uint8 LoadSpriteV1(SpriteLoader::Sprite *sprite, uint8 file_slot, size_t file_pos, SpriteType sprite_type, bool load_32bpp) { /* Check the requested colour depth. */ if (load_32bpp) return 0; /* Open the right file and go to the correct position */ FioSeekToFile(file_slot, file_pos); /* Read the size and type */ int num = FioReadWord(); byte type = FioReadByte(); /* Type 0xFF indicates either a colourmap or some other non-sprite info; we do not handle them here */ if (type == 0xFF) return 0; ZoomLevel zoom_lvl = (sprite_type == ST_NORMAL) ? ZOOM_LVL_OUT_4X : ZOOM_LVL_NORMAL; sprite[zoom_lvl].height = FioReadByte(); sprite[zoom_lvl].width = FioReadWord(); sprite[zoom_lvl].x_offs = FioReadWord(); sprite[zoom_lvl].y_offs = FioReadWord(); if (sprite[zoom_lvl].width > INT16_MAX) { WarnCorruptSprite(file_slot, file_pos, __LINE__); return 0; } /* 0x02 indicates it is a compressed sprite, so we can't rely on 'num' to be valid. * In case it is uncompressed, the size is 'num' - 8 (header-size). */ num = (type & 0x02) ? sprite[zoom_lvl].width * sprite[zoom_lvl].height : num - 8; if (DecodeSingleSprite(&sprite[zoom_lvl], file_slot, file_pos, sprite_type, num, type, zoom_lvl, SCC_PAL, 1)) return 1 << zoom_lvl; return 0; }
/** * Decode the image data of a single sprite. * @param[in,out] sprite Filled with the sprite image data. * @param file_slot File slot. * @param file_pos File position. * @param sprite_type Type of the sprite we're decoding. * @param num Size of the decompressed sprite. * @param type Type of the encoded sprite. * @param zoom_lvl Requested zoom level. * @param colour_fmt Colour format of the sprite. * @param container_format Container format of the GRF this sprite is in. * @return True if the sprite was successfully loaded. */ bool DecodeSingleSprite(SpriteLoader::Sprite *sprite, uint8 file_slot, size_t file_pos, SpriteType sprite_type, int64 num, byte type, ZoomLevel zoom_lvl, byte colour_fmt, byte container_format) { AutoFreePtr<byte> dest_orig(MallocT<byte>(num)); byte *dest = dest_orig; const int64 dest_size = num; /* Read the file, which has some kind of compression */ while (num > 0) { int8 code = FioReadByte(); if (code >= 0) { /* Plain bytes to read */ int size = (code == 0) ? 0x80 : code; num -= size; if (num < 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); for (; size > 0; size--) { *dest = FioReadByte(); dest++; } } else { /* Copy bytes from earlier in the sprite */ const uint data_offset = ((code & 7) << 8) | FioReadByte(); if (dest - data_offset < dest_orig) return WarnCorruptSprite(file_slot, file_pos, __LINE__); int size = -(code >> 3); num -= size; if (num < 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); for (; size > 0; size--) { *dest = *(dest - data_offset); dest++; } } } if (num != 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); sprite->AllocateData(zoom_lvl, sprite->width * sprite->height); /* Convert colour depth to pixel size. */ int bpp = 0; if (colour_fmt & SCC_RGB) bpp += 3; // Has RGB data. if (colour_fmt & SCC_ALPHA) bpp++; // Has alpha data. if (colour_fmt & SCC_PAL) bpp++; // Has palette data. /* When there are transparency pixels, this format has another trick.. decode it */ if (type & 0x08) { for (int y = 0; y < sprite->height; y++) { bool last_item = false; /* Look up in the header-table where the real data is stored for this row */ int offset; if (container_format >= 2 && dest_size > UINT16_MAX) { offset = (dest_orig[y * 4 + 3] << 24) | (dest_orig[y * 4 + 2] << 16) | (dest_orig[y * 4 + 1] << 8) | dest_orig[y * 4]; } else { offset = (dest_orig[y * 2 + 1] << 8) | dest_orig[y * 2]; } /* Go to that row */ dest = dest_orig + offset; do { if (dest + (container_format >= 2 && sprite->width > 256 ? 4 : 2) > dest_orig + dest_size) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } SpriteLoader::CommonPixel *data; /* Read the header. */ int length, skip; if (container_format >= 2 && sprite->width > 256) { /* 0 .. 14 - length * 15 - last_item * 16 .. 31 - transparency bytes */ last_item = (dest[1] & 0x80) != 0; length = ((dest[1] & 0x7F) << 8) | dest[0]; skip = (dest[3] << 8) | dest[2]; dest += 4; } else { /* 0 .. 6 - length * 7 - last_item * 8 .. 