VOID CVfrErrorHandle::PrintMsg ( IN UINT32 LineNum, IN CHAR8 *TokName, IN CONST CHAR8 *MsgType, IN CONST CHAR8 *ErrorMsg ) { CHAR8 *FileName = NULL; UINT32 FileLine; if (strncmp ("Warning", MsgType, strlen ("Warning")) == 0) { VerboseMsg ((CHAR8 *) ErrorMsg); return; } GetFileNameLineNum (LineNum, &FileName, &FileLine); Error (FileName, FileLine, 0x3000, TokName, (CHAR8 *) "\t%s\n", (CHAR8 *) ErrorMsg); }
STATIC VOID ScanSections32 ( VOID ) { UINT32 i; EFI_IMAGE_DOS_HEADER *DosHdr; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; UINT32 CoffEntry; UINT32 SectionCount; BOOLEAN FoundSection; CoffEntry = 0; mCoffOffset = 0; // // Coff file start with a DOS header. // mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40; mNtHdrOffset = mCoffOffset; switch (mEhdr->e_machine) { case EM_386: case EM_ARM: mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; default: VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine); mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; } mTableOffset = mCoffOffset; mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER); // // First text sections. // mCoffOffset = CoffAlign(mCoffOffset); mTextOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsTextShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) { // ARM RVCT tools have behavior outside of the ELF specification to try // and make images smaller. If sh_addr is not aligned to sh_addralign // then the section needs to preserve sh_addr MOD sh_addralign. // Normally doing nothing here works great. Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment."); } } /* Relocate entry. */ if ((mEhdr->e_entry >= shdr->sh_addr) && (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) { CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr; } // // Set mTextOffset with the offset of the first '.text' section // if (!FoundSection) { mTextOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } if (!FoundSection) { Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section."); assert (FALSE); } if (mEhdr->e_machine != EM_ARM) { mCoffOffset = CoffAlign(mCoffOffset); } if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName); } // // Then data sections. // mDataOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsDataShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) { // ARM RVCT tools have behavior outside of the ELF specification to try // and make images smaller. If sh_addr is not aligned to sh_addralign // then the section needs to preserve sh_addr MOD sh_addralign. // Normally doing nothing here works great. Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment."); } } // // Set mDataOffset with the offset of the first '.data' section // if (!FoundSection) { mDataOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } mCoffOffset = CoffAlign(mCoffOffset); if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName); } // // The HII resource sections. // mHiiRsrcOffset = mCoffOffset; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsHiiRsrcShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) { // ARM RVCT tools have behavior outside of the ELF specification to try // and make images smaller. If sh_addr is not aligned to sh_addralign // then the section needs to preserve sh_addr MOD sh_addralign. // Normally doing nothing here works great. Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment."); } } if (shdr->sh_size != 0) { mHiiRsrcOffset = mCoffOffset; mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; mCoffOffset = CoffAlign(mCoffOffset); SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset); } break; } } mRelocOffset = mCoffOffset; // // Allocate base Coff file. Will be expanded later for relocations. // mCoffFile = (UINT8 *)malloc(mCoffOffset); memset(mCoffFile, 0, mCoffOffset); // // Fill headers. // DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile; DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE; DosHdr->e_lfanew = mNtHdrOffset; NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset); NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE; switch (mEhdr->e_machine) { case EM_386: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; case EM_ARM: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; default: VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine); NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections; NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL); mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp; NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0; NtHdr->Pe32.FileHeader.NumberOfSymbols = 0; NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader); NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED | EFI_IMAGE_FILE_32BIT_MACHINE; NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset; NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset; NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0; NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry; NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset; NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset; NtHdr->Pe32.OptionalHeader.ImageBase = 0; NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.SizeOfImage = 0; NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset; NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES; // // Section headers. // if ((mDataOffset - mTextOffset) > 0) { CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset, EFI_IMAGE_SCN_CNT_CODE | EFI_IMAGE_SCN_MEM_EXECUTE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mHiiRsrcOffset - mDataOffset) > 0) { CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_WRITE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mRelocOffset - mHiiRsrcOffset) > 0) { CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_READ); NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset; NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset; } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } }
STATIC BOOLEAN WriteSections32 ( SECTION_FILTER_TYPES FilterType ) { UINT32 Idx; Elf_Shdr *SecShdr; UINT32 SecOffset; BOOLEAN (*Filter)(Elf_Shdr *); // // Initialize filter pointer // switch (FilterType) { case SECTION_TEXT: Filter = IsTextShdr; break; case SECTION_HII: Filter = IsHiiRsrcShdr; break; case SECTION_DATA: Filter = IsDataShdr; break; default: return FALSE; } // // First: copy sections. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *Shdr = GetShdrByIndex(Idx); if ((*Filter)(Shdr)) { switch (Shdr->sh_type) { case SHT_PROGBITS: /* Copy. */ memcpy(mCoffFile + mCoffSectionsOffset[Idx], (UINT8*)mEhdr + Shdr->sh_offset, Shdr->sh_size); break; case SHT_NOBITS: memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size); break; default: // // Ignore for unkown section type. // VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type); break; } } } // // Second: apply relocations. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { // // Determine if this is a relocation section. // Elf_Shdr *RelShdr = GetShdrByIndex(Idx); if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) { continue; } // // Relocation section found. Now extract section information that the relocations // apply to in the ELF data and the new COFF data. // SecShdr = GetShdrByIndex(RelShdr->sh_info); SecOffset = mCoffSectionsOffset[RelShdr->sh_info]; // // Only process relocations for the current filter type. // if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) { UINT32 RelOffset; // // Determine the symbol table referenced by the relocation data. // Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link); UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset; // // Process all relocation entries for this section. // for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) { // // Set pointer to relocation entry // Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset); // // Set pointer to symbol table entry associated with the relocation entry. // Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize); Elf_Shdr *SymShdr; UINT8 *Targ; UINT16 Address; // // Check section header index found in symbol table and get the section // header location. // if (Sym->st_shndx == SHN_UNDEF || Sym->st_shndx == SHN_ABS || Sym->st_shndx > mEhdr->e_shnum) { Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName); } SymShdr = GetShdrByIndex(Sym->st_shndx); // // Convert the relocation data to a pointer into the coff file. // // Note: // r_offset is the virtual address of the storage unit to be relocated. // sh_addr is the virtual address for the base of the section. // Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr); // // Determine how to handle each relocation type based on the machine type. // if (mEhdr->e_machine == EM_386) { switch (ELF_R_TYPE(Rel->r_info)) { case R_386_NONE: break; case R_386_32: // // Absolute relocation. // Converts Targ from a absolute virtual address to the absolute // COFF address. // *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; case R_386_PC32: // // Relative relocation: Symbol - Ip + Addend // *(UINT32 *)Targ = *(UINT32 *)Targ + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr) - (SecOffset - SecShdr->sh_addr); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else if (mEhdr->e_machine == EM_ARM) { switch (ELF32_R_TYPE(Rel->r_info)) { case R_ARM_RBASE: // No relocation - no action required // break skipped case R_ARM_PC24: case R_ARM_XPC25: case R_ARM_THM_PC22: case R_ARM_THM_JUMP19: case R_ARM_CALL: case R_ARM_JMP24: case R_ARM_THM_JUMP24: case R_ARM_PREL31: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: case R_ARM_THM_JMP6: case R_ARM_THM_ALU_PREL_11_0: case R_ARM_THM_PC12: case R_ARM_REL32_NOI: case R_ARM_ALU_PC_G0_NC: case R_ARM_ALU_PC_G0: case R_ARM_ALU_PC_G1_NC: case R_ARM_ALU_PC_G1: case R_ARM_ALU_PC_G2: case R_ARM_LDR_PC_G1: case R_ARM_LDR_PC_G2: case R_ARM_LDRS_PC_G0: case R_ARM_LDRS_PC_G1: case R_ARM_LDRS_PC_G2: case R_ARM_LDC_PC_G0: case R_ARM_LDC_PC_G1: case R_ARM_LDC_PC_G2: case R_ARM_GOT_PREL: case R_ARM_THM_JUMP11: case R_ARM_THM_JUMP8: case R_ARM_TLS_GD32: case R_ARM_TLS_LDM32: case R_ARM_TLS_IE32: // Thease are all PC-relative relocations and don't require modification // GCC does not seem to have the concept of a application that just needs to get relocated. break; case R_ARM_THM_MOVW_ABS_NC: // MOVW is only lower 16-bits of the addres Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); ThumbMovtImmediatePatch ((UINT16 *)Targ, Address); break; case R_ARM_THM_MOVT_ABS: // MOVT is only upper 16-bits of the addres Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16); ThumbMovtImmediatePatch ((UINT16 *)Targ, Address); break; case R_ARM_ABS32: case R_ARM_RABS32: // // Absolute relocation. // *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; default: Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info)); } } } } }
