when my programmer resets the MC after 500ms...
	_delay_ms(1000);

	util_init();
	check_eeprom_compatibility(DEVICE_TYPE_DIMMER);

	osccal_init();
	
	// read packetcounter, increase by cycle and write back
	packetcounter = eeprom_read_dword((uint32_t*)EEPROM_POS_PACKET_COUNTER) + PACKET_COUNTER_WRITE_CYCLE;
	eeprom_write_dword((uint32_t*)EEPROM_POS_PACKET_COUNTER, packetcounter);

	// read device id and write to send buffer
	device_id = eeprom_read_byte((uint8_t*)EEPROM_POS_DEVICE_ID);	
	use_pwm_translation = 1; //eeprom_read_byte((uint8_t*)EEPROM_POS_USE_PWM_TRANSLATION);	
	
	// TODO: read (saved) dimmer state from before the eventual powerloss
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		uint16_t u16 = eeprom_read_word((uint16_t*)EEPROM_POS_SWITCH_STATE + i * 2);
		switch_state[i] = (uint8_t)(u16 & 0b1);
		switch_timeout[i] = u16 >> 1;
	}*/
	
	// read last received station packetcounter
	station_packetcounter = eeprom_read_dword((uint32_t*)EEPROM_POS_STATION_PACKET_COUNTER);

	led_blink(200, 200, 5);

#ifdef UART_DEBUG
	uart_init(false);
	UART_PUTS ("\r\n");
	UART_PUTS ("smarthomatic Dimmer V1.0 (c) 2013 Uwe Freese, www.smarthomatic.org\r\n");
	osccal_info();
	UART_PUTF ("Device ID: %u\r\n", device_id);
	UART_PUTF ("Packet counter: %lu\r\n", packetcounter);
	UART_PUTF ("Use PWM translation table: %u\r\n", use_pwm_translation);
	UART_PUTF ("Last received station packet counter: %u\r\n\r\n", station_packetcounter);
#endif

	// init AES key
	eeprom_read_block (aes_key, (uint8_t *)EEPROM_POS_AES_KEY, 32);

	rfm12_init();
	PWM_init();
	io_init();
	setPWMDutyCycle(0);
	timer0_init();

	// DEMO to measure the voltages of different PWM settings to calculate the pwm_lookup table
	/*while (42)
	{
		uint16_t i;
		
		for (i = 0; i <= 1024; i = i + 100)
		{
			UART_PUTF ("PWM value OCR1A: %u\r\n", i);
			OCR1A = i;
			led_blink(500, 6500, 1);
		}
	}*/
	
	// DEMO 0..100..0%, using the pwm_lookup table and the translation table in EEPROM.
	/*while (42)
	{
		float i;
		
		for (i = 0; i <= 100; i = i + 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
		
		for (i = 99.95; i > 0; i = i - 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
	}*/

	// set initial switch state
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		switchRelais(i, switch_state[i]);
	}*/

	sei();

	// DEMO 30s
	/*animation_length = 30;
	animation_length = (uint32_t)((float)animation_length * 1000 / ANIMATION_CYCLE_MS);
	start_brightness = 0;
	end_brightness = 255;
	animation_position = 0;*/
	
	while (42)
	{
		if (rfm12_rx_status() == STATUS_COMPLETE)
		{
			uint8_t len = rfm12_rx_len();
			
			if ((len == 0) || (len % 16 != 0))
			{
				UART_PUTF("Received garbage (%u bytes not multiple of 16): ", len);
				printbytearray(bufx, len);
			}
			else // try to decrypt with all keys stored in EEPROM
			{
				memcpy(bufx, rfm12_rx_buffer(), len);
				
				//UART_PUTS("Before decryption: ");
				//printbytearray(bufx, len);
					
				aes256_decrypt_cbc(bufx, len);

				//UART_PUTS("Decrypted bytes: ");
				//printbytearray(bufx, len);

				uint32_t assumed_crc = getBuf32(len - 4);
				uint32_t actual_crc = crc32(bufx, len - 4);
				
				//UART_PUTF("Received CRC32 would be %lx\r\n", assumed_crc);
				//UART_PUTF("Re-calculated CRC32 is  %lx\r\n", actual_crc);
				
				if (assumed_crc != actual_crc)
				{
					UART_PUTS("Received garbage (CRC wrong after decryption).\r\n");
				}
				else
				{
					//UART_PUTS("CRC correct, AES key found!\r\n");
					UART_PUTS("         Received: ");
					printbytearray(bufx, len - 4);
					
