コード例 #1
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcGomTargetBits (sWelsEncCtx* pEncCtx, const int32_t kiSliceId) {
  SWelsSvcRc* pWelsSvcRc			= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SWelsSvcRc* pWelsSvcRc_Base	= NULL;
  SRCSlicing* pSOverRc				= &pWelsSvcRc->pSlicingOverRc[kiSliceId];

  int32_t iAllocateBits = 0;
  int32_t iSumSad = 0;
  int32_t iLastGomIndex = 0;
  int32_t iLeftBits = 0;
  const int32_t kiComplexityIndex	= pSOverRc->iComplexityIndexSlice;
  int32_t i;

  iLastGomIndex  = pSOverRc->iEndMbSlice / pWelsSvcRc->iNumberMbGom;
  iLeftBits = pSOverRc->iTargetBitsSlice - pSOverRc->iFrameBitsSlice;

  if (iLeftBits <= 0) {
    pSOverRc->iGomTargetBits = 0;
    return;
  } else if (kiComplexityIndex >= iLastGomIndex) {
    iAllocateBits = iLeftBits;
  } else {
    pWelsSvcRc_Base = RcJudgeBaseUsability (pEncCtx);
    pWelsSvcRc_Base = (pWelsSvcRc_Base) ? pWelsSvcRc_Base : pWelsSvcRc;
    for (i = kiComplexityIndex; i <= iLastGomIndex; i++) {
      iSumSad += pWelsSvcRc_Base->pCurrentFrameGomSad[i];
    }
    if (0 == iSumSad)
      iAllocateBits = WELS_DIV_ROUND (iLeftBits, (iLastGomIndex - kiComplexityIndex));
    else
      iAllocateBits = WELS_DIV_ROUND ((int64_t)iLeftBits * pWelsSvcRc_Base->pCurrentFrameGomSad[kiComplexityIndex + 1],
                                      iSumSad);

  }
  pSOverRc->iGomTargetBits = iAllocateBits;
}
コード例 #2
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void   RcVBufferCalculationSkip (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SRCTemporal* pTOverRc		= pWelsSvcRc->pTemporalOverRc;
  const int32_t kiOutputBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
  //condition 1: whole pBuffer fullness
  pWelsSvcRc->iBufferFullnessSkip += (pWelsSvcRc->iFrameDqBits - kiOutputBits);
  //condition 2: VGOP bits constraint
  const int32_t kiVGopBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame * VGOP_SIZE, INT_MULTIPLY);
  int32_t iVGopBitsPred = 0;
  for (int32_t i = pWelsSvcRc->iFrameCodedInVGop + 1; i < VGOP_SIZE; i++)
    iVGopBitsPred += pTOverRc[pWelsSvcRc->iTlOfFrames[i]].iMinBitsTl;
  iVGopBitsPred -= pWelsSvcRc->iRemainingBits;
  double dIncPercent = iVGopBitsPred * 100.0 / kiVGopBits - (double)VGOP_BITS_PERCENTAGE_DIFF;

  if ((pWelsSvcRc->iBufferFullnessSkip > pWelsSvcRc->iBufferSizeSkip
       &&	pWelsSvcRc->iAverageFrameQp > pWelsSvcRc->iSkipQpValue)
      || (dIncPercent > pWelsSvcRc->iRcVaryPercentage)) {
    pEncCtx->iSkipFrameFlag = 1;
    pWelsSvcRc->iBufferFullnessSkip = pWelsSvcRc->iBufferFullnessSkip - kiOutputBits;
#ifdef FRAME_INFO_OUTPUT
    fprintf (stderr, "skip one frame\n");
#endif
  }

  if (pWelsSvcRc->iBufferFullnessSkip < 0)
    pWelsSvcRc->iBufferFullnessSkip = 0;

  if (pEncCtx->iSkipFrameFlag == 1) {
    pWelsSvcRc->iRemainingBits +=  WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
    pWelsSvcRc->iSkipFrameNum++;
    pWelsSvcRc->iSkipFrameInVGop++;
  }
}
コード例 #3
0
void CalcSliceComplexRatio (void* pRatio, SDqLayer* pCurDq, uint32_t* pSliceConsume) {
  SSliceCtx* pSliceCtx          = &pCurDq->sSliceEncCtx;
  int32_t* pRatioList           = (int32_t*)pRatio;
  int32_t iAvI[MAX_SLICES_NUM];
  int32_t iSumAv                = 0;
  uint32_t* pSliceTime          = (uint32_t*)pSliceConsume;
  int32_t* pCountMbInSlice      = (int32_t*)pSliceCtx->pCountMbNumInSlice;
  const int32_t kiSliceCount    = pSliceCtx->iSliceNumInFrame;
  int32_t iSliceIdx             = 0;

