コード例 #1
0
ファイル: VfrError.cpp プロジェクト: ChenFanFnst/edk2
VOID
CVfrErrorHandle::PrintMsg (
  IN UINT32               LineNum,
  IN CHAR8                *TokName,
  IN CONST CHAR8          *MsgType,
  IN CONST CHAR8          *ErrorMsg
  )
{
  CHAR8                  *FileName = NULL;
  UINT32                 FileLine;
  
  if (strncmp ("Warning", MsgType, strlen ("Warning")) == 0) {
    VerboseMsg ((CHAR8 *) ErrorMsg);
    return;
  }
  GetFileNameLineNum (LineNum, &FileName, &FileLine);
  Error (FileName, FileLine, 0x3000, TokName, (CHAR8 *) "\t%s\n", (CHAR8 *) ErrorMsg);
}
コード例 #2
0
ファイル: Elf32Convert.c プロジェクト: FishYu1222/edk2
STATIC
VOID
ScanSections32 (
  VOID
  )
{
  UINT32                          i;
  EFI_IMAGE_DOS_HEADER            *DosHdr;
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
  UINT32                          CoffEntry;
  UINT32                          SectionCount;
  BOOLEAN                         FoundSection;

  CoffEntry = 0;
  mCoffOffset = 0;

  //
  // Coff file start with a DOS header.
  //
  mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
  mNtHdrOffset = mCoffOffset;
  switch (mEhdr->e_machine) {
  case EM_386:
  case EM_ARM:
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  default:
    VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  }

  mTableOffset = mCoffOffset;
  mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);

  //
  // First text sections.
  //
  mCoffOffset = CoffAlign(mCoffOffset);
  mTextOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsTextShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) {
          // ARM RVCT tools have behavior outside of the ELF specification to try
          // and make images smaller.  If sh_addr is not aligned to sh_addralign
          // then the section needs to preserve sh_addr MOD sh_addralign.
          // Normally doing nothing here works great.
          Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
        }
      }

      /* Relocate entry.  */
      if ((mEhdr->e_entry >= shdr->sh_addr) &&
          (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
        CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr;
      }

      //
      // Set mTextOffset with the offset of the first '.text' section
      //
      if (!FoundSection) {
        mTextOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }

  if (!FoundSection) {
    Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
    assert (FALSE);
  }

  if (mEhdr->e_machine != EM_ARM) {
    mCoffOffset = CoffAlign(mCoffOffset);
  }

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  Then data sections.
  //
  mDataOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsDataShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) {
          // ARM RVCT tools have behavior outside of the ELF specification to try
          // and make images smaller.  If sh_addr is not aligned to sh_addralign
          // then the section needs to preserve sh_addr MOD sh_addralign.
          // Normally doing nothing here works great.
          Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
        }
      }

      //
      // Set mDataOffset with the offset of the first '.data' section
      //
      if (!FoundSection) {
        mDataOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }
  mCoffOffset = CoffAlign(mCoffOffset);

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  The HII resource sections.
  //
  mHiiRsrcOffset = mCoffOffset;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsHiiRsrcShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else if ((shdr->sh_addr % shdr->sh_addralign) != (mCoffOffset % shdr->sh_addralign)) {
          // ARM RVCT tools have behavior outside of the ELF specification to try
          // and make images smaller.  If sh_addr is not aligned to sh_addralign
          // then the section needs to preserve sh_addr MOD sh_addralign.
          // Normally doing nothing here works great.
          Error (NULL, 0, 3000, "Invalid", "Unsupported section alignment.");
        }
      }
      if (shdr->sh_size != 0) {
        mHiiRsrcOffset = mCoffOffset;
        mCoffSectionsOffset[i] = mCoffOffset;
        mCoffOffset += shdr->sh_size;
        mCoffOffset = CoffAlign(mCoffOffset);
        SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
      }
      break;
    }
  }

  mRelocOffset = mCoffOffset;

  //
  // Allocate base Coff file.  Will be expanded later for relocations.
  //
  mCoffFile = (UINT8 *)malloc(mCoffOffset);
  memset(mCoffFile, 0, mCoffOffset);

  //
  // Fill headers.
  //
  DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
  DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
  DosHdr->e_lfanew = mNtHdrOffset;

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);

  NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;

  switch (mEhdr->e_machine) {
  case EM_386:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  case EM_ARM:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  default:
    VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
  }

  NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections;
  NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
  mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp;
  NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
  NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
  NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
  NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
    | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
    | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
    | EFI_IMAGE_FILE_32BIT_MACHINE;

  NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
  NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;

  NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset;

  NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset;
  NtHdr->Pe32.OptionalHeader.ImageBase = 0;
  NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;

  NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset;
  NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;

  //
  // Section headers.
  //
  if ((mDataOffset - mTextOffset) > 0) {
    CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
            EFI_IMAGE_SCN_CNT_CODE
            | EFI_IMAGE_SCN_MEM_EXECUTE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mHiiRsrcOffset - mDataOffset) > 0) {
    CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_WRITE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mRelocOffset - mHiiRsrcOffset) > 0) {
    CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_READ);

    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

}
コード例 #3
0
ファイル: Elf32Convert.c プロジェクト: FishYu1222/edk2
STATIC
BOOLEAN
WriteSections32 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unkown section type.
        //
        VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    //
    // Determine if this is a relocation section.
    //
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }
    
    //
    // Relocation section found.  Now extract section information that the relocations
    // apply to in the ELF data and the new COFF data.
    //
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
    
    //
    // Only process relocations for the current filter type.
    //
    if (RelShdr->sh_type == SHT_REL && (*Filter)(SecShdr)) {
      UINT32 RelOffset;
      
      //
      // Determine the symbol table referenced by the relocation data.
      //
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;

      //
      // Process all relocation entries for this section.
      //
      for (RelOffset = 0; RelOffset < RelShdr->sh_size; RelOffset += RelShdr->sh_entsize) {
        //
        // Set pointer to relocation entry
        //
        Elf_Rel *Rel = (Elf_Rel *)((UINT8*)mEhdr + RelShdr->sh_offset + RelOffset);
        
        //
        // Set pointer to symbol table entry associated with the relocation entry.
        //
        Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
        
        Elf_Shdr *SymShdr;
        UINT8 *Targ;
        UINT16 Address;

        //
        // Check section header index found in symbol table and get the section 
        // header location.
        //
        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx == SHN_ABS
            || Sym->st_shndx > mEhdr->e_shnum) {
          Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName);
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Convert the relocation data to a pointer into the coff file.
        //
        // Note: 
        //   r_offset is the virtual address of the storage unit to be relocated.
        //   sh_addr is the virtual address for the base of the section.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        //
        // Determine how to handle each relocation type based on the machine type.
        //
        if (mEhdr->e_machine == EM_386) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_386_NONE:
            break;
          case R_386_32:
            //
            // Absolute relocation.
            //  Converts Targ from a absolute virtual address to the absolute
            //  COFF address.
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr
              + mCoffSectionsOffset[Sym->st_shndx];
            break;
          case R_386_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr);
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_386 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_ARM) {
          switch (ELF32_R_TYPE(Rel->r_info)) {
          case R_ARM_RBASE:
            // No relocation - no action required
            // break skipped

          case R_ARM_PC24:
          case R_ARM_XPC25:
          case R_ARM_THM_PC22:
          case R_ARM_THM_JUMP19:
          case R_ARM_CALL:
          case R_ARM_JMP24:
          case R_ARM_THM_JUMP24:  
          case R_ARM_PREL31:  
          case R_ARM_MOVW_PREL_NC:  
          case R_ARM_MOVT_PREL:
          case R_ARM_THM_MOVW_PREL_NC:
          case R_ARM_THM_MOVT_PREL:
          case R_ARM_THM_JMP6:
          case R_ARM_THM_ALU_PREL_11_0:
          case R_ARM_THM_PC12:
          case R_ARM_REL32_NOI:
          case R_ARM_ALU_PC_G0_NC:
          case R_ARM_ALU_PC_G0:
          case R_ARM_ALU_PC_G1_NC:
          case R_ARM_ALU_PC_G1:
          case R_ARM_ALU_PC_G2:
          case R_ARM_LDR_PC_G1:
          case R_ARM_LDR_PC_G2:
          case R_ARM_LDRS_PC_G0:
          case R_ARM_LDRS_PC_G1:
          case R_ARM_LDRS_PC_G2:
          case R_ARM_LDC_PC_G0:
          case R_ARM_LDC_PC_G1:
          case R_ARM_LDC_PC_G2:
          case R_ARM_GOT_PREL:
          case R_ARM_THM_JUMP11:
          case R_ARM_THM_JUMP8:
          case R_ARM_TLS_GD32:
          case R_ARM_TLS_LDM32:
          case R_ARM_TLS_IE32:
            // Thease are all PC-relative relocations and don't require modification
            // GCC does not seem to have the concept of a application that just needs to get relocated.
            break;

