コード例 #1
0
ファイル: triangle.cpp プロジェクト: carolemieux/daikon
void Compute_Triangle_BBox(TRIANGLE *Triangle)
{
  VECTOR Min, Max, Epsilon;

  Make_Vector(Epsilon, EPSILON, EPSILON, EPSILON);

  Min[X] = min3(Triangle->P1[X], Triangle->P2[X], Triangle->P3[X]);
  Min[Y] = min3(Triangle->P1[Y], Triangle->P2[Y], Triangle->P3[Y]);
  Min[Z] = min3(Triangle->P1[Z], Triangle->P2[Z], Triangle->P3[Z]);

  Max[X] = max3(Triangle->P1[X], Triangle->P2[X], Triangle->P3[X]);
  Max[Y] = max3(Triangle->P1[Y], Triangle->P2[Y], Triangle->P3[Y]);
  Max[Z] = max3(Triangle->P1[Z], Triangle->P2[Z], Triangle->P3[Z]);

  VSubEq(Min, Epsilon);
  VAddEq(Max, Epsilon);

  Make_BBox_from_min_max(Triangle->BBox, Min, Max);
}
コード例 #2
0
void Compute_Quadric_BBox(QUADRIC *Quadric, VECTOR ClipMin, VECTOR  ClipMax)
{
  DBL A, B, C, D, E, F, G, H, I, J;
  DBL a, b, c, d;
  DBL rx, ry, rz, rx1, rx2, ry1, ry2, rz1, rz2, x, y, z;
  DBL New_Volume, Old_Volume;
  VECTOR Min, Max, TmpMin, TmpMax, NewMin, NewMax, T1;
  BBOX Old;
  OBJECT *Sib;

  /*
   * Check for 'normal' form. If the quadric isn't in it's normal form
   * we can't do anything (we could, but that would be to tedious!
   * Diagonalising the quadric's 4x4 matrix, i.e. finding its eigenvalues
   * and eigenvectors -> solving a 4th order polynom).
   */

  /* Get quadrics coefficients. */

  A = Quadric->Square_Terms[X];
  E = Quadric->Square_Terms[Y];
  H = Quadric->Square_Terms[Z];
  B = Quadric->Mixed_Terms[X] / 2.0;
  C = Quadric->Mixed_Terms[Y] / 2.0;
  F = Quadric->Mixed_Terms[Z] / 2.0;
  D = Quadric->Terms[X] / 2.0;
  G = Quadric->Terms[Y] / 2.0;
  I = Quadric->Terms[Z] / 2.0;
  J = Quadric->Constant;

  /* Set small values to 0. */

  if (fabs(A) < EPSILON) A = 0.0;
  if (fabs(B) < EPSILON) B = 0.0;
  if (fabs(C) < EPSILON) C = 0.0;
  if (fabs(D) < EPSILON) D = 0.0;
  if (fabs(E) < EPSILON) E = 0.0;
  if (fabs(F) < EPSILON) F = 0.0;
  if (fabs(G) < EPSILON) G = 0.0;
  if (fabs(H) < EPSILON) H = 0.0;
  if (fabs(I) < EPSILON) I = 0.0;
  if (fabs(J) < EPSILON) J = 0.0;

  /* Non-zero mixed terms --> return */

  if ((B != 0.0) || (C != 0.0) || (F != 0.0))
  {
    return;
  }

  /* Non-zero linear terms --> get translation vector */

  if ((D != 0.0) || (G != 0.0) || (I != 0.0))
  {
    if (A != 0.0)
    {
      T1[X] = -D / A;
    }
    else
    {
      if (D != 0.0)
      {
       T1[X] = J / (2.0 * D);
      }
      else
      {
        T1[X] = 0.0;
      }
    }

    if (E != 0.0)
    {
      T1[Y] = -G / E;
    }
    else
    {
      if (G != 0.0)
      {
        T1[Y] = J / (2.0 * G);
      }
      else
      {
        T1[Y] = 0.0;
      }
    }

    if (H != 0.0)
    {
      T1[Z] = -I / H;
    }
    else
    {
      if (I != 0.0)
      {
        T1[Z] = J / (2.0 * I);
      }
      else
      {
        T1[Z] = 0.0;
      }
    }

