/***************************************************************************** Function: XEE_RESULT XEEWriteArray(BYTE *val, WORD wLen) Summary: Writes an array of bytes to the EEPROM part. Description: This function writes an array of bytes to the EEPROM at the address specified when XEEBeginWrite() was called. Page boundary crossing is handled internally. Precondition: XEEInit() was called once and XEEBeginWrite() was called. Parameters: vData - The array to write to the next memory location wLen - The length of the data to be written Returns: None Remarks: The internal write cache is flushed at completion, so it is unnecessary to call XEEEndWrite() after calling this function. However, if you do so, no harm will be done. ***************************************************************************/ void XEEWriteArray(BYTE *val, WORD wLen) { while(wLen--) XEEWrite(*val++); XEEEndWrite(); }
/***************************************************************************** Function: XEE_RESULT XEEWriteArray(uint8_t *val, uint16_t wLen) Summary: Writes an array of bytes to the EEPROM part. Description: This function writes an array of bytes to the EEPROM at the address specified when XEEBeginWrite() was called. Page boundary crossing is handled internally. Precondition: XEEInit() was called once and XEEBeginWrite() was called. Parameters: vData - The array to write to the next memory location wLen - The length of the data to be written Returns: None Remarks: The internal write cache is flushed at completion, so it is unnecessary to call XEEEndWrite() after calling this function. However, if you do so, no harm will be done. ***************************************************************************/ void XEEWriteArray(uint8_t *val, uint16_t wLen) { while (wLen--) XEEWrite(*val++); XEEEndWrite(); }
/********************************************************************* * Function: MPFS MPFSPutEnd(void) * * PreCondition: XEEBeginWrite() is already called. * * Input: None * * Output: None * * Side Effects: None * * Overview: None * * Note: Actual write may not get started until internal * write page is full. To ensure that previously * data gets written, caller must call MPFSPutEnd() * after last call to MPFSPut(). ********************************************************************/ void MPFSPutEnd(void) { #if defined(MPFS_USE_EEPROM) isMPFSLocked = FALSE; XEEEndWrite(); while(XEEIsBusy()); #endif }
void XEEWriteCompleteArray(DWORD address, BYTE *val, WORD wLen) { XEEBeginWrite(address); while(wLen--) XEEWrite(*val++); XEEEndWrite(); }
/********************************************************************* * Function: MPFS MPFSPutEnd(void) * * PreCondition: MPFSPutBegin() is already called. * * Input: None * * Output: Up-to-date MPFS handle * * Side Effects: Original MPFS handle is no longer valid. * Updated MPFS handle must be obtained by calling * MPFSPutEnd(). * * Overview: None * * Note: Actual write may not get started until internal * write page is full. To ensure that previously * data gets written, caller must call MPFSPutEnd() * after last call to MPFSPut(). ********************************************************************/ MPFS MPFSPutEnd(void) { #if defined(MPFS_USE_EEPROM) _currentCount = 0; XEEEndWrite(); while(XEEIsBusy()); #endif return _currentHandle; }
/********************************************************************* * Function: MPFS MPFSPutEnd(void) * * PreCondition: MPFSPutBegin() is already called. * * Input: None * * Output: Up-to-date MPFS handle * * Side Effects: Original MPFS handle is no longer valid. * Updated MPFS handle must be obtained by calling * MPFSPutEnd(). * * Overview: None * * Note: Actual write may not get started until internal * write page is full. To ensure that previously * data gets written, caller must call MPFSPutEnd() * after last call to MPFSPut(). ********************************************************************/ MPFS MPFSPutEnd(void) { debug_mpfs(debug_mpfs_putc, "\r\nMPFSPutEnd() "); #if defined(MPFS_USE_EEPROM) _currentCount = 0; XEEEndWrite(); while(XEEIsBusy()); #elif defined(MPFS_USE_SPI_FLASH) SPIFlashStopWrite(); #endif return _currentHandle; }