          case R_ARM_THM_MOVW_ABS_NC:
            // MOVW is only lower 16-bits of the addres
            Address = (UINT16)(Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
            break;

          case R_ARM_THM_MOVT_ABS:
            // MOVT is only upper 16-bits of the addres
            Address = (UINT16)((Sym->st_value - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]) >> 16);
            ThumbMovtImmediatePatch ((UINT16 *)Targ, Address);
            break;

          case R_ARM_ABS32:
          case R_ARM_RABS32:
            //
            // Absolute relocation.
            //
            *(UINT32 *)Targ = *(UINT32 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "WriteSections (): %s unsupported ELF EM_ARM relocation 0x%x.", mInImageName, (unsigned) ELF32_R_TYPE(Rel->r_info));
          }
        }
      }
    }
  }
コード例 #4
0
ファイル: Elf64Convert.c プロジェクト: AshleyDeSimone/edk2
STATIC
VOID
WriteRelocations64 (
  VOID
  )
{
  UINT32                           Index;
  EFI_IMAGE_OPTIONAL_HEADER_UNION  *NtHdr;
  EFI_IMAGE_DATA_DIRECTORY         *Dir;

  for (Index = 0; Index < mEhdr->e_shnum; Index++) {
    Elf_Shdr *RelShdr = GetShdrByIndex(Index);
    if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
      Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
      if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
        UINT64 RelIdx;

        for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
          Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

          if (mEhdr->e_machine == EM_X86_64) {
            switch (ELF_R_TYPE(Rel->r_info)) {
            case R_X86_64_NONE:
            case R_X86_64_PC32:
              break;
            case R_X86_64_64:
              VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X", 
                mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_DIR64);
              break;
            case R_X86_64_32S:
            case R_X86_64_32:
              VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X", 
                mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
              CoffAddFixup(
                (UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
                + (Rel->r_offset - SecShdr->sh_addr)),
                EFI_IMAGE_REL_BASED_HIGHLOW);
              break;
            default:
              Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
            }
          } else {
            Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
          }
        }
      }
    }
  }

  //
  // Pad by adding empty entries.
  //
  while (mCoffOffset & (mCoffAlignment - 1)) {
    CoffAddFixupEntry(0);
  }

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
  Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
  Dir->Size = mCoffOffset - mRelocOffset;
  if (Dir->Size == 0) {
    // If no relocations, null out the directory entry and don't add the .reloc section
    Dir->VirtualAddress = 0;
    NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
  } else {
    Dir->VirtualAddress = mRelocOffset;
    CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_DISCARDABLE
            | EFI_IMAGE_SCN_MEM_READ);
  }
}
コード例 #5
0
ファイル: ElfConvert.c プロジェクト: binsys/VisualUefi
BOOLEAN
ConvertElf (
  UINT8  **FileBuffer,
  UINT32 *FileLength
  )
{
  ELF_FUNCTION_TABLE              ElfFunctions;
  UINT8                           EiClass;

  //
  // Determine ELF type and set function table pointer correctly.
  //
  VerboseMsg ("Check Elf Image Header");
  EiClass = (*FileBuffer)[EI_CLASS];
  if (EiClass == ELFCLASS32) {
    if (!InitializeElf32 (*FileBuffer, &ElfFunctions)) {
      return FALSE;
    }
  } else if (EiClass == ELFCLASS64) {
    if (!InitializeElf64 (*FileBuffer, &ElfFunctions)) {
      return FALSE;
    }
  } else {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_CLASS not supported.");
    return FALSE;
  }

  //
  // Compute sections new address.
  //  
  VerboseMsg ("Compute sections new address.");
  ElfFunctions.ScanSections ();

  //
  // Write and relocate sections.
  //
  VerboseMsg ("Write and relocate sections.");
  ElfFunctions.WriteSections (SECTION_TEXT);
  ElfFunctions.WriteSections (SECTION_DATA);
  ElfFunctions.WriteSections (SECTION_HII);