    /* Recalculate coefficients. */

    D += A * T1[X];
    G += E * T1[Y];
    I += H * T1[Z];
    J -= T1[X]*(A*T1[X] + 2.0*D) + T1[Y]*(E*T1[Y] + 2.0*G) + T1[Z]*(H*T1[Z] + 2.0*I);
  }
  else
  {
    Make_Vector(T1, 0.0, 0.0, 0.0);
  }

  /* Get old bounding box. */

  Old = Quadric->BBox;

  /* Init new bounding box. */

  NewMin[X] = NewMin[Y] = NewMin[Z] = -BOUND_HUGE/2;
  NewMax[X] = NewMax[Y] = NewMax[Z] =  BOUND_HUGE/2;

  /* Get the bounding box of the clipping object. */

  if (Quadric->Clip != NULL)
  {
    Min[X] = Min[Y] = Min[Z] = -BOUND_HUGE;
    Max[X] = Max[Y] = Max[Z] =  BOUND_HUGE;

    /* Intersect the members bounding boxes. */

    for (Sib = Quadric->Clip; Sib != NULL; Sib = Sib->Sibling)
    {
      if (!Test_Flag(Sib, INVERTED_FLAG))
      {
        if (Sib->Methods == &Plane_Methods)
        {
          Compute_Plane_Min_Max((PLANE *)Sib, TmpMin, TmpMax);
        }
        else
        {
          Make_min_max_from_BBox(TmpMin, TmpMax, Sib->BBox);
        }

        Min[X] = max(Min[X], TmpMin[X]);
        Min[Y] = max(Min[Y], TmpMin[Y]);
        Min[Z] = max(Min[Z], TmpMin[Z]);
        Max[X] = min(Max[X], TmpMax[X]);
        Max[Y] = min(Max[Y], TmpMax[Y]);
        Max[Z] = min(Max[Z], TmpMax[Z]);
      }
    }

    Assign_Vector(ClipMin, Min);
    Assign_Vector(ClipMax, Max);
  }

  /* Translate clipping box. */

  VSubEq(ClipMin, T1);
  VSubEq(ClipMax, T1);

  /* We want A to be non-negative. */

  if (A < 0.0)
  {
    A = -A;
    D = -D;
    E = -E;
    G = -G;
    H = -H;
    I = -I;
    J = -J;
  }

  /*
   *
   * Check for ellipsoid.
   *
   *    x*x     y*y     z*z
   *   ----- + ----- + ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    b = sqrt(-J/E);
    c = sqrt(-J/H);

    NewMin[X] = -a;
    NewMin[Y] = -b;
    NewMin[Z] = -c;
    NewMax[X] = a;
    NewMax[Y] = b;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (x-axis).
   *
   *    y*y     z*z
   *   ----- + ----- - 1 = 0
   *    b*b     c*c
   *
   */

  if ((A == 0.0) && (E > 0.0) && (H > 0.0) && (J < 0.0))
  {
    b = sqrt(-J/E);
    c = sqrt(-J/H);

    NewMin[Y] = -b;
    NewMin[Z] = -c;
    NewMax[Y] = b;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (y-axis).
   *
   *    x*x     z*z
   *   ----- + ----- - 1 = 0
   *    a*a     c*c
   *
   */

  if ((A > 0.0) && (E == 0.0) && (H > 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    c = sqrt(-J/H);

    NewMin[X] = -a;
    NewMin[Z] = -c;
    NewMax[X] = a;
    NewMax[Z] = c;
  }

  /*
   *
   * Check for cylinder (z-axis).
   * 
   *    x*x     y*y
   *   ----- + ----- - 1 = 0
   *    a*a     b*b
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H == 0.0) && (J < 0.0))
  {
    a = sqrt(-J/A);
    b = sqrt(-J/E);

    NewMin[X] = -a;
    NewMin[Y] = -b;
    NewMax[X] = a;
    NewMax[Y] = b;
  }

  /*
   *
   * Check for cone (x-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- - ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(-1.0/E);
    c = sqrt(-1.0/H);

    /* Get radii for lower x value. */

    x = ClipMin[X];

    ry1 = fabs(x * b / a);
    rz1 = fabs(x * c / a);

    /* Get radii for upper x value. */

    x = ClipMax[X];

    ry2 = fabs(x * b / a);
    rz2 = fabs(x * c / a);

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   *  Check for cone (y-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- + ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(-1.0/E);
    c = sqrt(1.0/H);