15 - transparency bytes */ last_item = ((*dest) & 0x80) != 0; length = (*dest++) & 0x7F; skip = *dest++; } data = &sprite->data[y * sprite->width + skip]; if (skip + length > sprite->width || dest + length * bpp > dest_orig + dest_size) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } for (int x = 0; x < length; x++) { if (colour_fmt & SCC_RGB) { data->r = *dest++; data->g = *dest++; data->b = *dest++; } data->a = (colour_fmt & SCC_ALPHA) ? *dest++ : 0xFF; if (colour_fmt & SCC_PAL) { switch (sprite_type) { case ST_NORMAL: data->m = _palette_remap_grf[file_slot] ? _palmap_w2d[*dest] : *dest; break; case ST_FONT: data->m = min(*dest, 2u); break; default: data->m = *dest; break; } /* Magic blue. */ if (colour_fmt == SCC_PAL && *dest == 0) data->a = 0x00; dest++; } data++; } } while (!last_item); } } else { if (dest_size < sprite->width * sprite->height * bpp) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } if (dest_size > sprite->width * sprite->height * bpp) { static byte warning_level = 0; DEBUG(sprite, warning_level, "Ignoring " OTTD_PRINTF64 " unused extra bytes from the sprite from %s at position %i", dest_size - sprite->width * sprite->height * bpp, FioGetFilename(file_slot), (int)file_pos); warning_level = 6; } dest = dest_orig; for (int i = 0; i < sprite->width * sprite->height; i++) { byte *pixel = &dest[i * bpp]; if (colour_fmt & SCC_RGB) { sprite->data[i].r = *pixel++; sprite->data[i].g = *pixel++; sprite->data[i].b = *pixel++; } sprite->data[i].a = (colour_fmt & SCC_ALPHA) ? *pixel++ : 0xFF; if (colour_fmt & SCC_PAL) { switch (sprite_type) { case ST_NORMAL: sprite->data[i].m = _palette_remap_grf[file_slot] ? _palmap_w2d[*pixel] : *pixel; break; case ST_FONT: sprite->data[i].m = min(*pixel, 2u); break; default: sprite->data[i].m = *pixel; break; } /* Magic blue. */ if (colour_fmt == SCC_PAL && *pixel == 0) sprite->data[i].a = 0x00; pixel++; } } } return true; }
uint8 LoadSpriteV2(SpriteLoader::Sprite *sprite, uint8 file_slot, size_t file_pos, SpriteType sprite_type, bool load_32bpp) { static const ZoomLevel zoom_lvl_map[6] = {ZOOM_LVL_OUT_4X, ZOOM_LVL_NORMAL, ZOOM_LVL_OUT_2X, ZOOM_LVL_OUT_8X, ZOOM_LVL_OUT_16X, ZOOM_LVL_OUT_32X}; /* Is the sprite not present/stripped in the GRF? */ if (file_pos == SIZE_MAX) return 0; /* Open the right file and go to the correct position */ FioSeekToFile(file_slot, file_pos); uint32 id = FioReadDword(); uint8 loaded_sprites = 0; do { int64 num = FioReadDword(); size_t start_pos = FioGetPos(); byte type = FioReadByte(); /* Type 0xFF indicates either a colourmap or some other non-sprite info; we do not handle them here. */ if (type == 0xFF) return 0; byte colour = type & SCC_MASK; byte zoom = FioReadByte(); if (colour != 0 && (load_32bpp ? colour != SCC_PAL : colour == SCC_PAL) && (sprite_type == ST_NORMAL ? zoom < lengthof(zoom_lvl_map) : zoom == 0)) { ZoomLevel zoom_lvl = (sprite_type == ST_NORMAL) ? zoom_lvl_map[zoom] : ZOOM_LVL_NORMAL; if (HasBit(loaded_sprites, zoom_lvl)) { /* We already have this zoom level, skip sprite. */ DEBUG(sprite, 1, "Ignoring duplicate zoom level sprite %u from %s", id, FioGetFilename(file_slot)); FioSkipBytes(num - 2); continue; } sprite[zoom_lvl].height = FioReadWord(); sprite[zoom_lvl].width = FioReadWord(); sprite[zoom_lvl].x_offs = FioReadWord(); sprite[zoom_lvl].y_offs = FioReadWord(); if (sprite[zoom_lvl].width > INT16_MAX || sprite[zoom_lvl].height > INT16_MAX) { WarnCorruptSprite(file_slot, file_pos, __LINE__); return 0; } /* Mask out colour information. */ type = type & ~SCC_MASK; /* Convert colour depth to pixel size. */ int bpp = 0; if (colour & SCC_RGB) bpp += 3; // Has RGB data. if (colour & SCC_ALPHA) bpp++; // Has alpha data. if (colour & SCC_PAL) bpp++; // Has palette data. /* For chunked encoding we store the decompressed size in the file, * otherwise we can calculate it from the image dimensions. */ uint decomp_size = (type & 0x08) ? FioReadDword() : sprite[zoom_lvl].width * sprite[zoom_lvl].height * bpp; bool valid = DecodeSingleSprite(&sprite[zoom_lvl], file_slot, file_pos, sprite_type, decomp_size, type, zoom_lvl, colour, 2); if (FioGetPos() != start_pos + num) { WarnCorruptSprite(file_slot, file_pos, __LINE__); return 0; } if (valid) SetBit(loaded_sprites, zoom_lvl); } else { /* Not the wanted zoom level or colour depth, continue searching. */ FioSkipBytes(num - 2); } } while (FioReadDword() == id); return loaded_sprites; }