  //
  // Translate and write relocations.
  //
  VerboseMsg ("Translate and write relocations.");
  ElfFunctions.WriteRelocations ();

  //
  // Write debug info.
  //
  VerboseMsg ("Write debug info.");
  ElfFunctions.WriteDebug ();

  //
  // Make sure image size is correct before returning the new image.
  //
  VerboseMsg ("Set image size.");
  ElfFunctions.SetImageSize ();

  //
  // Replace.
  //
  free (*FileBuffer);
  *FileBuffer = mCoffFile;
  *FileLength = mCoffOffset;

  //
  // Free resources used by ELF functions.
  //
  ElfFunctions.CleanUp ();
  
  return TRUE;
}
コード例 #6
0
ファイル: Elf64Convert.c プロジェクト: AshleyDeSimone/edk2
STATIC
BOOLEAN
WriteSections64 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              (size_t) Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unkown section type.
        //
        VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  VerboseMsg ("Applying Relocations...");
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
    if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
      UINT64 RelIdx;
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
      for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {
        Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
        Elf_Sym  *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
        Elf_Shdr *SymShdr;
        UINT8    *Targ;

        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx == SHN_ABS
            || Sym->st_shndx > mEhdr->e_shnum) {
          Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName);
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Note: r_offset in a memory address.
        //  Convert it to a pointer in the coff file.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        if (mEhdr->e_machine == EM_X86_64) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_X86_64_NONE:
            break;
          case R_X86_64_64:
            //
            // Absolute relocation.
            //
            VerboseMsg ("R_X86_64_64");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT64 *)Targ);
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
            break;
          case R_X86_64_32:
            VerboseMsg ("R_X86_64_32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_32S:
            VerboseMsg ("R_X86_64_32S");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            VerboseMsg ("R_X86_64_PC32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr));
            VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else {
          Error (NULL, 0, 3000, "Invalid", "Not EM_X86_X64");
        }
      }
    }
  }

  return TRUE;
}
コード例 #7
0
ファイル: Elf64Convert.c プロジェクト: AshleyDeSimone/edk2
//
// Initialization Function
//
BOOLEAN
InitializeElf64 (
  UINT8               *FileBuffer,
  ELF_FUNCTION_TABLE  *ElfFunctions
  )
{
  //
  // Initialize data pointer and structures.
  //
  VerboseMsg ("Set EHDR");
  mEhdr = (Elf_Ehdr*) FileBuffer;

  //
  // Check the ELF64 specific header information.
  //
  VerboseMsg ("Check ELF64 Header Information");
  if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
    return FALSE;
  }
  if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
    Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
    return FALSE;
  }
  if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
    return FALSE;
  }
  if (!((mEhdr->e_machine == EM_X86_64))) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_X86_64");
    return FALSE;
  }
  if (mEhdr->e_version != EV_CURRENT) {
    Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
    return FALSE;
  }

  //
  // Update section header pointers
  //
  VerboseMsg ("Update Header Pointers");
  mShdrBase  = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
  mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);

  //
  // Create COFF Section offset buffer and zero.
  //
  VerboseMsg ("Create COFF Section Offset Buffer");
  mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
  memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));

  //
  // Fill in function pointers.
  //
  VerboseMsg ("Fill in Function Pointers");
  ElfFunctions->ScanSections = ScanSections64;
  ElfFunctions->WriteSections = WriteSections64;
  ElfFunctions->WriteRelocations = WriteRelocations64;
  ElfFunctions->WriteDebug = WriteDebug64;
  ElfFunctions->SetImageSize = SetImageSize64;
  ElfFunctions->CleanUp = CleanUp64;

  return TRUE;
}
コード例 #8
0
ファイル: Elf32Convert.c プロジェクト: binsys/VisualUefi
STATIC
VOID
ScanSections32 (
  VOID
  )
{
  UINT32                          i;
  EFI_IMAGE_DOS_HEADER            *DosHdr;
  EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
  UINT32                          CoffEntry;
  UINT32                          SectionCount;
  BOOLEAN                         FoundSection;

  CoffEntry = 0;
  mCoffOffset = 0;