static void SaveAppConfig(void) { BYTE c; BYTE *p; p = (BYTE*)&AppConfig; XEEBeginWrite(EEPROM_CONTROL, 0x00); XEEWrite(0x55); for ( c = 0; c < sizeof(AppConfig); c++ ) { XEEWrite(*p++); } XEEEndWrite(); }
void WX_writePerm_data(void) { unsigned short loc = sizeof (NVM_VALIDATION_STRUCT) + sizeof (APP_CONFIG); if (loc + sizeof (WX) >= MPFS_RESERVE_BLOCK) { putrsUART((ROM char*) "MPFS_RESERVE_BLOCK too small!"); while (1); } XEEBeginWrite(loc); XEEWriteArray((BYTE *) & WX, sizeof (WX)); XEEEndWrite(); }
void RestoreWifiConfig(void) { putrsUART((ROM char*) "\r\nButton push, restore wifi configuration!!!\r\n"); #if defined(EEPROM_CS_TRIS) XEEBeginWrite(0x0000); XEEWrite(0xFF); XEEWrite(0xFF); XEEEndWrite(); #elif defined(SPIFLASH_CS_TRIS) SPIFlashBeginWrite(0x0000); SPIFlashWrite(0xFF); SPIFlashWrite(0xFF); #endif // reboot here... LED_PUT(0x00); while (BUTTON3_IO == 0u); Reset(); }
int main(void) #endif { static DWORD t = 0; static DWORD dwLastIP = 0; // Initialize application specific hardware InitializeBoard(); #if defined(USE_LCD) // Initialize and display the stack version on the LCD LCDInit(); DelayMs(100); strcpypgm2ram((char*)LCDText, "WebVend Demo App" " "); LCDUpdate(); #endif // Initialize stack-related hardware components that may be // required by the UART configuration routines TickInit(); #if defined(STACK_USE_MPFS2) MPFSInit(); #endif // Initialize Stack and application related NV variables into AppConfig. InitAppConfig(); // Initiates board setup process if button is depressed // on startup if(BUTTON0_IO == 0u) { #if defined(EEPROM_CS_TRIS) || defined(SPIFLASH_CS_TRIS) // Invalidate the EEPROM contents if BUTTON0 is held down for more than 4 seconds DWORD StartTime = TickGet(); LED_PUT(0x00); while(BUTTON0_IO == 0u) { if(TickGet() - StartTime > 4*TICK_SECOND) { #if defined(EEPROM_CS_TRIS) XEEBeginWrite(0x0000); XEEWrite(0xFF); XEEWrite(0xFF); XEEEndWrite(); #elif defined(SPIFLASH_CS_TRIS) SPIFlashBeginWrite(0x0000); SPIFlashWrite(0xFF); SPIFlashWrite(0xFF); #endif #if defined(STACK_USE_UART) putrsUART("\r\n\r\nBUTTON0 held for more than 4 seconds. Default settings restored.\r\n\r\n"); #endif LED_PUT(0x0F); while((LONG)(TickGet() - StartTime) <= (LONG)(9*TICK_SECOND/2)); LED_PUT(0x00); while(BUTTON0_IO == 0u); Reset(); break; } } #endif } // Initialize core stack layers (MAC, ARP, TCP, UDP) and // application modules (HTTP, SNMP, etc.) StackInit(); #if defined(WF_CS_TRIS) WF_Connect(); #endif // Initialize any application-specific modules or functions/ // For this demo application, this only includes the // UART 2 TCP Bridge #if defined(STACK_USE_UART2TCP_BRIDGE) UART2TCPBridgeInit(); #endif #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLInitialize(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSInitialize(MY_DEFAULT_HOST_NAME); mDNSServiceRegister( (const char *) "DemoWebServer", // base name of the service "_http._tcp.local", // type of the service 80, // TCP or UDP port, at which this service is available ((const BYTE *)"path=/index.htm"), // TXT info 1, // auto rename the service when if needed NULL, // no callback function NULL // no application context ); mDNSMulticastFilterRegister(); #endif // Now that all items are initialized, begin the co-operative // multitasking loop. This infinite loop will continuously // execute all stack-related tasks, as well as your own // application's functions. Custom functions should be added // at the end of this loop. // Note that this is a "co-operative mult-tasking" mechanism // where every task performs its tasks (whether all in one shot // or part of it) and returns so that other tasks can do their // job. // If a task needs very long time to do its job, it must be broken // down into smaller pieces so that other tasks can have CPU time. while(1) { // Blink LED0 (right most one) every second. if(TickGet() - t >= TICK_SECOND/2ul) { t = TickGet(); LED0_IO ^= 1; } // This task performs normal stack task including checking // for incoming packet, type of packet and calling // appropriate stack entity to process it. StackTask(); // This tasks invokes each of the core stack application tasks StackApplications(); #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLProcess(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSProcess(); // Use this function to exercise service update function // HTTPUpdateRecord(); #endif // Process application specific tasks here. // For this demo app, this will include the Generic TCP // client and servers, and the SNMP, Ping, and SNMP Trap // demos. Following that, we will process any IO from // the inputs on the board itself. // Any custom modules or processing you need to do should // go here. ProcessIO(); // If the local IP address has changed (ex: due to DHCP lease change) // write the new IP address to the LCD display, UART, and Announce // service if(dwLastIP != AppConfig.MyIPAddr.Val) { dwLastIP = AppConfig.MyIPAddr.Val; #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\nNew IP Address: "); #endif // If not vending, show the new IP if(smVend == SM_IDLE || smVend == SM_DISPLAY_WAIT) { memcpypgm2ram(LCDText, "WebVend Demo App", 16); DisplayIPValue(AppConfig.MyIPAddr); // Print to UART #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\n"); #endif displayTimeout = TickGet() + 2*TICK_SECOND; smVend = SM_DISPLAY_WAIT; } #if defined(STACK_USE_ANNOUNCE) AnnounceIP(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSFillHostRecord(); #endif } } }
int main(void) #endif { static DWORD t = 0; static DWORD dwLastIP = 0; #if defined (EZ_CONFIG_STORE) static DWORD ButtonPushStart = 0; #endif #if (MY_DEFAULT_NETWORK_TYPE == WF_SOFT_AP) UINT8 channelList[] = MY_DEFAULT_CHANNEL_LIST_PRESCAN; // WF_PRESCAN tWFScanResult bssDesc; #endif // Initialize application specific hardware InitializeBoard(); #if defined(USE_LCD) // Initialize and display the stack version on the LCD LCDInit(); DelayMs(100); strcpypgm2ram((char*)LCDText, "TCPStack " TCPIP_STACK_VERSION " " " "); LCDUpdate(); #endif // Initialize stack-related hardware components that may be // required by the UART configuration routines TickInit(); #if defined(STACK_USE_MPFS2) MPFSInit(); #endif // Initialize Stack and application related NV variables into AppConfig. InitAppConfig(); // Initiates board setup process if button is depressed // on startup if(BUTTON0_IO == 0u) { #if defined(EEPROM_CS_TRIS) || defined(SPIFLASH_CS_TRIS) // Invalidate the EEPROM contents if BUTTON0 is held down for more than 4 seconds DWORD StartTime = TickGet(); LED_PUT(0x00); while(BUTTON0_IO == 0u) { if(TickGet() - StartTime > 4*TICK_SECOND) { #if defined(EEPROM_CS_TRIS) XEEBeginWrite(0x0000); XEEWrite(0xFF); XEEWrite(0xFF); XEEEndWrite(); #elif defined(SPIFLASH_CS_TRIS) SPIFlashBeginWrite(0x0000); SPIFlashWrite(0xFF); SPIFlashWrite(0xFF); #endif #if defined(STACK_USE_UART) putrsUART("\r\n\r\nBUTTON0 held for more than 4 seconds. Default settings restored.