  WelsEmms();

  while (iSliceIdx < kiSliceCount) {
    iAvI[iSliceIdx] = WELS_DIV_ROUND (INT_MULTIPLY * pCountMbInSlice[iSliceIdx], pSliceTime[iSliceIdx]);
    MT_TRACE_LOG (NULL, WELS_LOG_DEBUG, "[MT] CalcSliceComplexRatio(), pSliceConsumeTime[%d]= %d us, slice_run= %d",
                  iSliceIdx,
                  pSliceTime[iSliceIdx], pCountMbInSlice[iSliceIdx]);
    iSumAv += iAvI[iSliceIdx];

    ++ iSliceIdx;
  }
  while (-- iSliceIdx >= 0) {
    pRatioList[iSliceIdx] = WELS_DIV_ROUND (INT_MULTIPLY * iAvI[iSliceIdx], iSumAv);
  }
}
コード例 #4
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcVBufferCalculationPadding (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  const int32_t kiOutputBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
  const int32_t kiBufferThreshold = WELS_DIV_ROUND (PADDING_THRESHOLD * (-pWelsSvcRc->iBufferSizePadding), INT_MULTIPLY);

  pWelsSvcRc->iBufferFullnessPadding += (pWelsSvcRc->iFrameDqBits - kiOutputBits);

  if (pWelsSvcRc->iBufferFullnessPadding < kiBufferThreshold) {
    pWelsSvcRc->iPaddingSize = -pWelsSvcRc->iBufferFullnessPadding;
    pWelsSvcRc->iPaddingSize >>= 3;	// /8
    pWelsSvcRc->iBufferFullnessPadding = 0;
  } else
コード例 #5
0
// GOM based RC related for uiSliceMbNum decision, only used at SM_FIXEDSLCNUM_SLICE
bool GomValidCheckSliceMbNum (const int32_t kiMbWidth, const int32_t kiMbHeight, SSliceArgument* pSliceArg) {
  uint32_t* pSlicesAssignList   = & (pSliceArg->uiSliceMbNum[0]);
  const uint32_t kuiSliceNum    = pSliceArg->uiSliceNum;
  const int32_t kiMbNumInFrame  = kiMbWidth * kiMbHeight;
  const int32_t kiMbNumPerSlice = kiMbNumInFrame / kuiSliceNum;
  int32_t iNumMbLeft            = kiMbNumInFrame;

  int32_t iMinimalMbNum         = kiMbWidth;    // in theory we need only 1 SMB, here let it as one SMB row required
  int32_t iMaximalMbNum         = 0;    // dynamically assign later
  int32_t iGomSize;

  uint32_t uiSliceIdx = 0; // for test

  // The default RC is Bit-rate mode [Yi], but need consider as below:
  // Tuned to use max of mode0 and mode1 due can not refresh on this from rc mode changed outside, 8/16/2011
  // NOTE: GOM_ROW_MODE0_?P is integer multipler of GOM_ROW_MODE1_?P, which predefined at rc.h there, so GOM_ROM take MODE0 as the initial
  if (kiMbWidth <= MB_WIDTH_THRESHOLD_90P)
    iGomSize = kiMbWidth * GOM_ROW_MODE0_90P;
  else if (kiMbWidth <= MB_WIDTH_THRESHOLD_180P)
    iGomSize = kiMbWidth * GOM_ROW_MODE0_180P;
  else if (kiMbWidth <= MB_WIDTH_THRESHOLD_360P)
    iGomSize = kiMbWidth * GOM_ROW_MODE0_360P;
  else
    iGomSize = kiMbWidth * GOM_ROW_MODE0_720P;
  // GOM boundary aligned
  int32_t iNumMbAssigning = WELS_DIV_ROUND (INT_MULTIPLY * kiMbNumPerSlice, iGomSize * INT_MULTIPLY) * iGomSize;
  int32_t iCurNumMbAssigning = 0;