  //
  // Coff file start with a DOS header.
  //
  mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
  mNtHdrOffset = mCoffOffset;
  switch (mEhdr->e_machine) {
  case EM_386:
  case EM_ARM:
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  default:
    VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
    mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS32);
  break;
  }

  mTableOffset = mCoffOffset;
  mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);

  //
  // Set mCoffAlignment to the maximum alignment of the input sections
  // we care about
  //
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (shdr->sh_addralign <= mCoffAlignment) {
      continue;
    }
    if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
      mCoffAlignment = (UINT32)shdr->sh_addralign;
    }
  }

  //
  // Move the PE/COFF header right before the first section. This will help us
  // save space when converting to TE.
  //
  if (mCoffAlignment > mCoffOffset) {
    mNtHdrOffset += mCoffAlignment - mCoffOffset;
    mTableOffset += mCoffAlignment - mCoffOffset;
    mCoffOffset = mCoffAlignment;
  }

  //
  // First text sections.
  //
  mCoffOffset = CoffAlign(mCoffOffset);
  mTextOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsTextShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      /* Relocate entry.  */
      if ((mEhdr->e_entry >= shdr->sh_addr) &&
          (mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
        CoffEntry = mCoffOffset + mEhdr->e_entry - shdr->sh_addr;
      }

      //
      // Set mTextOffset with the offset of the first '.text' section
      //
      if (!FoundSection) {
        mTextOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }

  if (!FoundSection) {
    Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
    assert (FALSE);
  }

  mDebugOffset = DebugRvaAlign(mCoffOffset);
  mCoffOffset = CoffAlign(mCoffOffset);

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
  }

  //
  //  Then data sections.
  //
  mDataOffset = mCoffOffset;
  FoundSection = FALSE;
  SectionCount = 0;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsDataShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }

      //
      // Set mDataOffset with the offset of the first '.data' section
      //
      if (!FoundSection) {
        mDataOffset = mCoffOffset;
        FoundSection = TRUE;
      }

      mCoffSectionsOffset[i] = mCoffOffset;
      mCoffOffset += shdr->sh_size;
      SectionCount ++;
    }
  }

  if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
    Warning (NULL, 0, 0, NULL, "Mulitple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
  }

  //
  // Make room for .debug data in .data (or .text if .data is empty) instead of
  // putting it in a section of its own. This is explicitly allowed by the
  // PE/COFF spec, and prevents bloat in the binary when using large values for
  // section alignment.
  //
  if (SectionCount > 0) {
    mDebugOffset = DebugRvaAlign(mCoffOffset);
  }
  mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
                sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
                strlen(mInImageName) + 1;

  mCoffOffset = CoffAlign(mCoffOffset);
  if (SectionCount == 0) {
    mDataOffset = mCoffOffset;
  }

  //
  //  The HII resource sections.
  //
  mHiiRsrcOffset = mCoffOffset;
  for (i = 0; i < mEhdr->e_shnum; i++) {
    Elf_Shdr *shdr = GetShdrByIndex(i);
    if (IsHiiRsrcShdr(shdr)) {
      if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
        // the alignment field is valid
        if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
          // if the section address is aligned we must align PE/COFF
          mCoffOffset = (mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1);
        } else {
          Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
        }
      }
      if (shdr->sh_size != 0) {
        mHiiRsrcOffset = mCoffOffset;
        mCoffSectionsOffset[i] = mCoffOffset;
        mCoffOffset += shdr->sh_size;
        mCoffOffset = CoffAlign(mCoffOffset);
        SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
      }
      break;
    }
  }

  mRelocOffset = mCoffOffset;

  //
  // Allocate base Coff file.  Will be expanded later for relocations.
  //
  mCoffFile = (UINT8 *)malloc(mCoffOffset);
  memset(mCoffFile, 0, mCoffOffset);

  //
  // Fill headers.
  //
  DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
  DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
  DosHdr->e_lfanew = mNtHdrOffset;

  NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);

  NtHdr->Pe32.Signature = EFI_IMAGE_NT_SIGNATURE;

  switch (mEhdr->e_machine) {
  case EM_386:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  case EM_ARM:
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_ARMT;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
    break;
  default:
    VerboseMsg ("%s unknown e_machine type. Assume IA-32", (UINTN)mEhdr->e_machine);
    NtHdr->Pe32.FileHeader.Machine = EFI_IMAGE_MACHINE_IA32;
    NtHdr->Pe32.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC;
  }