\r\n\r\n"); #endif LED_PUT(0x0F); while((LONG)(TickGet() - StartTime) <= (LONG)(9*TICK_SECOND/2)); LED_PUT(0x00); while(BUTTON0_IO == 0u); Reset(); break; } } #endif #if defined(STACK_USE_UART) DoUARTConfig(); #endif } // Initialize core stack layers (MAC, ARP, TCP, UDP) and // application modules (HTTP, SNMP, etc.) StackInit(); #if defined ( EZ_CONFIG_SCAN ) WFInitScan(); #endif #if (MY_DEFAULT_NETWORK_TYPE == WF_SOFT_AP) // WF_PRESCAN: Pre-scan before starting up as SoftAP mode WF_CASetScanType(MY_DEFAULT_SCAN_TYPE); WF_CASetChannelList(channelList, sizeof(channelList)); if (WFStartScan() == WF_SUCCESS) { SCAN_SET_DISPLAY(SCANCXT.scanState); SCANCXT.displayIdx = 0; //putsUART("main: Prescan WFStartScan() success ................. \r\n"); } // Needed to trigger g_scan_done WFRetrieveScanResult(0, &bssDesc); #else #if defined(WF_CS_TRIS) WF_Connect(); #endif // defined(WF_CS_TRIS) #endif // (MY_DEFAULT_NETWORK_TYPE == WF_SOFT_AP) // Initialize any application-specific modules or functions/ // For this demo application, this only includes the // UART 2 TCP Bridge #if defined(STACK_USE_UART2TCP_BRIDGE) UART2TCPBridgeInit(); #endif #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLInitialize(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSInitialize(MY_DEFAULT_HOST_NAME); #if defined(STACK_USE_TCP_MOBILE_APP_SERVER) mDNSServiceRegister( (const char *) "HomeControlServer", // base name of the service "_home-control._tcp.local", // type of the service 27561, // TCP or UDP port, at which this service is available ((const BYTE *)"control home devices"), // TXT info 1, // auto rename the service when if needed NULL, // no callback function NULL // no application context ); #else /* !defined(STACK_USE_TCP_MOBILE_APP_SERVER) */ mDNSServiceRegister( (const char *) "DemoWebServer", // base name of the service "_http._tcp.local", // type of the service 80, // TCP or UDP port, at which this service is available ((const BYTE *)"path=/index.htm"), // TXT info 1, // auto rename the service when if needed NULL, // no callback function NULL // no application context ); #endif /* defined(STACK_USE_TCP_MOBILE_APP_SERVER) */ mDNSMulticastFilterRegister(); #endif #if defined(WF_CONSOLE) WFConsoleInit(); #endif // Now that all items are initialized, begin the co-operative // multitasking loop. This infinite loop will continuously // execute all stack-related tasks, as well as your own // application's functions. Custom functions should be added // at the end of this loop. // Note that this is a "co-operative mult-tasking" mechanism // where every task performs its tasks (whether all in one shot // or part of it) and returns so that other tasks can do their // job. // If a task needs very long time to do its job, it must be broken // down into smaller pieces so that other tasks can have CPU time. while(1) { #if (MY_DEFAULT_NETWORK_TYPE == WF_SOFT_AP) if (g_scan_done) { if (g_prescan_waiting) { putrsUART((ROM char*)"\n SoftAP prescan results ........ \r\n\n"); SCANCXT.displayIdx = 0; while (IS_SCAN_STATE_DISPLAY(SCANCXT.scanState)) { WFDisplayScanMgr(); } putrsUART((ROM char*)"\r\n "); #if defined(WF_CS_TRIS) WF_Connect(); #endif g_scan_done = 0; g_prescan_waiting = 0; } } #endif // (MY_DEFAULT_NETWORK_TYPE == WF_SOFT_AP) #if defined(WF_PRE_SCAN_IN_ADHOC) if(g_prescan_adhoc_done) { WFGetScanResults(); g_prescan_adhoc_done = 0; } #endif #if defined (EZ_CONFIG_STORE) // Hold button3 for 4 seconds to reset to defaults. if (BUTTON3_IO == 0u) { // Button is pressed if (ButtonPushStart == 0) //Just pressed ButtonPushStart = TickGet(); else if(TickGet() - ButtonPushStart > 4*TICK_SECOND) RestoreWifiConfig(); } else { ButtonPushStart = 0; //Button release reset the clock } if (AppConfig.saveSecurityInfo) { // set true by WF_ProcessEvent after connecting to a new network // get the security info, and if required, push the PSK to EEPROM if ((AppConfig.SecurityMode == WF_SECURITY_WPA_WITH_PASS_PHRASE) || (AppConfig.SecurityMode == WF_SECURITY_WPA2_WITH_PASS_PHRASE) || (AppConfig.SecurityMode == WF_SECURITY_WPA_AUTO_WITH_PASS_PHRASE)) { // only need to save when doing passphrase tWFCPElements profile; UINT8 connState; UINT8 connID; WF_CMGetConnectionState(&connState, &connID); WF_CPGetElements(connID, &profile); memcpy((char*)AppConfig.SecurityKey, (char*)profile.securityKey, 32); AppConfig.SecurityMode--; // the calc psk is exactly one below for each