  iMinimalMbNum = iGomSize;
  while (uiSliceIdx + 1 < kuiSliceNum) {
    iMaximalMbNum = iNumMbLeft - (kuiSliceNum - uiSliceIdx - 1) * iMinimalMbNum; // get maximal num_mb in left parts
    // make sure one GOM at least in each slice for safe
    if (iNumMbAssigning < iMinimalMbNum)
      iCurNumMbAssigning = iMinimalMbNum;
    else if (iNumMbAssigning > iMaximalMbNum)
      iCurNumMbAssigning = ( iMaximalMbNum / iGomSize ) * iGomSize;
    else
      iCurNumMbAssigning = iNumMbAssigning;

    if (iCurNumMbAssigning <= 0) {
      return false;
    }

    iNumMbLeft -= iCurNumMbAssigning;
    if (iNumMbLeft <= 0)  {
      return false;
    }

    pSlicesAssignList[uiSliceIdx] = iCurNumMbAssigning;
    ++ uiSliceIdx;
  }
  pSlicesAssignList[uiSliceIdx] = iNumMbLeft;
  if ( iNumMbLeft < iMinimalMbNum ) {
    return false;
  }

  return true;
}
コード例 #6
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcInitSliceInformation (sWelsEncCtx* pEncCtx) {
  SSliceCtx* pCurSliceCtx	= pEncCtx->pCurDqLayer->pSliceEncCtx;
  SWelsSvcRc* pWelsSvcRc			= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SRCSlicing* pSOverRc				= &pWelsSvcRc->pSlicingOverRc[0];
  const int32_t kiSliceNum			= pWelsSvcRc->iSliceNum;
  const int32_t kiBitsPerMb		= WELS_DIV_ROUND (pWelsSvcRc->iTargetBits * INT_MULTIPLY, pWelsSvcRc->iNumberMbFrame);

  for (int32_t i = 0; i < kiSliceNum; i++) {
    pSOverRc->iStartMbSlice	=
      pSOverRc->iEndMbSlice		= pCurSliceCtx->pFirstMbInSlice[i];
    pSOverRc->iEndMbSlice		+= (pCurSliceCtx->pCountMbNumInSlice[i] - 1);
    pSOverRc->iTotalQpSlice	= 0;
    pSOverRc->iTotalMbSlice	= 0;
    pSOverRc->iTargetBitsSlice = WELS_DIV_ROUND (kiBitsPerMb * pCurSliceCtx->pCountMbNumInSlice[i], INT_MULTIPLY);
    pSOverRc->iFrameBitsSlice	= 0;
    pSOverRc->iGomBitsSlice	= 0;
    ++ pSOverRc;
  }
}
コード例 #7
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcUpdateBitrateFps (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc	= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SRCTemporal* pTOverRc		= pWelsSvcRc->pTemporalOverRc;

  SSpatialLayerConfig* pDLayerParam     = &pEncCtx->pSvcParam->sSpatialLayers[pEncCtx->uiDependencyId];
  SSpatialLayerInternal* pDLayerParamInternal     = &pEncCtx->pSvcParam->sDependencyLayers[pEncCtx->uiDependencyId];
  const int32_t kiGopSize	= (1 << pDLayerParamInternal->iDecompositionStages);
  const int32_t kiHighestTid = pDLayerParamInternal->iHighestTemporalId;
  int32_t input_iBitsPerFrame = WELS_ROUND (pDLayerParam->iSpatialBitrate * INT_MULTIPLY /
                                pDLayerParamInternal->fInputFrameRate);
  const int32_t kiGopBits	= WELS_DIV_ROUND (input_iBitsPerFrame * kiGopSize, INT_MULTIPLY);
  int32_t i;

  pWelsSvcRc->iBitRate   = pDLayerParam->iSpatialBitrate;
  pWelsSvcRc->fFrameRate = pDLayerParamInternal->fInputFrameRate;

  int32_t iTargetVaryRange = FRAME_iTargetBits_VARY_RANGE * (MAX_BITS_VARY_PERCENTAGE - pWelsSvcRc->iRcVaryRatio);
  int32_t iMinBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * INT_MULTIPLY - iTargetVaryRange;
  int32_t iMaxBitsRatio = (MAX_BITS_VARY_PERCENTAGE) * (INT_MULTIPLY + FRAME_iTargetBits_VARY_RANGE);