  NtHdr->Pe32.FileHeader.NumberOfSections = mCoffNbrSections;
  NtHdr->Pe32.FileHeader.TimeDateStamp = (UINT32) time(NULL);
  mImageTimeStamp = NtHdr->Pe32.FileHeader.TimeDateStamp;
  NtHdr->Pe32.FileHeader.PointerToSymbolTable = 0;
  NtHdr->Pe32.FileHeader.NumberOfSymbols = 0;
  NtHdr->Pe32.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32.OptionalHeader);
  NtHdr->Pe32.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
    | EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
    | EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
    | EFI_IMAGE_FILE_32BIT_MACHINE;

  NtHdr->Pe32.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
  NtHdr->Pe32.OptionalHeader.SizeOfUninitializedData = 0;
  NtHdr->Pe32.OptionalHeader.AddressOfEntryPoint = CoffEntry;

  NtHdr->Pe32.OptionalHeader.BaseOfCode = mTextOffset;

  NtHdr->Pe32.OptionalHeader.BaseOfData = mDataOffset;
  NtHdr->Pe32.OptionalHeader.ImageBase = 0;
  NtHdr->Pe32.OptionalHeader.SectionAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.FileAlignment = mCoffAlignment;
  NtHdr->Pe32.OptionalHeader.SizeOfImage = 0;

  NtHdr->Pe32.OptionalHeader.SizeOfHeaders = mTextOffset;
  NtHdr->Pe32.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;

  //
  // Section headers.
  //
  if ((mDataOffset - mTextOffset) > 0) {
    CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
            EFI_IMAGE_SCN_CNT_CODE
            | EFI_IMAGE_SCN_MEM_EXECUTE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mHiiRsrcOffset - mDataOffset) > 0) {
    CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_WRITE
            | EFI_IMAGE_SCN_MEM_READ);
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

  if ((mRelocOffset - mHiiRsrcOffset) > 0) {
    CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
            EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
            | EFI_IMAGE_SCN_MEM_READ);

    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
    NtHdr->Pe32.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
  } else {
    // Don't make a section of size 0.
    NtHdr->Pe32.FileHeader.NumberOfSections--;
  }

}
コード例 #9
0
ファイル: Elf64Convert.c プロジェクト: jian-tian/UEFI
STATIC
BOOLEAN
WriteSections64 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              (size_t) Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unkown section type.
        //
        VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  VerboseMsg ("Applying Relocations...");
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    //
    // Determine if this is a relocation section.
    //
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }

    //
    // Relocation section found.  Now extract section information that the relocations
    // apply to in the ELF data and the new COFF data.
    //
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];

    //
    // Only process relocations for the current filter type.
    //
    if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
      UINT64 RelIdx;

      //
      // Determine the symbol table referenced by the relocation data.
      //
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;

      //
      // Process all relocation entries for this section.
      //
      for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {

        //
        // Set pointer to relocation entry
        //
        Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

        //
        // Set pointer to symbol table entry associated with the relocation entry.
        //
        Elf_Sym  *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);

        Elf_Shdr *SymShdr;
        UINT8    *Targ;

        //
        // Check section header index found in symbol table and get the section
        // header location.
        //
        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx == SHN_ABS
            || Sym->st_shndx > mEhdr->e_shnum) {
          Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName);
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Convert the relocation data to a pointer into the coff file.
        //
        // Note:
        //   r_offset is the virtual address of the storage unit to be relocated.
        //   sh_addr is the virtual address for the base of the section.
        //
        //   r_offset in a memory address.
        //   Convert it to a pointer in the coff file.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        //
        // Determine how to handle each relocation type based on the machine type.
        //
        if (mEhdr->e_machine == EM_X86_64) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_X86_64_NONE:
            break;
          case R_X86_64_64:
            //
            // Absolute relocation.
            //
            VerboseMsg ("R_X86_64_64");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT64 *)Targ);
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
            break;
          case R_X86_64_32:
            VerboseMsg ("R_X86_64_32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_32S:
            VerboseMsg ("R_X86_64_32S");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            VerboseMsg ("R_X86_64_PC32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr));
            VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_AARCH64) {

          // AARCH64 GCC uses RELA relocation, so all relocations have to be fixed up.
          // As opposed to ARM32 using REL.