passphrase option AppConfig.SecurityKeyLength = 32; SaveAppConfig(&AppConfig); } AppConfig.saveSecurityInfo = FALSE; } #endif // EZ_CONFIG_STORE #if defined (STACK_USE_EZ_CONFIG) // Blink LED0 twice per sec when unconfigured, once per sec after config if((TickGet() - t >= TICK_SECOND/(4ul - (CFGCXT.isWifiDoneConfigure*2ul)))) #else // Blink LED0 (right most one) every second. if(TickGet() - t >= TICK_SECOND/2ul) #endif // STACK_USE_EZ_CONFIG { t = TickGet(); LED0_IO ^= 1; } // This task performs normal stack task including checking // for incoming packet, type of packet and calling // appropriate stack entity to process it. StackTask(); // This tasks invokes each of the core stack application tasks StackApplications(); #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLProcess(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSProcess(); // Use this function to exercise service update function // HTTPUpdateRecord(); #endif // Process application specific tasks here. // For this demo app, this will include the Generic TCP // client and servers, and the SNMP, Ping, and SNMP Trap // demos. Following that, we will process any IO from // the inputs on the board itself. // Any custom modules or processing you need to do should // go here. #if defined(WF_CONSOLE) WFConsoleProcess(); WFConsoleProcessEpilogue(); #endif #if defined(STACK_USE_GENERIC_TCP_CLIENT_EXAMPLE) GenericTCPClient(); #endif #if defined(STACK_USE_GENERIC_TCP_SERVER_EXAMPLE) GenericTCPServer(); #endif #if defined(STACK_USE_TCP_MOBILE_APP_SERVER) MobileTCPServer(); #endif #if defined(STACK_USE_SMTP_CLIENT) SMTPDemo(); #endif #if defined(STACK_USE_ICMP_CLIENT) PingDemo(); PingConsole(); #endif #if defined(STACK_USE_SNMP_SERVER) && !defined(SNMP_TRAP_DISABLED) //User should use one of the following SNMP demo // This routine demonstrates V1 or V2 trap formats with one variable binding. SNMPTrapDemo(); #if defined(SNMP_STACK_USE_V2_TRAP) || defined(SNMP_V1_V2_TRAP_WITH_SNMPV3) //This routine provides V2 format notifications with multiple (3) variable bindings //User should modify this routine to send v2 trap format notifications with the required varbinds. //SNMPV2TrapDemo(); #endif if(gSendTrapFlag) SNMPSendTrap(); #endif #if defined(STACK_USE_BERKELEY_API) BerkeleyTCPClientDemo(); BerkeleyTCPServerDemo(); BerkeleyUDPClientDemo(); #endif // If the local IP address has changed (ex: due to DHCP lease change) // write the new IP address to the LCD display, UART, and Announce // service if(dwLastIP != AppConfig.MyIPAddr.Val) { dwLastIP = AppConfig.MyIPAddr.Val; #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\nNew IP Address: "); #endif DisplayIPValue(AppConfig.MyIPAddr); #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\n"); #endif #if defined(STACK_USE_ANNOUNCE) AnnounceIP(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSFillHostRecord(); #endif } } }
int main(void) #endif { static DWORD t = 0; static DWORD dwLastIP = 0; #if defined(WF_USE_POWER_SAVE_FUNCTIONS) BOOL PsPollEnabled; BOOL psConfDone = FALSE; #endif // Initialize application specific hardware InitializeBoard(); #if defined(USE_LCD) // Initialize and display the stack version on the LCD LCDInit(); DelayMs(100); strcpypgm2ram((char*)LCDText, "TCPStack " TCPIP_STACK_VERSION " " " "); LCDUpdate(); #endif // Initialize stack-related hardware components that may be // required by the UART configuration routines TickInit(); #if defined(STACK_USE_MPFS2) MPFSInit(); #endif // Initialize Stack and application related NV variables into AppConfig. InitAppConfig(); // Initiates board setup process if button is depressed // on startup if(BUTTON0_IO == 0u) { #if defined(EEPROM_CS_TRIS) || defined(SPIFLASH_CS_TRIS) // Invalidate the EEPROM contents if BUTTON0 is held down for more than 4 seconds DWORD StartTime = TickGet(); LED_PUT(0x00); while(BUTTON0_IO == 0u) { if(TickGet() - StartTime > 4*TICK_SECOND) { #if defined(EEPROM_CS_TRIS) XEEBeginWrite(0x0000); XEEWrite(0xFF); XEEWrite(0xFF); XEEEndWrite(); #elif defined(SPIFLASH_CS_TRIS) SPIFlashBeginWrite(0x0000); SPIFlashWrite(0xFF); SPIFlashWrite(0xFF); #endif #if defined(STACK_USE_UART) putrsUART("\r\n\r\nBUTTON0 held for more than 4 seconds. Default settings restored.