/* * Replaces constraint a x >= c by x >= ceil(c/a) * where "a" is a common factor in the coefficients * old is the constraint; v points to an initialized * value that this procedure can use. * Return non-zero if something changed. * Result is placed in newp. */ int ConstraintSimplify(Value *old, Value *newp, int len, Value* v) { /* first remove common factor of all coefficients (including "c") */ Vector_Gcd(old+1, len - 1, v); if (value_notone_p(*v)) Vector_AntiScale(old+1, newp+1, *v, len-1); Vector_Gcd(old+1, len - 2, v); if (value_one_p(*v)) return 0; Vector_AntiScale(old+1, newp+1, *v, len-2); value_pdivision(newp[len-1], old[len-1], *v); return 1; }
/* * Reduce a vector by dividing it by GCD and making sure its pos-th * element is positive. */ void Vector_Normalize_Positive(Value *p,int length,int pos) { Value gcd; int i; value_init(gcd); Vector_Gcd(p,length,&gcd); if (value_neg_p(p[pos])) value_oppose(gcd,gcd); if(value_notone_p(gcd)) Vector_AntiScale(p, p, gcd, length); value_clear(gcd); } /* Vector_Normalize_Positive */
/* * Reduce a vector by dividing it by GCD. There is no restriction on * components of Vector 'p'. Making the last element positive is *not* OK * for equalities. */ void Vector_Normalize(Value *p,unsigned length) { Value gcd; int i; value_init(gcd); Vector_Gcd(p,length,&gcd); if (value_notone_p(gcd)) Vector_AntiScale(p, p, gcd, length); value_clear(gcd); } /* Vector_Normalize */
/* * Given a rational matrix 'Mat'(k x k), compute its inverse rational matrix * 'MatInv' k x k. * The output is 1, * if 'Mat' is non-singular (invertible), otherwise the output is 0. Note:: * (1) Matrix 'Mat' is modified during the inverse operation. * (2) Matrix 'MatInv' must be preallocated before passing into this function. */ int Matrix_Inverse(Matrix *Mat,Matrix *MatInv ) { int i, k, j, c; Value x, gcd, piv; Value m1,m2; Value *den; if(Mat->NbRows != Mat->NbColumns) { fprintf(stderr,"Trying to invert a non-square matrix !\n"); return 0; } /* Initialize all the 'Value' variables */ value_init(x); value_init(gcd); value_init(piv); value_init(m1); value_init(m2); k = Mat->NbRows; /* Initialise MatInv */ Vector_Set(MatInv->p[0],0,k*k); /* Initialize 'MatInv' to Identity matrix form. Each diagonal entry is set*/ /* to 1. Last column of each row (denominator of each entry in a row) is */ /* also set to 1. */ for(i=0;i<k;++i) { value_set_si(MatInv->p[i][i],1); /* value_set_si(MatInv->p[i][k],1); /* denum */ } /* Apply Gauss-Jordan elimination method on the two matrices 'Mat' and */ /* 'MatInv' in parallel. */ for(i=0;i<k;++i) { /* Check if the diagonal entry (new pivot) is non-zero or not */ if(value_zero_p(Mat->p[i][i])) { /* Search for a non-zero pivot down the column(i) */ for(j=i;j<k;++j) if(value_notzero_p(Mat->p[j][i])) break; /* If no non-zero pivot is found, the matrix 'Mat' is non-invertible */ /* Return 0. */ if(j==k) { /* Clear all the 'Value' variables */ value_clear(x); value_clear(gcd); value_clear(piv); value_clear(m1); value_clear(m2); return 0; } /* Exchange the rows, row(i) and row(j) so that the diagonal element */ /* Mat->p[i][i] (pivot) is non-zero. Repeat the same operations on */ /* matrix 'MatInv'. */ for(c=0;c<k;++c) { /* Interchange rows, row(i) and row(j) of matrix 'Mat' */ value_assign(x,Mat->p[j][c]); value_assign(Mat->p[j][c],Mat->p[i][c]); value_assign(Mat->p[i][c],x); /* Interchange rows, row(i) and row(j) of matrix 'MatInv' */ value_assign(x,MatInv->p[j][c]); value_assign(MatInv->p[j][c],MatInv->p[i][c]); value_assign(MatInv->p[i][c],x); } } /* Make all the entries in column(i) of matrix 'Mat' zero except the */ /* diagonal entry. Repeat the same sequence of operations on matrix */ /* 'MatInv'. */ for(j=0;j<k;++j) { if (j==i) continue; /* Skip the pivot */ value_assign(x,Mat->p[j][i]); if(value_notzero_p(x)) { value_assign(piv,Mat->p[i][i]); value_gcd(gcd, x, piv); if (value_notone_p(gcd) ) { value_divexact(x, x, gcd); value_divexact(piv, piv, gcd); } for(c=((j>i)?i:0);c<k;++c) { value_multiply(m1,piv,Mat->p[j][c]); value_multiply(m2,x,Mat->p[i][c]); value_subtract(Mat->p[j][c],m1,m2); } for(c=0;c<k;++c) { value_multiply(m1,piv,MatInv->p[j][c]); value_multiply(m2,x,MatInv->p[i][c]); value_subtract(MatInv->p[j][c],m1,m2); } /* Simplify row(j) of the two matrices 'Mat' and 'MatInv' by */ /* dividing the rows with the common GCD. */ Vector_Gcd(&MatInv->p[j][0],k,&m1); Vector_Gcd(&Mat->p[j][0],k,&m2); value_gcd(gcd, m1, m2); if(value_notone_p(gcd)) { for(c=0;c<k;++c) { value_divexact(Mat->p[j][c], Mat->p[j][c], gcd); value_divexact(MatInv->p[j][c], MatInv->p[j][c], gcd); } } } } } /* Find common denom for each row */ den = (Value *)malloc(k*sizeof(Value)); value_set_si(x,1); for(j=0 ; j<k ; ++j) { value_init(den[j]); value_assign(den[j],Mat->p[j][j]); /* gcd is always positive */ Vector_Gcd(&MatInv->p[j][0],k,&gcd); value_gcd(gcd, gcd, den[j]); if (value_neg_p(den[j])) value_oppose(gcd,gcd); /* make denominator positive */ if (value_notone_p(gcd)) { for (c=0; c<k; c++) value_divexact(MatInv->p[j][c], MatInv->p[j][c], gcd); /* normalize */ value_divexact(den[j], den[j], gcd); } value_gcd(gcd, x, den[j]); value_divexact(m1, den[j], gcd); value_multiply(x,x,m1); } if (value_notone_p(x)) for(j=0 ; j<k ; ++j) { for (c=0; c<k; c++) { value_division(m1,x,den[j]); value_multiply(MatInv->p[j][c],MatInv->p[j][c],m1); /* normalize */ } } /* Clear all the 'Value' variables */ for(j=0 ; j<k ; ++j) { value_clear(den[j]); } value_clear(x); value_clear(gcd); value_clear(piv); value_clear(m1); value_clear(m2); free(den); return 1; } /* Matrix_Inverse */
/* GaussSimplify -- Given Mat1, a matrix of equalities, performs Gaussian elimination. Find a minimum basis, Returns the rank. Mat1 is context, Mat2 is reduced in context of Mat1 */ int GaussSimplify(Matrix *Mat1,Matrix *Mat2) { int NbRows = Mat1->NbRows; int NbCols = Mat1->NbColumns; int *column_index; int i, j, k, n, t, pivot, Rank; Value gcd, tmp, *cp; column_index=(int *)malloc(NbCols * sizeof(int)); if (!column_index) { errormsg1("GaussSimplify", "outofmem", "out of memory space\n"); Pol_status = 1; return 0; } /* Initialize all the 'Value' variables */ value_init(gcd); value_init(tmp); Rank=0; for (j=0; j<NbCols; j++) { /* for each column starting at */ for (i=Rank; i<NbRows; i++) /* diagonal, look down to find */ if (value_notzero_p(Mat1->p[i][j])) /* the first non-zero entry */ break; if (i!