					// decode command and react
					uint8_t sender = bufx[0];
					
					UART_PUTF("           Sender: %u\r\n", sender);
					
					if (sender != 0)
					{
						UART_PUTF("Packet not from base station. Ignoring (Sender ID was: %u).\r\n", sender);
					}
					else
					{
						uint32_t packcnt = getBuf32(1);

						UART_PUTF("   Packet Counter: %lu\r\n", packcnt);

						// check received counter
						if (0) //packcnt <= station_packetcounter)
						{
							UART_PUTF2("Received packet counter %lu is lower than last received counter %lu. Ignoring packet.\r\n", packcnt, station_packetcounter);
						}
						else
						{
							// write received counter
							station_packetcounter = packcnt;
							eeprom_write_dword((uint32_t*)EEPROM_POS_STATION_PACKET_COUNTER, station_packetcounter);
							
							// check command ID
							uint8_t cmd = bufx[5];

							UART_PUTF("       Command ID: %u\r\n", cmd);
							
							if (cmd != 141) // ID 141 == Dimmer Request
							{
								UART_PUTF("Received unknown command ID %u. Ignoring packet.\r\n", cmd);
							}
							else
							{
								// check device id
								uint8_t rcv_id = bufx[6];

								UART_PUTF("      Receiver ID: %u\r\n", rcv_id);
								
								if (rcv_id != device_id)
								{
									UART_PUTF("Device ID %u does not match. Ignoring packet.\r\n", rcv_id);
								}
								else
								{
									// read animation mode and parameters
									uint8_t animation_mode = bufx[7] >> 5;
									
									// TODO: Implement support for multiple dimmers (e.g. RGB)
									// uint8_t dimmer_bitmask = bufx[7] & 0b111;
									
									animation_length = getBuf16(8);
									start_brightness = bufx[10];
									end_brightness = bufx[11];

									UART_PUTF("   Animation Mode: %u\r\n", animation_mode); // TODO: Set binary mode like 00010110
									//UART_PUTF("   Dimmer Bitmask: %u\r\n", dimmer_bitmask);
									UART_PUTF("   Animation Time: %us\r\n", animation_length);
									UART_PUTF(" Start Brightness: %u\r\n", start_brightness);
									UART_PUTF("   End Brightness: %u\r\n", end_brightness);
									
									animation_length = (uint32_t)((float)animation_length * 1000 / ANIMATION_CYCLE_MS);
									animation_position = 0;
									
									/* TODO: Write to EEPROM (?)
									// write back switch state to EEPROM
									switch_state[i] = req_state;
									switch_timeout[i] = req_timeout;
									
									eeprom_write_word((uint16_t*)EEPROM_POS_SWITCH_STATE + i * 2, u16);
									
									*/
									
									// send acknowledge
									UART_PUTS("Sending ACK:\r\n");

									// set device ID (base station has ID 0 by definition)
									bufx[0] = device_id;
									
									// update packet counter
									packetcounter++;
									
									if (packetcounter % PACKET_COUNTER_WRITE_CYCLE == 0)
									{
										eeprom_write_dword((uint32_t*)0, packetcounter);
									}

									setBuf32(1, packetcounter);

									// set command ID "Generic Acknowledge"
									bufx[5] = 1;
									
									// set sender ID of request
									bufx[6] = sender;
									
									// set Packet counter of request
									setBuf32(7, station_packetcounter);

									// zero unused bytes
									bufx[11] = 0;
									
									// set CRC32
									uint32_t crc = crc32(bufx, 12);
									setBuf32(12, crc);

									// show info
									UART_PUTF("            CRC32: %lx\r\n", crc);
									uart_putstr("      Unencrypted: ");
									printbytearray(bufx, 16);

									rfm12_sendbuf();
									
									UART_PUTS("   Send encrypted: ");
									printbytearray(bufx, 16);
									UART_PUTS("\r\n");
								
									rfm12_tick();
									
									led_blink(200, 0, 1);
									
									send_status_timeout = 25;
								}
							}
						}
					}
				}
				
			}

			// tell the implementation that the buffer can be reused for the next data.
			rfm12_rx_clear();
		}

		_delay_ms(ANIMATION_UPDATE_MS);
		