  for (i = 0; i <= kiHighestTid; i++) {
    const int64_t kdConstraitBits = kiGopBits * pTOverRc[i].iTlayerWeight;
    pTOverRc[i].iMinBitsTl = WELS_DIV_ROUND (kdConstraitBits * iMinBitsRatio,
                             INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY);
    pTOverRc[i].iMaxBitsTl = WELS_DIV_ROUND (kdConstraitBits * iMaxBitsRatio,
                             INT_MULTIPLY * MAX_BITS_VARY_PERCENTAGE * WEIGHT_MULTIPLY);
  }
  //When bitrate is changed, pBuffer size should be updated
  pWelsSvcRc->iBufferSizeSkip = WELS_DIV_ROUND (pWelsSvcRc->iBitRate * pWelsSvcRc->iSkipBufferRatio, INT_MULTIPLY);
  pWelsSvcRc->iBufferSizePadding = WELS_DIV_ROUND (pWelsSvcRc->iBitRate * PADDING_BUFFER_RATIO, INT_MULTIPLY);

  //change remaining bits
  if (pWelsSvcRc->iBitsPerFrame > REMAIN_BITS_TH)
    pWelsSvcRc->iRemainingBits = pWelsSvcRc->iRemainingBits * input_iBitsPerFrame / pWelsSvcRc->iBitsPerFrame;
  pWelsSvcRc->iBitsPerFrame = input_iBitsPerFrame;
}
コード例 #8
0
void CalcSliceComplexRatio (SDqLayer* pCurDq) {
  SSliceCtx* pSliceCtx          = &pCurDq->sSliceEncCtx;
  SSlice*    pSliceInLayer      = pCurDq->sLayerInfo.pSliceInLayer;
  int32_t iSumAv                = 0;
  const int32_t kiSliceCount    = pSliceCtx->iSliceNumInFrame;
  int32_t iSliceIdx             = 0;
  int32_t iAvI[MAX_SLICES_NUM];

  WelsEmms();

  while (iSliceIdx < kiSliceCount) {
    iAvI[iSliceIdx] = WELS_DIV_ROUND (INT_MULTIPLY * pSliceInLayer[iSliceIdx].iCountMbNumInSlice,
                                      pSliceInLayer[iSliceIdx].uiSliceConsumeTime);
    MT_TRACE_LOG (NULL, WELS_LOG_DEBUG, "[MT] CalcSliceComplexRatio(), uiSliceConsumeTime[%d]= %d us, slice_run= %d",
                  iSliceIdx,
                  pSliceInLayer[iSliceIdx].uiSliceConsumeTime, pSliceInLayer[iSliceIdx].iCountMbNumInSlice);
    iSumAv += iAvI[iSliceIdx];

    ++ iSliceIdx;
  }
  while (-- iSliceIdx >= 0) {
    pSliceInLayer[iSliceIdx].iSliceComplexRatio = WELS_DIV_ROUND (INT_MULTIPLY * iAvI[iSliceIdx], iSumAv);
  }
}
コード例 #9
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcInitVGop (sWelsEncCtx* pEncCtx) {
  const int32_t kiDid		= pEncCtx->uiDependencyId;
  SWelsSvcRc* pWelsSvcRc = &pEncCtx->pWelsSvcRc[kiDid];
  SRCTemporal* pTOverRc		= pWelsSvcRc->pTemporalOverRc;
  const int32_t kiHighestTid = pEncCtx->pSvcParam->sDependencyLayers[kiDid].iHighestTemporalId;

  pWelsSvcRc->iRemainingBits = WELS_DIV_ROUND (VGOP_SIZE * pWelsSvcRc->iBitsPerFrame, INT_MULTIPLY);
  pWelsSvcRc->iRemainingWeights = pWelsSvcRc->iGopNumberInVGop * WEIGHT_MULTIPLY;

  pWelsSvcRc->iFrameCodedInVGop = 0;
  pWelsSvcRc->iGopIndexInVGop = 0;

  for (int32_t i = 0; i <= kiHighestTid; ++ i)
    pTOverRc[i].iGopBitsDq = 0;
  pWelsSvcRc->iSkipFrameInVGop = 0;
}
コード例 #10
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcDecideTargetBits (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc	= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SRCTemporal* pTOverRc		= &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId];

