/* * Allocate a new allocation btree cursor. */ struct xfs_btree_cur * /* new alloc btree cursor */ xfs_allocbt_init_cursor( struct xfs_mount *mp, /* file system mount point */ struct xfs_trans *tp, /* transaction pointer */ struct xfs_buf *agbp, /* buffer for agf structure */ xfs_agnumber_t agno, /* allocation group number */ xfs_btnum_t btnum) /* btree identifier */ { struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); struct xfs_btree_cur *cur; ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT); cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_SLEEP); cur->bc_tp = tp; cur->bc_mp = mp; cur->bc_btnum = btnum; cur->bc_blocklog = mp->m_sb.sb_blocklog; cur->bc_ops = &xfs_allocbt_ops; if (btnum == XFS_BTNUM_CNT) { cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]); cur->bc_flags = XFS_BTREE_LASTREC_UPDATE; } else { cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]); } cur->bc_private.a.agbp = agbp; cur->bc_private.a.agno = agno; return cur; }
/* Find the roots of the per-AG btrees described in btree_info. */ int xrep_find_ag_btree_roots( struct xfs_scrub *sc, struct xfs_buf *agf_bp, struct xrep_find_ag_btree *btree_info, struct xfs_buf *agfl_bp) { struct xfs_mount *mp = sc->mp; struct xrep_findroot ri; struct xrep_find_ag_btree *fab; struct xfs_btree_cur *cur; int error; ASSERT(xfs_buf_islocked(agf_bp)); ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); ri.sc = sc; ri.btree_info = btree_info; ri.agf = XFS_BUF_TO_AGF(agf_bp); ri.agfl_bp = agfl_bp; for (fab = btree_info; fab->buf_ops; fab++) { ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); fab->root = NULLAGBLOCK; fab->height = 0; } cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno); error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); xfs_btree_del_cursor(cur, error); return error; }
STATIC void xfs_allocbt_init_ptr_from_cur( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr) { struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp); ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno)); ASSERT(agf->agf_roots[cur->bc_btnum] != 0); ptr->s = agf->agf_roots[cur->bc_btnum]; }
STATIC void xfs_allocbt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); int btnum = cur->bc_btnum; ASSERT(ptr->s != 0); agf->agf_roots[btnum] = ptr->s; be32_add_cpu(&agf->agf_levels[btnum], inc); cur->bc_mp->m_perag[seqno].pagf_levels[btnum] += inc; xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS); }
STATIC void xfs_refcountbt_set_root( struct xfs_btree_cur *cur, union xfs_btree_ptr *ptr, int inc) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno); struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno); ASSERT(ptr->s != 0); agf->agf_refcount_root = ptr->s; be32_add_cpu(&agf->agf_refcount_level, inc); pag->pagf_refcount_level += inc; xfs_perag_put(pag); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); }
static void xfs_agfblock_init( struct xfs_mount *mp, struct xfs_buf *bp, struct aghdr_init_data *id) { struct xfs_agf *agf = XFS_BUF_TO_AGF(bp); xfs_extlen_t tmpsize; agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(id->agno); agf->agf_length = cpu_to_be32(id->agsize); agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp)); agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp)); agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1); agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1); if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { agf->agf_roots[XFS_BTNUM_RMAPi] = cpu_to_be32(XFS_RMAP_BLOCK(mp)); agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1); agf->agf_rmap_blocks = cpu_to_be32(1); } agf->agf_flfirst = cpu_to_be32(1); agf->agf_fllast = 0; agf->agf_flcount = 0; tmpsize = id->agsize - mp->m_ag_prealloc_blocks; agf->agf_freeblks = cpu_to_be32(tmpsize); agf->agf_longest = cpu_to_be32(tmpsize); if (xfs_sb_version_hascrc(&mp->m_sb)) uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); if (xfs_sb_version_hasreflink(&mp->m_sb)) { agf->agf_refcount_root = cpu_to_be32( xfs_refc_block(mp)); agf->agf_refcount_level = cpu_to_be32(1); agf->agf_refcount_blocks = cpu_to_be32(1); } }