\r\n\r\n"); #endif LED_PUT(0x0F); while((LONG)(TickGet() - StartTime) <= (LONG)(9*TICK_SECOND/2)); LED_PUT(0x00); while(BUTTON0_IO == 0u); Reset(); break; } } #endif #if defined(STACK_USE_UART) DoUARTConfig(); #endif } // Initialize core stack layers (MAC, ARP, TCP, UDP) and // application modules (HTTP, SNMP, etc.) StackInit(); #if defined(WF_CS_TRIS) WF_Connect(); #endif // Initialize any application-specific modules or functions/ // For this demo application, this only includes the // UART 2 TCP Bridge #if defined(STACK_USE_UART2TCP_BRIDGE) UART2TCPBridgeInit(); #endif #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLInitialize(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSInitialize(MY_DEFAULT_HOST_NAME); mDNSServiceRegister( (const char *) "DemoWebServer", // base name of the service "_http._tcp.local", // type of the service 80, // TCP or UDP port, at which this service is available ((const BYTE *)"path=/index.htm"), // TXT info 1, // auto rename the service when if needed NULL, // no callback function NULL // no application context ); mDNSMulticastFilterRegister(); #endif // Now that all items are initialized, begin the co-operative // multitasking loop. This infinite loop will continuously // execute all stack-related tasks, as well as your own // application's functions. Custom functions should be added // at the end of this loop. // Note that this is a "co-operative mult-tasking" mechanism // where every task performs its tasks (whether all in one shot // or part of it) and returns so that other tasks can do their // job. // If a task needs very long time to do its job, it must be broken // down into smaller pieces so that other tasks can have CPU time. while(1) { //while (1) /*{ if(BUTTON0_IO == 0u && LED0_IO == 0) { LED0_IO =1; } if(BUTTON0_IO == 0u && LED0_IO ==1) { LED0_IO =0; } }*/ #if defined(WF_USE_POWER_SAVE_FUNCTIONS) if (!psConfDone && WFisConnected()) { PsPollEnabled = (MY_DEFAULT_PS_POLL == WF_ENABLED); if (!PsPollEnabled) { /* disable low power (PS-Poll) mode */ #if defined(STACK_USE_UART) putrsUART("Disable PS-Poll\r\n"); #endif WF_PsPollDisable(); } else { /* Enable low power (PS-Poll) mode */ #if defined(STACK_USE_UART) putrsUART("Enable PS-Poll\r\n"); #endif WF_PsPollEnable(TRUE); } psConfDone = TRUE; } #endif // Blink LED0 (right most one) every second. // if(TickGet() - t >= TICK_SECOND/2ul) // { // t = TickGet(); // LED0_IO ^= 1; // } // This task performs normal stack task including checking // for incoming packet, type of packet and calling // appropriate stack entity to process it. StackTask(); // This tasks invokes each of the core stack application tasks StackApplications(); #if defined(STACK_USE_ZEROCONF_LINK_LOCAL) ZeroconfLLProcess(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSProcess(); // Use this function to exercise service update function // HTTPUpdateRecord(); #endif // Process application specific tasks here. // For this demo app, this will include the Generic TCP // client and servers, and the SNMP, Ping, and SNMP Trap // demos. Following that, we will process any IO from // the inputs on the board itself. // Any custom modules or processing you need to do should // go here. #if defined(STACK_USE_GENERIC_TCP_CLIENT_EXAMPLE) GenericTCPClient(); #endif #if defined(STACK_USE_GENERIC_TCP_SERVER_EXAMPLE) GenericTCPServer(); #endif #if defined(STACK_USE_SMTP_CLIENT) SMTPDemo(); #endif #if defined(STACK_USE_ICMP_CLIENT) PingDemo(); #endif #if defined(STACK_USE_SNMP_SERVER) && !defined(SNMP_TRAP_DISABLED) //User