  pWelsSvcRc->iCurrentBitsLevel = BITS_NORMAL;
  //allocate bits
  if (pEncCtx->eSliceType == I_SLICE) {
    pWelsSvcRc->iTargetBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame * IDR_BITRATE_RATIO, INT_MULTIPLY);
  } else {
    pWelsSvcRc->iTargetBits = (int32_t) ((int64_t)pWelsSvcRc->iRemainingBits * pTOverRc->iTlayerWeight /
                                         pWelsSvcRc->iRemainingWeights);
    if ((pWelsSvcRc->iTargetBits <= 0) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) {
      pWelsSvcRc->iCurrentBitsLevel = BITS_EXCEEDED;
    } else if ((pWelsSvcRc->iTargetBits <= pTOverRc->iMinBitsTl) && (pEncCtx->pSvcParam->iRCMode == RC_LOW_BW_MODE)) {
      pWelsSvcRc->iCurrentBitsLevel = BITS_LIMITED;
    }
    pWelsSvcRc->iTargetBits = WELS_CLIP3 (pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl,	pTOverRc->iMaxBitsTl);
  }
  pWelsSvcRc->iRemainingWeights -= pTOverRc->iTlayerWeight;
}
コード例 #11
0
ファイル: ratectl.cpp プロジェクト: ksleck/openh264
void RcDecideTargetBits (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc	= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  SRCTemporal* pTOverRc		= &pWelsSvcRc->pTemporalOverRc[pEncCtx->uiTemporalId];

  pWelsSvcRc->iCurrentBitsLevel = BITS_NORMAL;
  //allocate bits
  if (pEncCtx->eSliceType == I_SLICE) {
    pWelsSvcRc->iTargetBits = WELS_DIV_ROUND (pWelsSvcRc->iBitsPerFrame * IDR_BITRATE_RATIO, INT_MULTIPLY);
  } else {
    if (pWelsSvcRc->iRemainingWeights > pTOverRc->iTlayerWeight)
      pWelsSvcRc->iTargetBits = (int32_t) ((int64_t)pWelsSvcRc->iRemainingBits * pTOverRc->iTlayerWeight /
                                           pWelsSvcRc->iRemainingWeights);
    else //this case should be not hit. needs to more test case to verify this
      pWelsSvcRc->iTargetBits = pWelsSvcRc->iRemainingBits;
    if ((pWelsSvcRc->iTargetBits <= 0) && ((pEncCtx->pSvcParam->iRCMode == RC_BITRATE_MODE) && (pEncCtx->pSvcParam->bEnableFrameSkip == false))) {
      pWelsSvcRc->iCurrentBitsLevel = BITS_EXCEEDED;
    }
    pWelsSvcRc->iTargetBits = WELS_CLIP3 (pWelsSvcRc->iTargetBits, pTOverRc->iMinBitsTl,	pTOverRc->iMaxBitsTl);
  }
  pWelsSvcRc->iRemainingWeights -= pTOverRc->iTlayerWeight;
}
コード例 #12
0
void DynamicAdjustSlicing (sWelsEncCtx* pCtx,
                           SDqLayer* pCurDqLayer,
                           void* pComplexRatio,
                           int32_t iCurDid) {
  SSliceCtx* pSliceCtx	= pCurDqLayer->pSliceEncCtx;
  const int32_t kiCountSliceNum	= pSliceCtx->iSliceNumInFrame;
  const int32_t kiCountNumMb		= pSliceCtx->iMbNumInFrame;
  int32_t iMinimalMbNum			= pSliceCtx->iMbWidth;	// in theory we need only 1 SMB, here let it as one SMB row required
  int32_t iMaximalMbNum			= 0;	// dynamically assign later
  int32_t* pSliceComplexRatio	= (int32_t*)pComplexRatio;
  int32_t iMbNumLeft					= kiCountNumMb;
  int32_t iRunLen[MAX_THREADS_NUM]	= {0};
  int32_t iSliceIdx					= 0;

  int32_t iNumMbInEachGom = 0;
  SWelsSvcRc* pWelsSvcRc = &pCtx->pWelsSvcRc[iCurDid];
  if (pCtx->pSvcParam->iRCMode != RC_OFF_MODE) {
    iNumMbInEachGom = pWelsSvcRc->iNumberMbGom;

    if (iNumMbInEachGom <= 0) {
      WelsLog (& (pCtx->sLogCtx), WELS_LOG_ERROR,
               "[MT] DynamicAdjustSlicing(), invalid iNumMbInEachGom= %d from RC, iDid= %d, iCountNumMb= %d", iNumMbInEachGom,
               iCurDid, kiCountNumMb);
      return;
    }