		// React on button press.
		// - abort animation
		// - switch off, when brightness > 0
		// - switch on otherwise
		if (!(BUTTON_PORT & (1 << BUTTON_PIN))) // button press
		{
			if (button_state == 0)
			{
				UART_PUTS("Button pressed\r\n");
				animation_length = 0;
				animation_position = 0;
			}
			
			if (button_state < 5)
			{
				button_state++;
			}
			else // manual dimming
			{
				if (manual_dim_direction) // UP
				{
					if (current_brightness < 100)
					{
						current_brightness = (uint8_t)current_brightness / 2 * 2 + 2;
						setPWMDutyCycle(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming DOWN\r\n");
						manual_dim_direction = 0;
					}
				}
				else // DOWN
				{
					if (current_brightness > 0)
					{
						current_brightness = (((uint8_t)current_brightness - 1) / 2) * 2;
						setPWMDutyCycle(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming UP\r\n");
						manual_dim_direction = 1;
					}
				}
				
			}
		}
		else if (button_state && (BUTTON_PORT & (1 << BUTTON_PIN))) // button release
		{
			UART_PUTS("Button released\r\n");
			
			if (button_state < 5) // short button press
			{
				if (current_brightness > 0)
				{
					UART_PUTS(" -> 0%\r\n");
					setPWMDutyCycle(0);
				}
				else
				{
					UART_PUTS(" -> 100%\r\n");
					setPWMDutyCycle(100);
				}
			}
			else
			{
				// reverse dim direction
				manual_dim_direction = !manual_dim_direction;
			}
			
			button_state = 0;
		}
				
		// update brightness according animation_position, updated by timer0
		if (animation_length > 0)
		{
			pos = animation_position; // copy value to avoid that it changes in between by timer interrupt
			UART_PUTF2("%lu/%lu, ", pos, animation_length);
			
			if (pos == animation_length)
			{
				UART_PUTF("END Brightness %u%%, ", end_brightness * 100 / 255);
				setPWMDutyCycle((float)end_brightness * 100 / 255);
				animation_length = 0;
				animation_position = 0;
			}
			else
			{			
				float brightness = (start_brightness + ((float)end_brightness - start_brightness) * pos / animation_length) * 100 / 255;
				UART_PUTF("Br.%u%%, ", (uint32_t)(brightness));
				setPWMDutyCycle(brightness);
			}
		}			
		
		// send status from time to time
		if (send_status_timeout == 0)
		{
			send_status_timeout = SEND_STATUS_EVERY_SEC * (1000 / ANIMATION_UPDATE_MS);
			send_dimmer_status();
			led_blink(200, 0, 1);
		}

		rfm12_tick();
		send_status_timeout--;
		checkSwitchOff();
	}
コード例 #11
0
int main(void)
{
	uint16_t send_status_timeout = 25;
	uint32_t pos;
	uint8_t button_state = 0;
	uint8_t manual_dim_direction = 0;

	// delay 1s to avoid further communication with uart or RFM12 when my programmer resets the MC after 500ms...
	_delay_ms(1000);

	util_init();
	
	check_eeprom_compatibility(DEVICETYPE_DIMMER);
	
	// read packetcounter, increase by cycle and write back
	packetcounter = e2p_generic_get_packetcounter() + PACKET_COUNTER_WRITE_CYCLE;
	e2p_generic_set_packetcounter(packetcounter);

	// read device id
	device_id = e2p_generic_get_deviceid();

	// pwm translation table is not used if first byte is 0xFF
	use_pwm_translation = (0xFF != eeprom_read_UIntValue8(EEPROM_BRIGHTNESSTRANSLATIONTABLE_BYTE,
		EEPROM_BRIGHTNESSTRANSLATIONTABLE_BIT, 8, 0, 0xFF));
	
	// TODO: read (saved) dimmer state from before the eventual powerloss
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		uint16_t u16 = eeprom_read_word((uint16_t*)EEPROM_POS_SWITCH_STATE + i * 2);
		switch_state[i] = (uint8_t)(u16 & 0b1);
		switch_timeout[i] = u16 >> 1;
	}*/
	