          switch (ELF_R_TYPE(Rel->r_info)) {

          case R_AARCH64_ADR_PREL_LO21:
            if  (Rel->r_addend != 0 ) { /* TODO */
              Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_ADR_PREL_LO21 Need to fixup with addend!.");
            }
            break;

          case R_AARCH64_CONDBR19:
            if  (Rel->r_addend != 0 ) { /* TODO */
              Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_CONDBR19 Need to fixup with addend!.");
            }
            break;

          case R_AARCH64_LD_PREL_LO19:
            if  (Rel->r_addend != 0 ) { /* TODO */
              Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_LD_PREL_LO19 Need to fixup with addend!.");
            }
            break;

          case R_AARCH64_CALL26:
          case R_AARCH64_JUMP26:
            if  (Rel->r_addend != 0 ) {
              // Some references to static functions sometime start at the base of .text + addend.
              // It is safe to ignore these relocations because they patch a `BL` instructions that
              // contains an offset from the instruction itself and there is only a single .text section.
              // So we check if the symbol is a "section symbol"
              if (ELF64_ST_TYPE (Sym->st_info) == STT_SECTION) {
                break;
              }
              Error (NULL, 0, 3000, "Invalid", "AArch64: R_AARCH64_JUMP26 Need to fixup with addend!.");
            }
            break;

          case R_AARCH64_ADR_PREL_PG_HI21:
            // TODO : AArch64 'small' memory model.
            Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation R_AARCH64_ADR_PREL_PG_HI21.", mInImageName);
            break;

          case R_AARCH64_ADD_ABS_LO12_NC:
            // TODO : AArch64 'small' memory model.
            Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation R_AARCH64_ADD_ABS_LO12_NC.", mInImageName);
            break;

          // Absolute relocations.
          case R_AARCH64_ABS64:
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else {
          Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
        }
      }
    }
  }

  return TRUE;
}
コード例 #10
0
ファイル: Elf64Convert.c プロジェクト: binsys/VisualUefi
STATIC
BOOLEAN
WriteSections64 (
  SECTION_FILTER_TYPES  FilterType
  )
{
  UINT32      Idx;
  Elf_Shdr    *SecShdr;
  UINT32      SecOffset;
  BOOLEAN     (*Filter)(Elf_Shdr *);

  //
  // Initialize filter pointer
  //
  switch (FilterType) {
    case SECTION_TEXT:
      Filter = IsTextShdr;
      break;
    case SECTION_HII:
      Filter = IsHiiRsrcShdr;
      break;
    case SECTION_DATA:
      Filter = IsDataShdr;
      break;
    default:
      return FALSE;
  }

  //
  // First: copy sections.
  //
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    Elf_Shdr *Shdr = GetShdrByIndex(Idx);
    if ((*Filter)(Shdr)) {
      switch (Shdr->sh_type) {
      case SHT_PROGBITS:
        /* Copy.  */
        memcpy(mCoffFile + mCoffSectionsOffset[Idx],
              (UINT8*)mEhdr + Shdr->sh_offset,
              (size_t) Shdr->sh_size);
        break;

      case SHT_NOBITS:
        memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
        break;

      default:
        //
        //  Ignore for unkown section type.
        //
        VerboseMsg ("%s unknown section type %x. We directly copy this section into Coff file", mInImageName, (unsigned)Shdr->sh_type);
        break;
      }
    }
  }

  //
  // Second: apply relocations.
  //
  VerboseMsg ("Applying Relocations...");
  for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
    //
    // Determine if this is a relocation section.
    //
    Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
    if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
      continue;
    }

    //
    // Relocation section found.  Now extract section information that the relocations
    // apply to in the ELF data and the new COFF data.
    //
    SecShdr = GetShdrByIndex(RelShdr->sh_info);
    SecOffset = mCoffSectionsOffset[RelShdr->sh_info];

    //
    // Only process relocations for the current filter type.
    //
    if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
      UINT64 RelIdx;

      //
      // Determine the symbol table referenced by the relocation data.
      //
      Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
      UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;

      //
      // Process all relocation entries for this section.
      //
      for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {

        //
        // Set pointer to relocation entry
        //
        Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);

        //
        // Set pointer to symbol table entry associated with the relocation entry.
        //
        Elf_Sym  *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);

        Elf_Shdr *SymShdr;
        UINT8    *Targ;