    // do not adjust in case no extra iNumMbInEachGom based left for slicing adjustment,
    // extra MB of non integrated GOM assigned at the last pSlice in default, keep up on early initial result.
    if (iNumMbInEachGom * kiCountSliceNum >= kiCountNumMb) {
      return;
    }
    iMinimalMbNum	= iNumMbInEachGom;
  }

  if (kiCountSliceNum < 2 || (kiCountSliceNum & 0x01))	// we need suppose uiSliceNum is even for multiple threading
    return;

  iMaximalMbNum	= kiCountNumMb - (kiCountSliceNum - 1) * iMinimalMbNum;

  WelsEmms();

  MT_TRACE_LOG (pCtx, WELS_LOG_DEBUG, "[MT] DynamicAdjustSlicing(), iDid= %d, iCountNumMb= %d", iCurDid, kiCountNumMb);

  iSliceIdx	= 0;
  while (iSliceIdx + 1 < kiCountSliceNum) {
    int32_t iNumMbAssigning = WELS_DIV_ROUND (kiCountNumMb * pSliceComplexRatio[iSliceIdx], INT_MULTIPLY);

    // GOM boundary aligned
    if (pCtx->pSvcParam->iRCMode != RC_OFF_MODE) {
      iNumMbAssigning = iNumMbAssigning / iNumMbInEachGom * iNumMbInEachGom;
    }

    // make sure one GOM at least in each pSlice for safe
    if (iNumMbAssigning < iMinimalMbNum)
      iNumMbAssigning	= iMinimalMbNum;
    else if (iNumMbAssigning > iMaximalMbNum)
      iNumMbAssigning	= iMaximalMbNum;

    assert (iNumMbAssigning > 0);

    iMbNumLeft -= iNumMbAssigning;
    if (iMbNumLeft <= 0) {	// error due to we can not support slice_skip now yet, do not adjust this time
      assert (0);
      return;
    }
    iRunLen[iSliceIdx]	= iNumMbAssigning;
    MT_TRACE_LOG (pCtx, WELS_LOG_DEBUG,
                  "[MT] DynamicAdjustSlicing(), uiSliceIdx= %d, pSliceComplexRatio= %.2f, slice_run_org= %d, slice_run_adj= %d",
                  iSliceIdx, pSliceComplexRatio[iSliceIdx] * 1.0f / INT_MULTIPLY, pSliceCtx->pCountMbNumInSlice[iSliceIdx],
                  iNumMbAssigning);
    ++ iSliceIdx;
    iMaximalMbNum	= iMbNumLeft - (kiCountSliceNum - iSliceIdx - 1) * iMinimalMbNum;	// get maximal num_mb in left parts
  }
  iRunLen[iSliceIdx] = iMbNumLeft;
  MT_TRACE_LOG (pCtx, WELS_LOG_DEBUG,
                "[MT] DynamicAdjustSlicing(), iSliceIdx= %d, pSliceComplexRatio= %.2f, slice_run_org= %d, slice_run_adj= %d",
                iSliceIdx, pSliceComplexRatio[iSliceIdx] * 1.0f / INT_MULTIPLY, pSliceCtx->pCountMbNumInSlice[iSliceIdx], iMbNumLeft);


  if (DynamicAdjustSlicePEncCtxAll (pSliceCtx, iRunLen) == 0) {
    const int32_t kiThreadNum	= pCtx->pSvcParam->iCountThreadsNum;
    int32_t iThreadIdx			= 0;
    do {
      WelsEventSignal (&pCtx->pSliceThreading->pUpdateMbListEvent[iThreadIdx]);
      WelsEventSignal (&pCtx->pSliceThreading->pThreadMasterEvent[iThreadIdx]);
      ++ iThreadIdx;
    } while (iThreadIdx < kiThreadNum);