STATIC VOID WriteRelocations64 ( VOID ) { UINT32 Index; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; EFI_IMAGE_DATA_DIRECTORY *Dir; for (Index = 0; Index < mEhdr->e_shnum; Index++) { Elf_Shdr *RelShdr = GetShdrByIndex(Index); if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) { Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info); if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) { UINT64 RelIdx; for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) { Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx); if (mEhdr->e_machine == EM_X86_64) { switch (ELF_R_TYPE(Rel->r_info)) { case R_X86_64_NONE: case R_X86_64_PC32: break; case R_X86_64_64: VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X", mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr)); CoffAddFixup( (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr)), EFI_IMAGE_REL_BASED_DIR64); break; case R_X86_64_32S: case R_X86_64_32: VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X", mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr)); CoffAddFixup( (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr)), EFI_IMAGE_REL_BASED_HIGHLOW); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else { Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine); } } } } } // // Pad by adding empty entries. // while (mCoffOffset & (mCoffAlignment - 1)) { CoffAddFixupEntry(0); } NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset); Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC]; Dir->Size = mCoffOffset - mRelocOffset; if (Dir->Size == 0) { // If no relocations, null out the directory entry and don't add the .reloc section Dir->VirtualAddress = 0; NtHdr->Pe32Plus.FileHeader.NumberOfSections--; } else { Dir->VirtualAddress = mRelocOffset; CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_DISCARDABLE | EFI_IMAGE_SCN_MEM_READ); } }
BOOLEAN ConvertElf ( UINT8 **FileBuffer, UINT32 *FileLength ) { ELF_FUNCTION_TABLE ElfFunctions; UINT8 EiClass; // // Determine ELF type and set function table pointer correctly. // VerboseMsg ("Check Elf Image Header"); EiClass = (*FileBuffer)[EI_CLASS]; if (EiClass == ELFCLASS32) { if (!InitializeElf32 (*FileBuffer, &ElfFunctions)) { return FALSE; } } else if (EiClass == ELFCLASS64) { if (!InitializeElf64 (*FileBuffer, &ElfFunctions)) { return FALSE; } } else { Error (NULL, 0, 3000, "Unsupported", "ELF EI_CLASS not supported."); return FALSE; } // // Compute sections new address. // VerboseMsg ("Compute sections new address."); ElfFunctions.ScanSections (); // // Write and relocate sections. // VerboseMsg ("Write and relocate sections."); ElfFunctions.WriteSections (SECTION_TEXT); ElfFunctions.WriteSections (SECTION_DATA); ElfFunctions.WriteSections (SECTION_HII); // // Translate and write relocations. // VerboseMsg ("Translate and write relocations."); ElfFunctions.WriteRelocations (); // // Write debug info. // VerboseMsg ("Write debug info."); ElfFunctions.WriteDebug (); // // Make sure image size is correct before returning the new image. // VerboseMsg ("Set image size."); ElfFunctions.SetImageSize (); // // Replace. // free (*FileBuffer); *FileBuffer = mCoffFile; *FileLength = mCoffOffset; // // Free resources used by ELF functions. // ElfFunctions.CleanUp (); return TRUE; }
STATIC BOOLEAN WriteSections64 ( SECTION_FILTER_TYPES FilterType ) { UINT32 Idx; Elf_Shdr *SecShdr; UINT32 SecOffset; BOOLEAN (*Filter)(Elf_Shdr *); // // Initialize filter pointer // switch (FilterType) { case SECTION_TEXT: Filter = IsTextShdr; break; case SECTION_HII: Filter = IsHiiRsrcShdr; break; case SECTION_DATA: Filter = IsDataShdr; break; default: return FALSE; } // // First: copy sections. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *Shdr = GetShdrByIndex(Idx); if ((*Filter)(Shdr)) { switch (Shdr->sh_type) { case SHT_PROGBITS: /* Copy. */ memcpy(mCoffFile + mCoffSectionsOffset[Idx], (UINT8*)mEhdr + Shdr->sh_offset, (size_t) Shdr->sh_size); break; case SHT_NOBITS: memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size); break; default: // // Ignore for unkown section type. // VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type); break; } } } // // Second: apply relocations. // VerboseMsg ("Applying Relocations..."); for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *RelShdr = GetShdrByIndex(Idx); if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) { continue; } SecShdr = GetShdrByIndex(RelShdr->sh_info); SecOffset = mCoffSectionsOffset[RelShdr->sh_info]; if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) { UINT64 RelIdx; Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link); UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset; for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) { Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx); Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize); Elf_Shdr *SymShdr; UINT8 *Targ; if (Sym->st_shndx == SHN_UNDEF || Sym->st_shndx == SHN_ABS || Sym->st_shndx > mEhdr->e_shnum) { Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName); } SymShdr = GetShdrByIndex(Sym->st_shndx); // // Note: r_offset in a memory address. // Convert it to a pointer in the coff file. // Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr); if (mEhdr->e_machine == EM_X86_64) { switch (ELF_R_TYPE(Rel->r_info)) { case R_X86_64_NONE: break; case R_X86_64_64: // // Absolute relocation. // VerboseMsg ("R_X86_64_64"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT64 *)Targ); *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ); break; case R_X86_64_32: VerboseMsg ("R_X86_64_32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_32S: VerboseMsg ("R_X86_64_32S"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_PC32: // // Relative relocation: Symbol - Ip + Addend // VerboseMsg ("R_X86_64_PC32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr) - (SecOffset - SecShdr->sh_addr)); VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else { Error (NULL, 0, 3000, "Invalid", "Not EM_X86_X64"); } } } } return TRUE; }
// // Initialization Function // BOOLEAN InitializeElf64 ( UINT8 *FileBuffer, ELF_FUNCTION_TABLE *ElfFunctions ) { // // Initialize data pointer and structures. // VerboseMsg ("Set EHDR"); mEhdr = (Elf_Ehdr*) FileBuffer; // // Check the ELF64 specific header information. // VerboseMsg ("Check ELF64 Header Information"); if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) { Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64"); return FALSE; } if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) { Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB"); return FALSE; } if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) { Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN"); return FALSE; } if (!((mEhdr->e_machine == EM_X86_64))) { Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_X86_64"); return FALSE; } if (mEhdr->e_version != EV_CURRENT) { Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT); return FALSE; } // // Update section header pointers // VerboseMsg ("Update Header Pointers"); mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff); mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff); // // Create COFF Section offset buffer and zero. // VerboseMsg ("Create COFF Section Offset Buffer"); mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32)); memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32)); // // Fill in function pointers. // VerboseMsg ("Fill in Function Pointers"); ElfFunctions->ScanSections = ScanSections64; ElfFunctions->WriteSections = WriteSections64; ElfFunctions->WriteRelocations = WriteRelocations64; ElfFunctions->WriteDebug = WriteDebug64; ElfFunctions->SetImageSize = SetImageSize64; ElfFunctions->CleanUp = CleanUp64; return TRUE; }
STATIC VOID ScanSections32 ( VOID ) { UINT32 i; EFI_IMAGE_DOS_HEADER *DosHdr; EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr; UINT32 CoffEntry; UINT32 SectionCount; BOOLEAN FoundSection; CoffEntry = 0; mCoffOffset = 0; // // Coff file start with a DOS header. // mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40; mNtHdrOffset = mCoffOffset; switch (mEhdr->e_machine) { case EM_386: case EM_ARM: mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; default: VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine); mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32); break; } mTableOffset = mCoffOffset; mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER); // // Set mCoffAlignment to the maximum alignment of the input sections // we care about // for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (shdr->sh_addralign <= mCoffAlignment) { continue; } if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) { mCoffAlignment = (UINT32)shdr->sh_addralign; } } // // Move the PE/COFF header right before the first section. This will help us // save space when converting to TE. // if (mCoffAlignment > mCoffOffset) { mNtHdrOffset += mCoffAlignment - mCoffOffset; mTableOffset += mCoffAlignment - mCoffOffset; mCoffOffset = mCoffAlignment; } // // First text sections. // mCoffOffset = CoffAlign(mCoffOffset); mTextOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsTextShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } /* Relocate entry. */ if ((mEhdr->e_entry >= shdr->sh_addr) && (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) { CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr; } // // Set mTextOffset with the offset of the first '.text' section // if (!FoundSection) { mTextOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } if (!FoundSection) { Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section."); assert (FALSE); } mDebugOffset = DebugRvaAlign(mCoffOffset); mCoffOffset = CoffAlign(mCoffOffset); if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName); } // // Then data sections. // mDataOffset = mCoffOffset; FoundSection = FALSE; SectionCount = 0; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsDataShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } // // Set mDataOffset with the offset of the first '.data' section // if (!FoundSection) { mDataOffset = mCoffOffset; FoundSection = TRUE; } mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; SectionCount ++; } } if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) { Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName); } // // Make room for .debug data in .data (or .text if .data is empty) instead of // putting it in a section of its own. This is explicitly allowed by the // PE/COFF spec, and prevents bloat in the binary when using large values for // section alignment. // if (SectionCount > 0) { mDebugOffset = DebugRvaAlign(mCoffOffset); } mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) + sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + strlen(mInImageName) + 1; mCoffOffset = CoffAlign(mCoffOffset); if (SectionCount == 0) { mDataOffset = mCoffOffset; } // // The HII resource sections. // mHiiRsrcOffset = mCoffOffset; for (i = 0; i < mEhdr->e_shnum; i++) { Elf_Shdr *shdr = GetShdrByIndex(i); if (IsHiiRsrcShdr(shdr)) { if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) { // the alignment field is valid if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) { // if the section address is aligned we must align PE/COFF mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1); } else { Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment."); } } if (shdr->sh_size != 0) { mHiiRsrcOffset = mCoffOffset; mCoffSectionsOffset[i] = mCoffOffset; mCoffOffset += shdr->sh_size; mCoffOffset = CoffAlign(mCoffOffset); SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset); } break; } } mRelocOffset = mCoffOffset; // // Allocate base Coff file. Will be expanded later for relocations. // mCoffFile = (UINT8 *)malloc(mCoffOffset); memset(mCoffFile, 0, mCoffOffset); // // Fill headers. // DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile; DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE; DosHdr->e_lfanew = mNtHdrOffset; NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset); NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE; switch (mEhdr->e_machine) { case EM_386: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; case EM_ARM: NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; break; default: VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine); NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32; NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC; } NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections; NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL); mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp; NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0; NtHdr->Pe32.FileHeader.NumberOfSymbols = 0; NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader); NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED | EFI_IMAGE_FILE_32BIT_MACHINE; NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset; NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset; NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0; NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry; NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset; NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset; NtHdr->Pe32.OptionalHeader.ImageBase = 0; NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment; NtHdr->Pe32.OptionalHeader.SizeOfImage = 0; NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset; NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES; // // Section headers. // if ((mDataOffset - mTextOffset) > 0) { CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset, EFI_IMAGE_SCN_CNT_CODE | EFI_IMAGE_SCN_MEM_EXECUTE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mHiiRsrcOffset - mDataOffset) > 0) { CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_WRITE | EFI_IMAGE_SCN_MEM_READ); } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } if ((mRelocOffset - mHiiRsrcOffset) > 0) { CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset, EFI_IMAGE_SCN_CNT_INITIALIZED_DATA | EFI_IMAGE_SCN_MEM_READ); NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset; NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset; } else { // Don't make a section of size 0. NtHdr->Pe32.FileHeader.NumberOfSections--; } }
STATIC BOOLEAN WriteSections64 ( SECTION_FILTER_TYPES FilterType ) { UINT32 Idx; Elf_Shdr *SecShdr; UINT32 SecOffset; BOOLEAN (*Filter)(Elf_Shdr *); // // Initialize filter pointer // switch (FilterType) { case SECTION_TEXT: Filter = IsTextShdr; break; case SECTION_HII: Filter = IsHiiRsrcShdr; break; case SECTION_DATA: Filter = IsDataShdr; break; default: return FALSE; } // // First: copy sections. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *Shdr = GetShdrByIndex(Idx); if ((*Filter)(Shdr)) { switch (Shdr->sh_type) { case SHT_PROGBITS: /* Copy. */ memcpy(mCoffFile + mCoffSectionsOffset[Idx], (UINT8*)mEhdr + Shdr->sh_offset, (size_t) Shdr->sh_size); break; case SHT_NOBITS: memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size); break; default: // // Ignore for unkown section type. // VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type); break; } } } // // Second: apply relocations. // VerboseMsg ("Applying Relocations..."); for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { // // Determine if this is a relocation section. // Elf_Shdr *RelShdr = GetShdrByIndex(Idx); if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) { continue; } // // Relocation section found. Now extract section information that the relocations // apply to in the ELF data and the new COFF data. // SecShdr = GetShdrByIndex(RelShdr->sh_info); SecOffset = mCoffSectionsOffset[RelShdr->sh_info]; // // Only process relocations for the current filter type. // if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) { UINT64 RelIdx; // // Determine the symbol table referenced by the relocation data. // Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link); UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset; // // Process all relocation entries for this section. // for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) { // // Set pointer to relocation entry // Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx); // // Set pointer to symbol table entry associated with the relocation entry. // Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize); Elf_Shdr *SymShdr; UINT8 *Targ; // // Check section header index found in symbol table and get the section // header location. // if (Sym->st_shndx == SHN_UNDEF || Sym->st_shndx == SHN_ABS || Sym->st_shndx > mEhdr->e_shnum) { Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName); } SymShdr = GetShdrByIndex(Sym->st_shndx); // // Convert the relocation data to a pointer into the coff file. // // Note: // r_offset is the virtual address of the storage unit to be relocated. // sh_addr is the virtual address for the base of the section. // // r_offset in a memory address. // Convert it to a pointer in the coff file. // Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr); // // Determine how to handle each relocation type based on the machine type. // if (mEhdr->e_machine == EM_X86_64) { switch (ELF_R_TYPE(Rel->r_info)) { case R_X86_64_NONE: break; case R_X86_64_64: // // Absolute relocation. // VerboseMsg ("R_X86_64_64"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT64 *)Targ); *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ); break; case R_X86_64_32: VerboseMsg ("R_X86_64_32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_32S: VerboseMsg ("R_X86_64_32S"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_PC32: // // Relative relocation: Symbol - Ip + Addend // VerboseMsg ("R_X86_64_PC32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr) - (SecOffset - SecShdr->sh_addr)); VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else if (mEhdr->e_machine == EM_AARCH64) { // AARCH64 GCC uses RELA relocation, so all relocations have to be fixed up. // As opposed to ARM32 using REL. switch (ELF_R_TYPE(Rel->r_info)) { case R_AARCH64_ADR_PREL_LO21: if (Rel->r_addend != 0 ) { /* TODO */ Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_ADR_PREL_LO21 Need to fixup with addend!."); } break; case R_AARCH64_CONDBR19: if (Rel->r_addend != 0 ) { /* TODO */ Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_CONDBR19 Need to fixup with addend!."); } break; case R_AARCH64_LD_PREL_LO19: if (Rel->r_addend != 0 ) { /* TODO */ Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_LD_PREL_LO19 Need to fixup with addend!."); } break; case R_AARCH64_CALL26: case R_AARCH64_JUMP26: if (Rel->r_addend != 0 ) { // Some references to static functions sometime start at the base of .text + addend. // It is safe to ignore these relocations because they patch a `BL` instructions that // contains an offset from the instruction itself and there is only a single .text section. // So we check if the symbol is a "section symbol" if (ELF64_ST_TYPE (Sym->st_info) == STT_SECTION) { break; } Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_JUMP26 Need to fixup with addend!."); } break; case R_AARCH64_ADR_PREL_PG_HI21: // TODO : AArch64 'small' memory model. Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation R_AARCH64_ADR_PREL_PG_HI21.", mInImageName); break; case R_AARCH64_ADD_ABS_LO12_NC: // TODO : AArch64 'small' memory model. Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation R_AARCH64_ADD_ABS_LO12_NC.", mInImageName); break; // Absolute relocations. case R_AARCH64_ABS64: *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; default: Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else { Error (NULL, 0, 3000, "Invalid", "Not a supported machine type"); } } } } return TRUE; }
STATIC BOOLEAN WriteSections64 ( SECTION_FILTER_TYPES FilterType ) { UINT32 Idx; Elf_Shdr *SecShdr; UINT32 SecOffset; BOOLEAN (*Filter)(Elf_Shdr *); // // Initialize filter pointer // switch (FilterType) { case SECTION_TEXT: Filter = IsTextShdr; break; case SECTION_HII: Filter = IsHiiRsrcShdr; break; case SECTION_DATA: Filter = IsDataShdr; break; default: return FALSE; } // // First: copy sections. // for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { Elf_Shdr *Shdr = GetShdrByIndex(Idx); if ((*Filter)(Shdr)) { switch (Shdr->sh_type) { case SHT_PROGBITS: /* Copy. */ memcpy(mCoffFile + mCoffSectionsOffset[Idx], (UINT8*)mEhdr + Shdr->sh_offset, (size_t) Shdr->sh_size); break; case SHT_NOBITS: memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size); break; default: // // Ignore for unkown section type. // VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type); break; } } } // // Second: apply relocations. // VerboseMsg ("Applying Relocations..."); for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) { // // Determine if this is a relocation section. // Elf_Shdr *RelShdr = GetShdrByIndex(Idx); if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) { continue; } // // Relocation section found. Now extract section information that the relocations // apply to in the ELF data and the new COFF data. // SecShdr = GetShdrByIndex(RelShdr->sh_info); SecOffset = mCoffSectionsOffset[RelShdr->sh_info]; // // Only process relocations for the current filter type. // if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) { UINT64 RelIdx; // // Determine the symbol table referenced by the relocation data. // Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link); UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset; // // Process all relocation entries for this section. // for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) { // // Set pointer to relocation entry // Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx); // // Set pointer to symbol table entry associated with the relocation entry. // Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize); Elf_Shdr *SymShdr; UINT8 *Targ; // // Check section header index found in symbol table and get the section // header location. // if (Sym->st_shndx == SHN_UNDEF || Sym->st_shndx == SHN_ABS || Sym->st_shndx > mEhdr->e_shnum) { Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName); } SymShdr = GetShdrByIndex(Sym->st_shndx); // // Convert the relocation data to a pointer into the coff file. // // Note: // r_offset is the virtual address of the storage unit to be relocated. // sh_addr is the virtual address for the base of the section. // // r_offset in a memory address. // Convert it to a pointer in the coff file. // Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr); // // Determine how to handle each relocation type based on the machine type. // if (mEhdr->e_machine == EM_X86_64) { switch (ELF_R_TYPE(Rel->r_info)) { case R_X86_64_NONE: break; case R_X86_64_64: // // Absolute relocation. // VerboseMsg ("R_X86_64_64"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT64 *)Targ); *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ); break; case R_X86_64_32: VerboseMsg ("R_X86_64_32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_32S: VerboseMsg ("R_X86_64_32S"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]); VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ); break; case R_X86_64_PC32: // // Relative relocation: Symbol - Ip + Addend // VerboseMsg ("R_X86_64_PC32"); VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), *(UINT32 *)Targ); *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr) - (SecOffset - SecShdr->sh_addr)); VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ); break; default: Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else if (mEhdr->e_machine == EM_AARCH64) { switch (ELF_R_TYPE(Rel->r_info)) { case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: // // AArch64 PG_H21 relocations are typically paired with ABS_LO12 // relocations, where a PC-relative reference with +/- 4 GB range is // split into a relative high part and an absolute low part. Since // the absolute low part represents the offset into a 4 KB page, we // have to make sure that the 4 KB relative offsets of both the // section containing the reference as well as the section to which // it refers have not been changed during PE/COFF conversion (i.e., // in ScanSections64() above). // if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 || ((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0 || mCoffAlignment < 0x1000) { Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires 4 KB section alignment.", mInImageName); break; } /* fall through */ case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_CONDBR19: case R_AARCH64_LD_PREL_LO19: case R_AARCH64_CALL26: case R_AARCH64_JUMP26: // // The GCC toolchains (i.e., binutils) may corrupt section relative // relocations when emitting relocation sections into fully linked // binaries. More specifically, they tend to fail to take into // account the fact that a '.rodata + XXX' relocation needs to have // its addend recalculated once .rodata is merged into the .text // section, and the relocation emitted into the .rela.text section. // // We cannot really recover from this loss of information, so the // only workaround is to prevent having to recalculate any relative // relocations at all, by using a linker script that ensures that // the offset between the Place and the Symbol is the same in both // the ELF and the PE/COFF versions of the binary. // if ((SymShdr->sh_addr - SecShdr->sh_addr) != (mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) { Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets", mInImageName); } break; // Absolute relocations. case R_AARCH64_ABS64: *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]; break; default: Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info)); } } else { Error (NULL, 0, 3000, "Invalid", "Not a supported machine type"); } } } } return TRUE; }