        //
        // Check section header index found in symbol table and get the section
        // header location.
        //
        if (Sym->st_shndx == SHN_UNDEF
            || Sym->st_shndx == SHN_ABS
            || Sym->st_shndx > mEhdr->e_shnum) {
          Error (NULL, 0, 3000, "Invalid", "%s bad symbol definition.", mInImageName);
        }
        SymShdr = GetShdrByIndex(Sym->st_shndx);

        //
        // Convert the relocation data to a pointer into the coff file.
        //
        // Note:
        //   r_offset is the virtual address of the storage unit to be relocated.
        //   sh_addr is the virtual address for the base of the section.
        //
        //   r_offset in a memory address.
        //   Convert it to a pointer in the coff file.
        //
        Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);

        //
        // Determine how to handle each relocation type based on the machine type.
        //
        if (mEhdr->e_machine == EM_X86_64) {
          switch (ELF_R_TYPE(Rel->r_info)) {
          case R_X86_64_NONE:
            break;
          case R_X86_64_64:
            //
            // Absolute relocation.
            //
            VerboseMsg ("R_X86_64_64");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT64 *)Targ);
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            VerboseMsg ("Relocation:  0x%016LX", *(UINT64*)Targ);
            break;
          case R_X86_64_32:
            VerboseMsg ("R_X86_64_32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_32S:
            VerboseMsg ("R_X86_64_32S");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
            VerboseMsg ("Relocation:  0x%08X", *(UINT32*)Targ);
            break;
          case R_X86_64_PC32:
            //
            // Relative relocation: Symbol - Ip + Addend
            //
            VerboseMsg ("R_X86_64_PC32");
            VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X", 
              (UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)), 
              *(UINT32 *)Targ);
            *(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
              + (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
              - (SecOffset - SecShdr->sh_addr));
            VerboseMsg ("Relocation:  0x%08X", *(UINT32 *)Targ);
            break;
          default:
            Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else if (mEhdr->e_machine == EM_AARCH64) {

          switch (ELF_R_TYPE(Rel->r_info)) {

          case R_AARCH64_ADR_PREL_PG_HI21:
          case R_AARCH64_ADD_ABS_LO12_NC:
          case R_AARCH64_LDST8_ABS_LO12_NC:
          case R_AARCH64_LDST16_ABS_LO12_NC:
          case R_AARCH64_LDST32_ABS_LO12_NC:
          case R_AARCH64_LDST64_ABS_LO12_NC:
          case R_AARCH64_LDST128_ABS_LO12_NC:
            //
            // AArch64 PG_H21 relocations are typically paired with ABS_LO12
            // relocations, where a PC-relative reference with +/- 4 GB range is
            // split into a relative high part and an absolute low part. Since
            // the absolute low part represents the offset into a 4 KB page, we
            // have to make sure that the 4 KB relative offsets of both the
            // section containing the reference as well as the section to which
            // it refers have not been changed during PE/COFF conversion (i.e.,
            // in ScanSections64() above).
            //
            if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
                ((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0 ||
                mCoffAlignment < 0x1000) {
              Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires 4 KB section alignment.",
                mInImageName);
              break;
            }
            /* fall through */

          case R_AARCH64_ADR_PREL_LO21:
          case R_AARCH64_CONDBR19:
          case R_AARCH64_LD_PREL_LO19:
          case R_AARCH64_CALL26:
          case R_AARCH64_JUMP26:
            //
            // The GCC toolchains (i.e., binutils) may corrupt section relative
            // relocations when emitting relocation sections into fully linked
            // binaries. More specifically, they tend to fail to take into
            // account the fact that a '.rodata + XXX' relocation needs to have
            // its addend recalculated once .rodata is merged into the .text
            // section, and the relocation emitted into the .rela.text section.
            //
            // We cannot really recover from this loss of information, so the
            // only workaround is to prevent having to recalculate any relative
            // relocations at all, by using a linker script that ensures that
            // the offset between the Place and the Symbol is the same in both
            // the ELF and the PE/COFF versions of the binary.
            //
            if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
                (mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
              Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
                mInImageName);
            }
            break;

          // Absolute relocations.
          case R_AARCH64_ABS64:
            *(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
            break;

          default:
            Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
          }
        } else {
          Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
        }
      }
    }
  }

  return TRUE;
}