	// read last received station packetcounter
	station_packetcounter = e2p_dimmer_get_basestationpacketcounter();
	
	led_blink(500, 500, 3);

	osccal_init();

	uart_init();
	UART_PUTS ("\r\n");
	UART_PUTF4("smarthomatic Dimmer v%u.%u.%u (%08lx)\r\n", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH, VERSION_HASH);
	UART_PUTS("(c) 2013..2014 Uwe Freese, www.smarthomatic.org\r\n");
	osccal_info();
	UART_PUTF ("DeviceID: %u\r\n", device_id);
	UART_PUTF ("PacketCounter: %lu\r\n", packetcounter);
	UART_PUTF ("Use PWM translation table: %u\r\n", use_pwm_translation);
	UART_PUTF ("Last received base station PacketCounter: %u\r\n\r\n", station_packetcounter);

	// init AES key
	eeprom_read_block (aes_key, (uint8_t *)EEPROM_AESKEY_BYTE, 32);

	rfm12_init();
	PWM_init();
	io_init();
	setPWMDutyCyclePercent(0);
	timer0_init();

	// DEMO to measure the voltages of different PWM settings to calculate the pwm_lookup table
	/*while (42)
	{
		uint16_t i;
		
		for (i = 0; i <= 1024; i = i + 100)
		{
			UART_PUTF ("PWM value OCR1A: %u\r\n", i);
			OCR1A = i;
			led_blink(500, 6500, 1);
		}
	}*/
	
	// DEMO 0..100..0%, using the pwm_lookup table and the translation table in EEPROM.
	/*while (42)
	{
		float i;
		
		for (i = 0; i <= 100; i = i + 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
		
		for (i = 99.95; i > 0; i = i - 0.05)
		{
			led_blink(10, 10, 1);
			setPWMDutyCycle(i);
		}
	}*/

	// set initial switch state
	/*for (i = 0; i < SWITCH_COUNT; i++)
	{
		switchRelais(i, switch_state[i]);
	}*/

	sei();

	// DEMO 30s
	/*animation_length = 30;
	animation_length = (uint32_t)((float)animation_length * 1000 / ANIMATION_CYCLE_MS);
	start_brightness = 0;
	end_brightness = 255;
	animation_position = 0;*/
	
	while (42)
	{
		if (rfm12_rx_status() == STATUS_COMPLETE)
		{
			uint8_t len = rfm12_rx_len();
			
			if ((len == 0) || (len % 16 != 0))
			{
				UART_PUTF("Received garbage (%u bytes not multiple of 16): ", len);
				print_bytearray(bufx, len);
			}
			else // try to decrypt with all keys stored in EEPROM
			{
				memcpy(bufx, rfm12_rx_buffer(), len);
				
				UART_PUTS("Before decryption: ");
				print_bytearray(bufx, len);
					
				aes256_decrypt_cbc(bufx, len);

				UART_PUTS("Decrypted bytes: ");
				print_bytearray(bufx, len);
				
				if (!pkg_header_check_crc32(len))
				{
					UART_PUTS("Received garbage (CRC wrong after decryption).\r\n");
				}
				else
				{
					process_packet(len);
				}		
			}

			// tell the implementation that the buffer can be reused for the next data.
			rfm12_rx_clear();
		}

		_delay_ms(ANIMATION_UPDATE_MS);
		
		// React on button press.
		// - abort animation
		// - switch off, when brightness > 0
		// - switch on otherwise
		if (!(BUTTON_PORT & (1 << BUTTON_PIN))) // button press
		{
			if (button_state == 0)
			{
				UART_PUTS("Button pressed\r\n");
				animation_length = 0;
				animation_position = 0;
			}
			
			if (button_state < 5)
			{
				button_state++;
			}
			else // manual dimming
			{
				if (manual_dim_direction) // UP
				{
					if (current_brightness < 100)
					{
						current_brightness = (uint8_t)current_brightness / 2 * 2 + 2;
						setPWMDutyCyclePercent(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming DOWN\r\n");
						manual_dim_direction = 0;
					}
				}
				else // DOWN
				{
					if (current_brightness > 0)
					{
						current_brightness = (((uint8_t)current_brightness - 1) / 2) * 2;
						setPWMDutyCyclePercent(current_brightness);
					}
					else
					{
						UART_PUTS("manual dimming UP\r\n");
						manual_dim_direction = 1;
					}
				}
				