pag->pagf_refcount_level += inc; xfs_perag_put(pag); xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_REFCOUNT_ROOT | XFS_AGF_REFCOUNT_LEVEL); } STATIC int xfs_refcountbt_alloc_block( struct xfs_btree_cur *cur, union xfs_btree_ptr *start, union xfs_btree_ptr *new, int *stat) { struct xfs_buf *agbp = cur->bc_private.a.agbp; struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp); struct xfs_alloc_arg args; /* block allocation args */ int error; /* error return value */ XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY); memset(&args, 0, sizeof(args)); args.tp = cur->bc_tp; args.mp = cur->bc_mp; args.type = XFS_ALLOCTYPE_NEAR_BNO; args.fsbno = XFS_AGB_TO_FSB(cur->bc_mp, cur->bc_private.a.agno, xfs_refc_block(args.mp)); args.firstblock = args.fsbno; xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_REFC); args.minlen = args.maxlen = args.prod = 1; args.resv = XFS_AG_RESV_METADATA;
xfs_agf_t * xfs_buf_to_agf(xfs_buf_t *bp) { return XFS_BUF_TO_AGF(bp); }
STATIC int xfs_trim_extents( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_fsblock_t start, xfs_fsblock_t len, xfs_fsblock_t minlen, __uint64_t *blocks_trimmed) { struct block_device *bdev = mp->m_ddev_targp->bt_bdev; struct xfs_btree_cur *cur; struct xfs_buf *agbp; struct xfs_perag *pag; int error; int i; pag = xfs_perag_get(mp, agno); error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp); if (error || !agbp) goto out_put_perag; cur = xfs_allocbt_init_cursor(mp, NULL, agbp, agno, XFS_BTNUM_CNT); /* * Force out the log. This means any transactions that might have freed * space before we took the AGF buffer lock are now on disk, and the * volatile disk cache is flushed. */ xfs_log_force(mp, XFS_LOG_SYNC); /* * Look up the longest btree in the AGF and start with it. */ error = xfs_alloc_lookup_le(cur, 0, XFS_BUF_TO_AGF(agbp)->agf_longest, &i); if (error) goto out_del_cursor; /* * Loop until we are done with all extents that are large * enough to be worth discarding. */ while (i) { xfs_agblock_t fbno; xfs_extlen_t flen; error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); if (error) goto out_del_cursor; XFS_WANT_CORRUPTED_GOTO(i == 1, out_del_cursor); ASSERT(flen <= XFS_BUF_TO_AGF(agbp)->agf_longest); /* * Too small? Give up. */ if (flen < minlen) { trace_xfs_discard_toosmall(mp, agno, fbno, flen); goto out_del_cursor; } /* * If the extent is entirely outside of the range we are * supposed to discard skip it. Do not bother to trim * down partially overlapping ranges for now. */ if (XFS_AGB_TO_FSB(mp, agno, fbno) + flen < start || XFS_AGB_TO_FSB(mp, agno, fbno) >= start + len) { trace_xfs_discard_exclude(mp, agno, fbno, flen); goto next_extent; } /* * If any blocks in the range are still busy, skip the * discard and try again the next time. */ if (xfs_alloc_busy_search(mp, agno, fbno, flen)) { trace_xfs_discard_busy(mp, agno, fbno, flen); goto next_extent; } trace_xfs_discard_extent(mp, agno, fbno, flen); error = -blkdev_issue_discard(bdev, XFS_AGB_TO_DADDR(mp, agno, fbno), XFS_FSB_TO_BB(mp, flen), GFP_NOFS, 0); if (error) goto out_del_cursor; *blocks_trimmed += flen; next_extent: error = xfs_btree_decrement(cur, 0, &i); if (error) goto out_del_cursor; } out_del_cursor: xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); xfs_buf_relse(agbp); out_put_perag: xfs_perag_put(pag); return error; }