    /* Get radii for lower y value. */

    y = ClipMin[Y];

    rx1 = fabs(y * a / b);
    rz1 = fabs(y * c / b);

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    rx2 = fabs(y * a / b);
    rz2 = fabs(y * c / b);

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for cone (z-axis).
   * 
   *    x*x     y*y     z*z
   *   ----- + ----- - ----- = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J == 0.0))
  {
    a = sqrt(1.0/A);
    b = sqrt(1.0/E);
    c = sqrt(-1.0/H);

    /* Get radii for lower z value. */

    z = ClipMin[Z];

    rx1 = fabs(z * a / c);
    ry1 = fabs(z * b / c);

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    rx2 = fabs(z * a / c);
    ry2 = fabs(z * b / c);

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /*
   *
   * Check for hyperboloid (x-axis).
   *
   *    x*x     y*y     z*z
   *   ----- - ----- - ----- + 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H < 0.0) && (J > 0.0))
  {
    /* Get radii for lower x value. */

    x = ClipMin[X];

    d = 1.0 + A * Sqr(x);

    ry1 = sqrt(-d / E);
    rz1 = sqrt(-d / H);

    /* Get radii for upper x value. */

    x = ClipMax[X];

    d = 1.0 + A * Sqr(x);

    ry2 = sqrt(-d / E);
    rz2 = sqrt(-d / H);

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for hyperboloid (y-axis).
   * 
   *    x*x     y*y     z*z
   *   ----- - ----- + ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E < 0.0) && (H > 0.0) && (J < 0.0))
  {
    /* Get radii for lower y value. */

    y = ClipMin[Y];

    d = 1.0 - E * Sqr(y);

    rx1 = sqrt(d / A);
    rz1 = sqrt(d / H);

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    d = 1.0 - E * Sqr(y);

    rx2 = sqrt(d / A);
    rz2 = sqrt(d / H);

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for hyperboloid (z-axis).
   *
   *    x*x     y*y     z*z
   *   ----- + ----- - ----- - 1 = 0
   *    a*a     b*b     c*c
   *
   */

  if ((A > 0.0) && (E > 0.0) && (H < 0.0) && (J < 0.0))
  {
    /* Get radii for lower z value. */

    z = ClipMin[Z];

    d = 1.0 - H * Sqr(z);

    rx1 = sqrt(d / A);
    ry1 = sqrt(d / E);

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    d = 1.0 - H * Sqr(z);

    rx2 = sqrt(d / A);
    ry2 = sqrt(d / E);

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /*
   *
   * Check for paraboloid (x-axis).
   *
   *        y*y     z*z
   *   x - ----- - ----- = 0
   *        b*b     c*c
   *
   */

  if ((A == 0.0) && (D != 0.0) && (E != 0.0) && (H != 0.0) && (J == 0.0))
  {
    /* Get radii for lower x value. */

    x = ClipMin[X];

    ry1 = sqrt(fabs(2.0 * D * x / E));
    rz1 = sqrt(fabs(2.0 * D * x / H));

    /* Get radii for upper x value. */

    x = ClipMax[X];

    ry2 = sqrt(fabs(2.0 * D * x / E));
    rz2 = sqrt(fabs(2.0 * D * x / H));

    ry = max(ry1, ry2);
    rz = max(rz1, rz2);

    NewMin[Y] = -ry;
    NewMin[Z] = -rz;
    NewMax[Y] = ry;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for paraboloid (y-axis).
   *
   *        x*x     z*z
   *   y - ----- - ----- = 0
   *        a*a     c*c
   *
   */

  if ((E == 0.0) && (G != 0.0) && (A != 0.0) && (H != 0.0) && (J == 0.0))
  {
    /* Get radii for lower y-value. */

    y = ClipMin[Y];

    rx1 = sqrt(fabs(2.0 * G * y / A));
    rz1 = sqrt(fabs(2.0 * G * y / H));

    /* Get radii for upper y value. */

    y = ClipMax[Y];

    rx2 = sqrt(fabs(2.0 * G * y / A));
    rz2 = sqrt(fabs(2.0 * G * y / H));

    rx = max(rx1, rx2);
    rz = max(rz1, rz2);

    NewMin[X] = -rx;
    NewMin[Z] = -rz;
    NewMax[X] = rx;
    NewMax[Z] = rz;
  }