			}
		}
		else if (button_state && (BUTTON_PORT & (1 << BUTTON_PIN))) // button release
		{
			UART_PUTS("Button released\r\n");
			
			if (button_state < 5) // short button press
			{
				if (current_brightness > 0)
				{
					UART_PUTS(" -> 0%\r\n");
					setPWMDutyCyclePercent(0);
				}
				else
				{
					UART_PUTS(" -> 100%\r\n");
					setPWMDutyCyclePercent(100);
				}
			}
			else
			{
				// reverse dim direction
				manual_dim_direction = !manual_dim_direction;
			}
			
			button_state = 0;
		}
				
		// update brightness according animation_position, updated by timer0
		if (animation_length > 0)
		{
			pos = animation_position; // copy value to avoid that it changes in between by timer interrupt
			UART_PUTF2("%lu/%lu, ", pos, animation_length);
			
			if (pos == animation_length)
			{
				UART_PUTF("END Brightness %u%%, ", end_brightness);
				setPWMDutyCyclePercent((float)end_brightness);
				animation_length = 0;
				animation_position = 0;
			}
			else
			{			
				float brightness = (start_brightness + ((float)end_brightness - start_brightness) * pos / animation_length);
				UART_PUTF("Br.%u%%, ", (uint32_t)(brightness));
				setPWMDutyCyclePercent(brightness);
			}
		}			
		
		// send status from time to time
		if (send_status_timeout == 0)
		{
			send_status_timeout = SEND_STATUS_EVERY_SEC * (1000 / ANIMATION_UPDATE_MS);
			send_dimmer_status();
			led_blink(200, 0, 1);
		}
		else if (version_status_cycle >= SEND_VERSION_STATUS_CYCLE)
		{
			version_status_cycle = 0;
			send_version_status();
			led_blink(200, 0, 1);
		}

		rfm12_tick();
		send_status_timeout--;
		checkSwitchOff();
	}
	
	// never called
	// aes256_done(&aes_ctx);
}
コード例 #12
0
ファイル: uart.c プロジェクト: GrumpyKater/smarthomatic
// Process the user command now contained in the cmdbuf array.
void process_cmd(void)
{
	uart_putstr("Processing command: ");
	uart_putstr(cmdbuf);
	UART_PUTS("\r\n");
	
	if ((cmdbuf[0] == 'w') && (strlen(cmdbuf) == 5)) // E2P write command
	{
		if (enable_write_eeprom)
		{
			uint16_t adr = hex_to_uint8((uint8_t *)cmdbuf, 1);
			uint8_t val = hex_to_uint8((uint8_t *)cmdbuf, 3);
			UART_PUTF2("Writing data 0x%x to EEPROM pos 0x%x.\r\n", val, adr);
			eeprom_write_byte((uint8_t *)adr, val);
		}
		else
		{
			UART_PUTS("Ignoring EEPROM write, since write mode is DISABLED.\r\n");
		}
	}
	else if ((cmdbuf[0] == 'r') && (strlen(cmdbuf) == 3)) // E2P read command
	{
		uint16_t adr = hex_to_uint8((uint8_t *)cmdbuf, 1);
		uint8_t val = eeprom_read_byte((uint8_t *)adr);
		UART_PUTF2("EEPROM value at position 0x%x is 0x%x.\r\n", adr, val);
	}
	else if ((cmdbuf[0] == 's') && (strlen(cmdbuf) > 6)) // "send" command
	{
		send_data_avail = true;
	}
	else if ((cmdbuf[0] == 'c') && (strlen(cmdbuf) > 14)) // "send" command with CRC
	{
		uint8_t len = strlen(cmdbuf);
		
		// Warning! The following two lines were originally in the reverse order.
		// This obviously should not change anything.
		// But the "avr-gcc (GCC) 4.7.2" on my linux machine produced a firmware
		// which resulted in a wrong "calculated_crc" (whereas the
		// "avr-gcc (WinAVR 20100110) 4.3.3" on my Windows machine didn't).
		// I could recalculate the calculated_crc a 2nd time, call a UART_PUTS
		// or some other commands, which all produced a firmware which did not
		// have this issue. It's unknown why the GCC 4.7.2 produced this
		// wrong output.
		// Current workaround: I reversed the following two lines.

		uint32_t given_crc = hex_to_uint32((uint8_t *)cmdbuf, len - 8);
		uint32_t calculated_crc = crc32((uint8_t *)cmdbuf, len - 8);
		
		if (calculated_crc != given_crc)
		{
			UART_PUTF("CRC Error! %08lx does not match. Ignoring command.\r\n", calculated_crc);
		}
		else
		{
			cmdbuf[len - 8] = 0; // strip CRC from command
			send_data_avail = true;
		}
	}
	else
	{
		UART_PUTS("Unknown command.\r\n");
	}
}