=NbRows) { /* was one found ? */ if (i!=Rank) /* was it found below the diagonal?*/ Vector_Exchange(Mat1->p[Rank],Mat1->p[i],NbCols); /* Normalize the pivot row */ Vector_Gcd(Mat1->p[Rank],NbCols,&gcd); /* If (gcd >= 2) */ value_set_si(tmp,2); if (value_ge(gcd,tmp)) { cp = Mat1->p[Rank]; for (k=0; k<NbCols; k++,cp++) value_division(*cp,*cp,gcd); } if (value_neg_p(Mat1->p[Rank][j])) { cp = Mat1->p[Rank]; for (k=0; k<NbCols; k++,cp++) value_oppose(*cp,*cp); } /* End of normalize */ pivot=i; for (i=0;i<NbRows;i++) /* Zero out the rest of the column */ if (i!=Rank) { if (value_notzero_p(Mat1->p[i][j])) { Value a, a1, a2, a1abs, a2abs; value_init(a); value_init(a1); value_init(a2); value_init(a1abs); value_init(a2abs); value_assign(a1,Mat1->p[i][j]); value_absolute(a1abs,a1); value_assign(a2,Mat1->p[Rank][j]); value_absolute(a2abs,a2); value_gcd(a, a1abs, a2abs); value_divexact(a1, a1, a); value_divexact(a2, a2, a); value_oppose(a1,a1); Vector_Combine(Mat1->p[i],Mat1->p[Rank],Mat1->p[i],a2, a1,NbCols); Vector_Normalize(Mat1->p[i],NbCols); value_clear(a); value_clear(a1); value_clear(a2); value_clear(a1abs); value_clear(a2abs); } } column_index[Rank]=j; Rank++; } } /* end of Gauss elimination */ if (Mat2) { /* Mat2 is a transformation matrix (i,j->f(i,j)).... can't scale it because can't scale both sides of -> */ /* normalizes an affine transformation */ /* priority of forms */ /* 1. i' -> i (identity) */ /* 2. i' -> i + constant (uniform) */ /* 3. i' -> constant (broadcast) */ /* 4. i' -> j (permutation) */ /* 5. i' -> j + constant ( ) */ /* 6. i' -> i + j + constant (non-uniform) */ for (k=0; k<Rank; k++) { j = column_index[k]; for (i=0; i<(Mat2->NbRows-1);i++) { /* all but the last row 0...0 1 */ if ((i!=j) && value_notzero_p(Mat2->p[i][j])) { /* Remove dependency of i' on j */ Value a, a1, a1abs, a2, a2abs; value_init(a); value_init(a1); value_init(a2); value_init(a1abs); value_init(a2abs); value_assign(a1,Mat2->p[i][j]); value_absolute(a1abs,a1); value_assign(a2,Mat1->p[k][j]); value_absolute(a2abs,a2); value_gcd(a, a1abs, a2abs); value_divexact(a1, a1, a); value_divexact(a2, a2, a); value_oppose(a1,a1); if (value_one_p(a2)) { Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],a2, a1,NbCols); /* Vector_Normalize(Mat2->p[i],NbCols); -- can't do T */ } /* otherwise, can't do it without mult lhs prod (2i,3j->...) */ value_clear(a); value_clear(a1); value_clear(a2); value_clear(a1abs); value_clear(a2abs); } else if ((i==j) && value_zero_p(Mat2->p[i][j])) { /* 'i' does not depend on j */ for (n=j+1; n < (NbCols-1); n++) { if (value_notzero_p(Mat2->p[i][n])) { /* i' depends on some n */ value_set_si(tmp,1); Vector_Combine(Mat2->p[i],Mat1->p[k],Mat2->p[i],tmp, tmp,NbCols); break; } /* if 'i' depends on just a constant, then leave it alone.*/ } } } } /* Check last row of transformation Mat2 */ for (j=0; j<(NbCols-1); j++) if (value_notzero_p(Mat2->p[Mat2->NbRows-1][j])) { errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n"); break; } if (value_notone_p(Mat2->p[Mat2->NbRows-1][NbCols-1])) { errormsg1("GaussSimplify", "corrtrans", "Corrupted transformation\n"); } } value_clear(gcd); value_clear(tmp); free(column_index); return Rank; } /* GaussSimplify */