  /*
   *
   * Check for paraboloid (z-axis).
   *
   *        x*x     y*y
   *   z - ----- - ----- = 0
   *        a*a     b*b
   *
   */

  if ((H == 0.0) && (I != 0.0) && (A != 0.0) && (E != 0.0) && (J == 0.0))
  {
    /* Get radii for lower z-value. */

    z = ClipMin[Z];

    rx1 = sqrt(fabs(2.0 * I * z / A));
    ry1 = sqrt(fabs(2.0 * I * z / E));

    /* Get radii for upper z value. */

    z = ClipMax[Z];

    rx2 = sqrt(fabs(2.0 * I * z / A));
    ry2 = sqrt(fabs(2.0 * I * z / E));

    rx = max(rx1, rx2);
    ry = max(ry1, ry2);

    NewMin[X] = -rx;
    NewMin[Y] = -ry;
    NewMax[X] = rx;
    NewMax[Y] = ry;
  }

  /* Intersect clipping object's and quadric's bounding boxes */

  NewMin[X] = max(NewMin[X], ClipMin[X]);
  NewMin[Y] = max(NewMin[Y], ClipMin[Y]);
  NewMin[Z] = max(NewMin[Z], ClipMin[Z]);

  NewMax[X] = min(NewMax[X], ClipMax[X]);
  NewMax[Y] = min(NewMax[Y], ClipMax[Y]);
  NewMax[Z] = min(NewMax[Z], ClipMax[Z]);

  /* Use old or new bounding box? */

  New_Volume = (NewMax[X] - NewMin[X]) * (NewMax[Y] - NewMin[Y]) * (NewMax[Z] - NewMin[Z]);

  BOUNDS_VOLUME(Old_Volume, Old);

  if (New_Volume < Old_Volume)
  {
    /* Add translation. */
	Quadric->Automatic_Bounds = true;

    VAddEq(NewMin, T1);
    VAddEq(NewMax, T1);

    Make_BBox_from_min_max(Quadric->BBox, NewMin, NewMax);

    /* Beware of bounding boxes to large. */

    if ((Quadric->BBox.Lengths[X] > CRITICAL_LENGTH) ||
        (Quadric->BBox.Lengths[Y] > CRITICAL_LENGTH) ||
        (Quadric->BBox.Lengths[Z] > CRITICAL_LENGTH))
    {
      Make_BBox(Quadric->BBox, -BOUND_HUGE/2, -BOUND_HUGE/2, -BOUND_HUGE/2,
        BOUND_HUGE, BOUND_HUGE, BOUND_HUGE);
    }
  }
}
コード例 #3
0
ファイル: normal.cpp プロジェクト: acekiller/povray
static void facets (const VECTOR EPoint, const TNORMAL *Tnormal, VECTOR normal, TraceThreadData *Thread)
{
	int    i;
	int    thisseed;
	DBL    sum, minsum;
	VECTOR sv, tv, dv, t1, add, newnormal, pert;
	DBL    scale;
	int    UseSquare;
	int    UseUnity;
	DBL    Metric;

	VECTOR *cv = Thread->Facets_Cube;
	Metric = Tnormal->Vals.Facets.Metric;

	UseSquare = (Metric == 2 );
	UseUnity  = (Metric == 1 );

	VNormalize( normal, normal );

	if ( Tnormal->Vals.Facets.UseCoords )
	{
		Assign_Vector(tv,EPoint);
	}
	else
	{
		Assign_Vector(tv,normal);
	}

	if ( Tnormal->Vals.Facets.Size < 1e-6 )
	{
		scale = 1e6;
	}
	else
	{
		scale = 1. / Tnormal->Vals.Facets.Size;
	}

	VScaleEq( tv, scale );

	/*
	 * Check to see if the input point is in the same unit cube as the last
	 * call to this function, to use cache of cubelets for speed.
	 */

	thisseed = PickInCube(tv, t1);

	if (thisseed != Thread->Facets_Last_Seed)
	{
		/*
		 * No, not same unit cube.  Calculate the random points for this new
		 * cube and its 80 neighbours which differ in any axis by 1 or 2.
		 * Why distance of 2?  If there is 1 point in each cube, located
		 * randomly, it is possible for the closest random point to be in the
		 * cube 2 over, or the one two over and one up.  It is NOT possible
		 * for it to be two over and two up.  Picture a 3x3x3 cube with 9 more
		 * cubes glued onto each face.
		 */