should use one of the following SNMP demo // This routine demonstrates V1 or V2 trap formats with one variable binding. SNMPTrapDemo(); #if defined(SNMP_STACK_USE_V2_TRAP) || defined(SNMP_V1_V2_TRAP_WITH_SNMPV3) //This routine provides V2 format notifications with multiple (3) variable bindings //User should modify this routine to send v2 trap format notifications with the required varbinds. //SNMPV2TrapDemo(); #endif if(gSendTrapFlag) SNMPSendTrap(); #endif #if defined(STACK_USE_BERKELEY_API) BerkeleyTCPClientDemo(); BerkeleyTCPServerDemo(); BerkeleyUDPClientDemo(); #endif ProcessIO(); // If the local IP address has changed (ex: due to DHCP lease change) // write the new IP address to the LCD display, UART, and Announce // service if(dwLastIP != AppConfig.MyIPAddr.Val) { dwLastIP = AppConfig.MyIPAddr.Val; #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\nNew IP Address: "); #endif DisplayIPValue(AppConfig.MyIPAddr); #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\n"); #endif #if defined(STACK_USE_ANNOUNCE) AnnounceIP(); #endif #if defined(STACK_USE_ZEROCONF_MDNS_SD) mDNSFillHostRecord(); #endif } } }
int main(void) #endif { unsigned char counter = 0; static DWORD Ping_Start_Time = 0; static unsigned char Ping_Counter = 0; static DWORD t = 0; static DWORD dwLastIP = 0; LED0_TRIS = 0; LED0_IO = 1; Delay10KTCYx(0); // Initialize application specific hardware InitializeBoard(); #ifdef APP_USE_USB InitializeUSB(); #if defined(USB_INTERRUPT) USBDeviceAttach(); #endif #endif #if defined(USE_LCD) // Initialize and display the stack version on the LCD LCDInit(); DelayMs(100); strcpypgm2ram((char*)LCDText, "TCPStack " VERSION " " " "); LCDUpdate(); #endif // Initialize stack-related hardware components that may be // required by the UART configuration routines TickInit(); #if defined(STACK_USE_MPFS) || defined(STACK_USE_MPFS2) MPFSInit(); #endif // Initialize Stack and application related NV variables into AppConfig. InitAppConfig(); // Initiates board setup process if button is depressed // on startup if(BUTTON0_IO == 0u) { #if defined(EEPROM_CS_TRIS) || defined(SPIFLASH_CS_TRIS) // Invalidate the EEPROM contents if BUTTON0 is held down for more than 4 seconds DWORD StartTime = TickGet(); LED_PUT(0x00); #ifdef TRANSCEIVER_BOARD #elif defined( SINGLEPHASEMETER_MCU1 ) while(BUTTON0_IO == 0u) { if(TickGet() - StartTime > 4*TICK_SECOND) { #if defined(EEPROM_CS_TRIS) XEEBeginWrite(0x0000); XEEWrite(0xFF); XEEEndWrite(); #elif defined(SPIFLASH_CS_TRIS) SPIFlashBeginWrite(0x0000); SPIFlashWrite(0xFF); #endif #if defined(STACK_USE_UART) putrsUART("\r\n\r\nBUTTON0 held for more than 4 seconds. Default settings restored.\r\n\r\n"); #endif LED_PUT(0x0F); while((LONG)(TickGet() - StartTime) <= (LONG)(9*TICK_SECOND/2)); LED_PUT(0x00); while(BUTTON0_IO == 0u); Reset(); break; } } #else #error "No board defined." #endif #endif #if defined(STACK_USE_UART) DoUARTConfig(); #endif } // Initialize core stack layers (MAC, ARP, TCP, UDP) and // application modules (HTTP, SNMP, etc.) StackInit(); // Initialize any application-specific modules or functions/ // For this demo application, this only includes the // UART 2 TCP Bridge #if defined(STACK_USE_UART2TCP_BRIDGE) UART2TCPBridgeInit(); #endif #ifdef SINGLEPHASEMETER_MCU1 MCUOpen(); #endif #ifdef APP_USE_ZIGBEE ZigbeeOpen(); #else //#error no zigbee. #endif #ifdef APP_USE_RGB OpenRGB(); #endif // ROUTER CODES #ifdef APP_USE_ROUTER_CODES { } #endif // END // Now that all items are initialized, begin the co-operative // multitasking loop. This infinite loop will continuously // execute all stack-related tasks, as well as your own // application's functions. Custom functions should be added // at the end of this loop. // Note that this is a "co-operative mult-tasking" mechanism // where every task performs its tasks (whether all in one shot // or part of it) and returns