    WelsMultipleEventsWaitAllBlocking (kiThreadNum, &pCtx->pSliceThreading->pFinUpdateMbListEvent[0]);
  }
}
コード例 #13
0
ファイル: ratectl.cpp プロジェクト: varunbpatil/openh264
void RcCalculatePictureQp (sWelsEncCtx* pEncCtx) {
  SWelsSvcRc* pWelsSvcRc		= &pEncCtx->pWelsSvcRc[pEncCtx->uiDependencyId];
  int32_t iTl					= pEncCtx->uiTemporalId;
  SRCTemporal* pTOverRc			= &pWelsSvcRc->pTemporalOverRc[iTl];
  int32_t iLumaQp = 0;

  if (0 == pTOverRc->iPFrameNum) {
    iLumaQp = pWelsSvcRc->iInitialQp;
  } else if (pWelsSvcRc->iCurrentBitsLevel == BITS_EXCEEDED) {
    iLumaQp = MAX_LOW_BR_QP;
    //limit QP
    int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1;
    if (iLastIdxCodecInVGop < 0)
      iLastIdxCodecInVGop += VGOP_SIZE;
    int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop];
    int32_t iDeltaQpTemporal = iTl - iTlLast;
    if (0 == iTlLast && iTl > 0)
      iDeltaQpTemporal += 3;
    else if (0 == iTl && iTlLast > 0)
      iDeltaQpTemporal -= 3;

    iLumaQp = WELS_CLIP3 (iLumaQp,
                          pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal,
                          pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal);
    iLumaQp = WELS_CLIP3 (iLumaQp,  GOM_MIN_QP_MODE, MAX_LOW_BR_QP);

    pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp);
    pWelsSvcRc->iLastCalculatedQScale = iLumaQp;

    if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {
      iLumaQp = WELS_CLIP3 ((iLumaQp * INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp) /
                            INT_MULTIPLY, GOM_MIN_QP_MODE, MAX_LOW_BR_QP);
    }

    pEncCtx->iGlobalQp = iLumaQp;

    return;
  } else {
    int64_t iCmplxRatio = WELS_DIV_ROUND64 (pEncCtx->pVaa->sComplexityAnalysisParam.iFrameComplexity * INT_MULTIPLY,
                                            pTOverRc->iFrameCmplxMean);
    iCmplxRatio = WELS_CLIP3 (iCmplxRatio, INT_MULTIPLY - FRAME_CMPLX_RATIO_RANGE, INT_MULTIPLY + FRAME_CMPLX_RATIO_RANGE);

    pWelsSvcRc->iQStep = WELS_DIV_ROUND ((pTOverRc->iLinearCmplx * iCmplxRatio), (pWelsSvcRc->iTargetBits * INT_MULTIPLY));
    iLumaQp = RcConvertQStep2Qp (pWelsSvcRc->iQStep);

    //limit QP
    int32_t iLastIdxCodecInVGop = pWelsSvcRc->iFrameCodedInVGop - 1;
    if (iLastIdxCodecInVGop < 0)
      iLastIdxCodecInVGop += VGOP_SIZE;
    int32_t iTlLast = pWelsSvcRc->iTlOfFrames[iLastIdxCodecInVGop];
    int32_t iDeltaQpTemporal = iTl - iTlLast;
    if (0 == iTlLast && iTl > 0)
      iDeltaQpTemporal += 3;
    else if (0 == iTl && iTlLast > 0)
      iDeltaQpTemporal -= 3;

    iLumaQp = WELS_CLIP3 (iLumaQp,
                          pWelsSvcRc->iLastCalculatedQScale - pWelsSvcRc->iFrameDeltaQpLower + iDeltaQpTemporal,
                          pWelsSvcRc->iLastCalculatedQScale + pWelsSvcRc->iFrameDeltaQpUpper + iDeltaQpTemporal);
  }

  iLumaQp = WELS_CLIP3 (iLumaQp,  GOM_MIN_QP_MODE, GOM_MAX_QP_MODE);

  pWelsSvcRc->iQStep = RcConvertQp2QStep (iLumaQp);
  pWelsSvcRc->iLastCalculatedQScale = iLumaQp;
#ifndef _NOT_USE_AQ_FOR_TEST_
  if (pEncCtx->pSvcParam->bEnableAdaptiveQuant) {

    iLumaQp =  WELS_DIV_ROUND (iLumaQp * INT_MULTIPLY - pEncCtx->pVaa->sAdaptiveQuantParam.iAverMotionTextureIndexToDeltaQp,
                               INT_MULTIPLY);

    if (pEncCtx->pSvcParam->iRCMode != RC_LOW_BW_MODE)
      iLumaQp = WELS_CLIP3 (iLumaQp, pWelsSvcRc->iMinQp, pWelsSvcRc->iMaxQp);

  }
#endif
  pEncCtx->iGlobalQp = iLumaQp;
}