		/* Now store a points for this cube and each of the 80 neighbour cubes. */

		int cvc = 0;

		for (add[X] = -2.0; add[X] < 2.5; add[X] +=1.0)
		{
			for (add[Y] = -2.0; add[Y] < 2.5; add[Y] += 1.0)
			{
				for (add[Z] = -2.0; add[Z] < 2.5; add[Z] += 1.0)
				{
					/* For each cubelet in a 5x5 cube. */

					if ((fabs(add[X])>1.5)+(fabs(add[Y])>1.5)+(fabs(add[Z])>1.5) <= 1.0)
					{
						/* Yes, it's within a 3d knight move away. */

						VAdd(sv, tv, add);

						PickInCube(sv, t1);

						cv[cvc][X] = t1[X];
						cv[cvc][Y] = t1[Y];
						cv[cvc][Z] = t1[Z];
						cvc++;
					}
				}
			}
		}

		Thread->Facets_Last_Seed = thisseed;
		Thread->Facets_CVC = cvc;
	}

	/*
	 * Find the point with the shortest distance from the input point.
	 */

	VSub(dv, cv[0], tv);
	if ( UseSquare )
	{
		minsum  = VSumSqr(dv);
	}
	else if ( UseUnity )
	{
		minsum = dv[X]+dv[Y]+dv[Z];
	}
	else
	{
		minsum = pow(fabs(dv[X]), Metric)+
		         pow(fabs(dv[Y]), Metric)+
		         pow(fabs(dv[Z]), Metric);
	}

	Assign_Vector( newnormal, cv[0] );

	/* Loop for the 81 cubelets to find closest. */

	for (i = 1; i < Thread->Facets_CVC; i++)
	{
		VSub(dv, cv[i], tv);

		if ( UseSquare )
		{
			sum  = VSumSqr(dv);
		}
		else
		{
			if ( UseUnity )
			{
				sum = dv[X]+dv[Y]+dv[Z];
			}
			else
			{
				sum = pow(fabs(dv[X]), Metric)+
				      pow(fabs(dv[Y]), Metric)+
				      pow(fabs(dv[Z]), Metric);
			}
		}

		if (sum < minsum)
		{
			minsum = sum;
			Assign_Vector( newnormal, cv[i] );
		}
	}

	if ( Tnormal->Vals.Facets.UseCoords )
	{
		DNoise( pert, newnormal );
		VDot( sum, pert, normal );
		VScale( newnormal, normal, sum );
		VSubEq( pert, newnormal );
		VAddScaledEq( normal, Tnormal->Vals.Facets.UseCoords, pert );
	}
	else
	{
		Assign_Vector( normal, newnormal );
	}
}
コード例 #4
0
static void Box_UVCoord(UV_VECT Result, OBJECT *Object, INTERSECTION *Inter)
{
  VECTOR P, Box_Diff;
  BOX *Box = (BOX *)Object;

  /* Transform the point into the cube's space */
  if (Box->Trans != NULL)
    MInvTransPoint(P, Inter->IPoint, Box->Trans);
  else
    Assign_Vector(P, Inter->IPoint);

  VSub(Box_Diff,Box->bounds[1],Box->bounds[0]);

  /* this line moves the bottom,left,front corner of the box to <0,0,0> */
  VSubEq(P, Box->bounds[0]);
  /* this line normalizes the face offsets */
  VDivEq(P, Box_Diff);

  /* if no normalize above, then we should use Box->UV_Trans and also
     inverse-transform the bounds */

  /* The following code does a variation of cube environment mapping. All the
     textures are not mirrored when the cube is viewed from outside. */

  switch (Inter->i1)
  {
    case SIDE_X_0:
      Result[U] =               (P[Z] / 4.0);
      Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
      break;
    case SIDE_X_1:
      Result[U] = (3.0 / 4.0) - (P[Z] / 4.0);
      Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
      break;
    case SIDE_Y_0:
      Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
      Result[V] =               (P[Z] / 3.0);
      break;
    case SIDE_Y_1:
      Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
      Result[V] = (3.0 / 3.0) - (P[Z] / 3.0);
      break;
    case SIDE_Z_0:
      Result[U] =  1.0        - (P[X] / 4.0);
      Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
      break;
    case SIDE_Z_1:
      Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
      Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
      break;

    default: Error("Unknown box side in Box_Normal().");
  }

/* 
   This is the original cube environment mapping. The texture is correct
   when viewed from inside the cube. 