bool SpriteLoaderGrf::LoadSprite(SpriteLoader::Sprite *sprite, uint8 file_slot, size_t file_pos, SpriteType sprite_type) { /* Open the right file and go to the correct position */ FioSeekToFile(file_slot, file_pos); /* Read the size and type */ int num = FioReadWord(); byte type = FioReadByte(); /* Type 0xFF indicates either a colourmap or some other non-sprite info; we do not handle them here */ if (type == 0xFF) return false; sprite->height = FioReadByte(); sprite->width = FioReadWord(); sprite->x_offs = FioReadWord(); sprite->y_offs = FioReadWord(); /* 0x02 indicates it is a compressed sprite, so we can't rely on 'num' to be valid. * In case it is uncompressed, the size is 'num' - 8 (header-size). */ num = (type & 0x02) ? sprite->width * sprite->height : num - 8; byte *dest_orig = AllocaM(byte, num); byte *dest = dest_orig; const int dest_size = num; /* Read the file, which has some kind of compression */ while (num > 0) { int8 code = FioReadByte(); if (code >= 0) { /* Plain bytes to read */ int size = (code == 0) ? 0x80 : code; num -= size; if (num < 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); for (; size > 0; size--) { *dest = FioReadByte(); dest++; } } else { /* Copy bytes from earlier in the sprite */ const uint data_offset = ((code & 7) << 8) | FioReadByte(); if (dest - data_offset < dest_orig) return WarnCorruptSprite(file_slot, file_pos, __LINE__); int size = -(code >> 3); num -= size; if (num < 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); for (; size > 0; size--) { *dest = *(dest - data_offset); dest++; } } } if (num != 0) return WarnCorruptSprite(file_slot, file_pos, __LINE__); sprite->AllocateData(sprite->width * sprite->height * ZOOM_LVL_BASE * ZOOM_LVL_BASE); /* When there are transparency pixels, this format has another trick.. decode it */ if (type & 0x08) { for (int y = 0; y < sprite->height; y++) { bool last_item = false; /* Look up in the header-table where the real data is stored for this row */ int offset = (dest_orig[y * 2 + 1] << 8) | dest_orig[y * 2]; /* Go to that row */ dest = dest_orig + offset; do { if (dest + 2 > dest_orig + dest_size) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } SpriteLoader::CommonPixel *data; /* Read the header: * 0 .. 14 - length * 15 - last_item * 16 .. 31 - transparency bytes */ last_item = ((*dest) & 0x80) != 0; int length = (*dest++) & 0x7F; int skip = *dest++; data = &sprite->data[y * sprite->width + skip]; if (skip + length > sprite->width || dest + length > dest_orig + dest_size) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } for (int x = 0; x < length; x++) { switch (sprite_type) { case ST_NORMAL: data->m = _palette_remap_grf[file_slot] ? _palmap_w2d[*dest] : *dest; break; case ST_FONT: data->m = min(*dest, 2u); break; default: data->m = *dest; break; } dest++; data++; } } while (!last_item); } } else { if (dest_size < sprite->width * sprite->height) { return WarnCorruptSprite(file_slot, file_pos, __LINE__); } if (dest_size > sprite->width * sprite->height) { static byte warning_level = 0; DEBUG(sprite, warning_level, "Ignoring %i unused extra bytes from the sprite from %s at position %i", dest_size - sprite->width * sprite->height, FioGetFilename(file_slot), (int)file_pos); warning_level = 6; } dest = dest_orig; for (int i = 0; i < sprite->width * sprite->height; i++) { switch (sprite_type) { case ST_NORMAL: sprite->data[i].m = _palette_remap_grf[file_slot] ? _palmap_w2d[dest[i]] : dest[i]; break; case ST_FONT: sprite->data[i].m = min(dest[i], 2u); break; default: sprite->data[i].m = dest[i]; break; } } } if (ZOOM_LVL_BASE != 1 && sprite_type == ST_NORMAL) { /* Simple scaling, back-to-front so that no intermediate buffers are needed. */ int width = sprite->width * ZOOM_LVL_BASE; int height = sprite->height * ZOOM_LVL_BASE; for (int y = height - 1; y >= 0; y--) { for (int x = width - 1; x >= 0; x--) { sprite->data[y * width + x] = sprite->data[y / ZOOM_LVL_BASE * sprite->width + x / ZOOM_LVL_BASE]; } } sprite->width *= ZOOM_LVL_BASE; sprite->height *= ZOOM_LVL_BASE; sprite->x_offs *= ZOOM_LVL_BASE; sprite->y_offs *= ZOOM_LVL_BASE; } /* Make sure to mark all transparent pixels transparent on the alpha channel too */ for (int i = 0; i < sprite->width * sprite->height; i++) { if (sprite->data[i].m != 0) sprite->data[i].a = 0xFF; } return true; }