so that other tasks can do their // job. // If a task needs very long time to do its job, it must be broken // down into smaller pieces so that other tasks can have CPU time. while(1) { #ifdef SINGLEPHASEMETER_MCU1 MCUTasks(); #endif #ifdef APP_USE_RGB RGBTasks(); #endif /**********************************************/ /**** Handle USB ******************************/ /**********************************************/ #if defined(USB_POLLING) // Check bus status and service USB interrupts. USBDeviceTasks(); // Interrupt or polling method. If using polling, must call // this function periodically. This function will take care // of processing and responding to SETUP transactions // (such as during the enumeration process when you first // plug in). USB hosts require that USB devices should accept // and process SETUP packets in a timely fashion. Therefore, // when using polling, this function should be called // frequently (such as once about every 100 microseconds) at any // time that a SETUP packet might reasonably be expected to // be sent by the host to your device. In most cases, the // USBDeviceTasks() function does not take very long to // execute (~50 instruction cycles) before it returns. #endif // Application-specific tasks. // Application related code may be added here, or in the ProcessIO() function. ProcessUSBIO(); /**********************************************/ /**** Handle Zigbee ******************************/ /**********************************************/ #ifdef APP_USE_ZIGBEE ZigbeeTasks(); { if( counter++ > 200 ) { char s[16] = {0x10, 0x01, 0, 0, 0, 0, 0, 0, 0xff, 0xfe, 0xff, 0xfe, 0, 0, 'A', '4'}; // , 0x64}; ZigbeeAPISendString(16, s); counter = 0; } } #endif // Main program loop. // Set up ping and node statuses. A ping is sent every 4 mins and a check is done every minute. // Nodes that have not pinged within 5 min frame will be delisted as in the network. if( Ping_Start_Time != 0 && (TickGet() - Ping_Start_Time) > (TICK_MINUTE) ) { // Check nodes that have not sent their ping within the past 5 minutes. {} // Send out a ping if 4 minutes have lapsed. if( Ping_Counter++ >= 4 ) {} } Ping_Start_Time = TickGet(); // Blink LED0 (right most one) every second. if(TickGet() - t >= TICK_SECOND/2ul) { t = TickGet(); LED0_IO ^= 1; } // This task performs normal stack task including checking // for incoming packet, type of packet and calling // appropriate stack entity to process it. StackTask(); // This tasks invokes each of the core stack application tasks StackApplications(); // Process application specific tasks here. // For this demo app, this will include the Generic TCP // client and servers, and the SNMP, Ping, and SNMP Trap // demos. Following that, we will process any IO from // the inputs on the board itself. // Any custom modules or processing you need to do should // go here. #if defined(STACK_USE_GENERIC_TCP_CLIENT_EXAMPLE) GenericTCPClient(); #endif #if defined(STACK_USE_GENERIC_TCP_SERVER_EXAMPLE) GenericTCPServer(); #endif #if defined(STACK_USE_SMTP_CLIENT) SMTPDemo(); #endif #if defined(STACK_USE_ICMP_CLIENT) PingDemo(); #endif #if defined(STACK_USE_SNMP_SERVER) && !defined(SNMP_TRAP_DISABLED) SNMPTrapDemo(); if(gSendTrapFlag) SNMPSendTrap(); #endif #if defined(STACK_USE_BERKELEY_API) BerkeleyTCPClientDemo(); BerkeleyTCPServerDemo(); BerkeleyUDPClientDemo(); #endif #ifdef APP_USE_RGB RGBTasks(); #endif //ProcessIO(); // If the local IP address has changed (ex: due to DHCP lease change) // write the new IP address to the LCD display, UART, and Announce // service if(dwLastIP != AppConfig.MyIPAddr.Val) { dwLastIP = AppConfig.MyIPAddr.Val; #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\nNew IP Address: "); #endif DisplayIPValue(AppConfig.MyIPAddr); #if defined(STACK_USE_UART) putrsUART((ROM char*)"\r\n"); #endif #if defined(STACK_USE_ANNOUNCE) AnnounceIP(); #endif } } }