  switch (Inter->i1)
  {
  case SIDE_X_0:
	  Result[U] = (1.0 / 4.0) - (P[Z] / 4.0);
	  Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
	  break;
  case SIDE_X_1:
	  Result[U] = (2.0 / 4.0) + (P[Z] / 4.0);
	  Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
	  break;
  case SIDE_Y_0:
	  Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
	  Result[V] = (1.0 / 3.0) - (P[Z] / 3.0);
	  break;
  case SIDE_Y_1:
	  Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
	  Result[V] = (2.0 / 3.0) + (P[Z] / 3.0);
	  break;
  case SIDE_Z_0:
	  Result[U] = (1.0 / 4.0) + (P[X] / 4.0);
	  Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
	  break;
  case SIDE_Z_1:
	  Result[U] = 1.0         - (P[X] / 4.0);
	  Result[V] = (1.0 / 3.0) + (P[Y] / 3.0);
	  break;
	  
  default: Error("Unknown box side in Box_Normal().");
  }
  */
}
コード例 #5
0
ファイル: isosurf.cpp プロジェクト: carolemieux/daikon
int IsoSurface_Function_Find_Root(ISOSURFACE* ISOSRF, VECTOR P, VECTOR D, DBL* Depth1, DBL* Depth2, bool in_shadow_test)
{
	DBL dt, t21, l_b, l_e, oldmg;
	ISO_Pair EP1, EP2;
	VECTOR VTmp;

	Increase_Counter(stats[Ray_IsoSurface_Find_Root]);

	VLength(ISOSRF->Vlength, D);

	if(ISOSRF->cache)
	{
		Increase_Counter(stats[Ray_IsoSurface_Cache]);
		VEvaluateRay(VTmp, P, *Depth1, D);
		VSubEq(VTmp, ISOSRF->P);
		VLength(l_b, VTmp);
		VEvaluateRay(VTmp, P, *Depth2, D);
		VSubEq(VTmp, ISOSRF->D);
		VLength(l_e, VTmp);
		if((ISOSRF->fmax - ISOSRF->max_gradient * max(l_b, l_e)) > 0.0)
		{
			Increase_Counter(stats[Ray_IsoSurface_Cache_Succeeded]);
			return false;
		}
	}

	Assign_Vector(ISOSRF->P, P);
	Assign_Vector(ISOSRF->D, D);

	ISOSRF->cache = false;
	EP1.t = *Depth1;
	EP1.f = Float_IsoSurface_Function(ISOSRF, Depth1);
	ISOSRF->fmax = EP1.f;
	if((ISOSRF->closed == false) && (EP1.f < 0.0))
	{
		ISOSRF->Inv3 *= -1;
		EP1.f *= -1;
	}

	EP2.t = *Depth2;
	EP2.f = Float_IsoSurface_Function(ISOSRF, Depth2);
	ISOSRF->fmax = min(EP2.f, ISOSRF->fmax);

	oldmg = ISOSRF->max_gradient;
	t21 = (*Depth2 - *Depth1);
	if((ISOSRF->eval == true) && (ISOSRF->max_gradient > ISOSRF->eval_param[0]))
		ISOSRF->max_gradient *= ISOSRF->eval_param[2];
	dt = ISOSRF->max_gradient * ISOSRF->Vlength * t21;
	if(IsoSurface_Function_Find_Root_R(ISOSRF, &EP1, &EP2, dt, t21, 1.0 / (ISOSRF->Vlength * t21), in_shadow_test))
	{
		if(ISOSRF->eval == true)
		{
			DBL curvar = fabs(ISOSRF->max_gradient - oldmg);

			if(curvar > ISOSRF->mginfo->eval_var)
				ISOSRF->mginfo->eval_var = curvar;

			ISOSRF->mginfo->eval_cnt++;
			ISOSRF->mginfo->eval_gradient_sum += ISOSRF->max_gradient;

			if(ISOSRF->max_gradient > ISOSRF->mginfo->eval_max)
				ISOSRF->mginfo->eval_max = ISOSRF->max_gradient;
		}

		*Depth1 = ISOSRF->tl;

		return true;
	}
	else if(!in_shadow_test)
	{
		ISOSRF->cache = true;
		VEvaluateRay(ISOSRF->P, P, EP1.t, D);
		VEvaluateRay(ISOSRF->D, P, EP2.t, D);

		return false;
	}

	return false;
}