/* * Figure out how many blocks to reserve for an AG repair. We calculate the * worst case estimate for the number of blocks we'd need to rebuild one of * any type of per-AG btree. */ xfs_extlen_t xrep_calc_ag_resblks( struct xfs_scrub *sc) { struct xfs_mount *mp = sc->mp; struct xfs_scrub_metadata *sm = sc->sm; struct xfs_perag *pag; struct xfs_buf *bp; xfs_agino_t icount = NULLAGINO; xfs_extlen_t aglen = NULLAGBLOCK; xfs_extlen_t usedlen; xfs_extlen_t freelen; xfs_extlen_t bnobt_sz; xfs_extlen_t inobt_sz; xfs_extlen_t rmapbt_sz; xfs_extlen_t refcbt_sz; int error; if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) return 0; pag = xfs_perag_get(mp, sm->sm_agno); if (pag->pagi_init) { /* Use in-core icount if possible. */ icount = pag->pagi_count; } else { /* Try to get the actual counters from disk. */ error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp); if (!error) { icount = pag->pagi_count; xfs_buf_relse(bp); } } /* Now grab the block counters from the AGF. */ error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp); if (!error) { aglen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_length); freelen = be32_to_cpu(XFS_BUF_TO_AGF(bp)->agf_freeblks); usedlen = aglen - freelen; xfs_buf_relse(bp); } xfs_perag_put(pag); /* If the icount is impossible, make some worst-case assumptions. */ if (icount == NULLAGINO || !xfs_verify_agino(mp, sm->sm_agno, icount)) { xfs_agino_t first, last; xfs_agino_range(mp, sm->sm_agno, &first, &last); icount = last - first + 1; } /* If the block counts are impossible, make worst-case assumptions. */ if (aglen == NULLAGBLOCK || aglen != xfs_ag_block_count(mp, sm->sm_agno) || freelen >= aglen) { aglen = xfs_ag_block_count(mp, sm->sm_agno); freelen = aglen; usedlen = aglen; } trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, freelen, usedlen); /* * Figure out how many blocks we'd need worst case to rebuild * each type of btree. Note that we can only rebuild the * bnobt/cntbt or inobt/finobt as pairs. */ bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); if (xfs_sb_version_hassparseinodes(&mp->m_sb)) inobt_sz = xfs_iallocbt_calc_size(mp, icount / XFS_INODES_PER_HOLEMASK_BIT); else inobt_sz = xfs_iallocbt_calc_size(mp, icount / XFS_INODES_PER_CHUNK); if (xfs_sb_version_hasfinobt(&mp->m_sb)) inobt_sz *= 2; if (xfs_sb_version_hasreflink(&mp->m_sb)) refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); else refcbt_sz = 0; if (xfs_sb_version_hasrmapbt(&mp->m_sb)) { /* * Guess how many blocks we need to rebuild the rmapbt. * For non-reflink filesystems we can't have more records than * used blocks. However, with reflink it's possible to have * more than one rmap record per AG block. We don't know how * many rmaps there could be in the AG, so we start off with * what we hope is an generous over-estimation. */ if (xfs_sb_version_hasreflink(&mp->m_sb)) rmapbt_sz = xfs_rmapbt_calc_size(mp, (unsigned long long)aglen * 2); else rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); } else { rmapbt_sz = 0; } trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, inobt_sz, rmapbt_sz, refcbt_sz); return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); }
/* * build both the agf and the agfl for an agno given both * btree cursors. * * XXX: yet more common code that can be shared with mkfs/growfs. */ static void build_agf_agfl(xfs_mount_t *mp, xfs_agnumber_t agno, bt_status_t *bno_bt, bt_status_t *bcnt_bt, xfs_extlen_t freeblks, /* # free blocks in tree */ int lostblocks) /* # blocks that will be lost */ { extent_tree_node_t *ext_ptr; xfs_buf_t *agf_buf, *agfl_buf; int i; int j; xfs_agfl_t *agfl; xfs_agf_t *agf; __be32 *freelist; agf_buf = libxfs_getbuf(mp->m_dev, XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)), mp->m_sb.sb_sectsize/BBSIZE); agf_buf->b_ops = &xfs_agf_buf_ops; agf = XFS_BUF_TO_AGF(agf_buf); memset(agf, 0, mp->m_sb.sb_sectsize); #ifdef XR_BLD_FREE_TRACE fprintf(stderr, "agf = 0x%p, agf_buf->b_addr = 0x%p\n", agf, agf_buf->b_addr); #endif /* * set up fixed part of agf */ agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); agf->agf_seqno = cpu_to_be32(agno); if (agno < mp->m_sb.sb_agcount - 1) agf->agf_length = cpu_to_be32(mp->m_sb.sb_agblocks); else agf->agf_length = cpu_to_be32(mp->m_sb.sb_dblocks - (xfs_rfsblock_t) mp->m_sb.sb_agblocks * agno); agf->agf_roots[XFS_BTNUM_BNO] = cpu_to_be32(bno_bt->root); agf->agf_levels[XFS_BTNUM_BNO] = cpu_to_be32(bno_bt->num_levels); agf->agf_roots[XFS_BTNUM_CNT] = cpu_to_be32(bcnt_bt->root); agf->agf_levels[XFS_BTNUM_CNT] = cpu_to_be32(bcnt_bt->num_levels); agf->agf_freeblks = cpu_to_be32(freeblks); /* * Count and record the number of btree blocks consumed if required. */ if (xfs_sb_version_haslazysbcount(&mp->m_sb)) { /* * Don't count the root blocks as they are already * accounted for. */ agf->agf_btreeblks = cpu_to_be32( (bno_bt->num_tot_blocks - bno_bt->num_free_blocks) + (bcnt_bt->num_tot_blocks - bcnt_bt->num_free_blocks) - 2); #ifdef XR_BLD_FREE_TRACE fprintf(stderr, "agf->agf_btreeblks = %u\n", be32_to_cpu(agf->agf_btreeblks)); #endif } #ifdef XR_BLD_FREE_TRACE fprintf(stderr, "bno root = %u, bcnt root = %u, indices = %u %u\n", be32_to_cpu(agf->agf_roots[XFS_BTNUM_BNO]), be32_to_cpu(agf->agf_roots[XFS_BTNUM_CNT]), XFS_BTNUM_BNO, XFS_BTNUM_CNT); #endif if (xfs_sb_version_hascrc(&mp->m_sb)) platform_uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); /* initialise the AGFL, then fill it if there are blocks left over. */ agfl_buf = libxfs_getbuf(mp->m_dev, XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)), mp->m_sb.sb_sectsize/BBSIZE); agfl_buf->b_ops = &xfs_agfl_buf_ops; agfl = XFS_BUF_TO_AGFL(agfl_buf); /* setting to 0xff results in initialisation to NULLAGBLOCK */ memset(agfl, 0xff, mp->m_sb.sb_sectsize); if (xfs_sb_version_hascrc(&mp->m_sb)) { agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); agfl->agfl_seqno = cpu_to_be32(agno); platform_uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); for (i = 0; i < XFS_AGFL_SIZE(mp); i++) agfl->agfl_bno[i] = cpu_to_be32(NULLAGBLOCK); } freelist = XFS_BUF_TO_AGFL_BNO(mp, agfl_buf); /* * do we have left-over blocks in the btree cursors that should * be used to fill the AGFL? */ if (bno_bt->num_free_blocks > 0 || bcnt_bt->num_free_blocks > 0) { /* * yes, now grab as many blocks as we can */ i = j = 0; while (bno_bt->num_free_blocks > 0 && i < XFS_AGFL_SIZE(mp)) { freelist[i] = cpu_to_be32( get_next_blockaddr(agno, 0, bno_bt)); i++; } while (bcnt_bt->num_free_blocks > 0 && i < XFS_AGFL_SIZE(mp)) { freelist[i] = cpu_to_be32( get_next_blockaddr(agno, 0, bcnt_bt)); i++; } /* * now throw the rest of the blocks away and complain */ while (bno_bt->num_free_blocks > 0) { (void) get_next_blockaddr(agno, 0, bno_bt); j++; } while (bcnt_bt->num_free_blocks > 0) { (void) get_next_blockaddr(agno, 0, bcnt_bt); j++; } if (j > 0) { if (j == lostblocks) do_warn(_("lost %d blocks in ag %u\n"), j, agno); else do_warn(_("thought we were going to lose %d " "blocks in ag %u, actually lost " "%d\n"), lostblocks, j, agno); } agf->agf_flfirst = 0; agf->agf_fllast = cpu_to_be32(i - 1); agf->agf_flcount = cpu_to_be32(i); #ifdef XR_BLD_FREE_TRACE fprintf(stderr, "writing agfl for ag %u\n", agno); #endif } else { agf->agf_flfirst = 0; agf->agf_fllast = cpu_to_be32(XFS_AGFL_SIZE(mp) - 1); agf->agf_flcount = 0; } libxfs_writebuf(agfl_buf, 0); ext_ptr = findbiggest_bcnt_extent(agno); agf->agf_longest = cpu_to_be32((ext_ptr != NULL) ? ext_ptr->ex_blockcount : 0); ASSERT(be32_to_cpu(agf->agf_roots[XFS_BTNUM_BNOi]) != be32_to_cpu(agf->agf_roots[XFS_BTNUM_CNTi])); libxfs_writebuf(agf_buf, 0); /* * now fix up the free list appropriately * XXX: code lifted from mkfs, should be shared. */ { xfs_alloc_arg_t args; xfs_trans_t *tp; struct xfs_trans_res tres = {0}; int error; memset(&args, 0, sizeof(args)); args.tp = tp = libxfs_trans_alloc(mp, 0); args.mp = mp; args.agno = agno; args.alignment = 1; args.pag = xfs_perag_get(mp,agno); libxfs_trans_reserve(tp, &tres, xfs_alloc_min_freelist(mp, args.pag), 0); error = libxfs_alloc_fix_freelist(&args, 0); xfs_perag_put(args.pag); if (error) { do_error(_("failed to fix AGFL on AG %d, error %d\n"), agno, error); } libxfs_trans_commit(tp); } #ifdef XR_BLD_FREE_TRACE fprintf(stderr, "wrote agf for ag %u\n", agno); #endif }
/* reference: xfs_alloc.c:xfs_alloc_read_agf() */ int xfs_sffs_freesp_init(xfs_mount_t *mp, xfs_sffs_freesp_t *freesp) { // xfs_perag_t *pag; xfs_extlen_t longest = (xfs_extlen_t)0; xfs_buf_t *bp; /* agf buffer pointer */ xfs_agf_t *agf; /* to find the first block of free extent, we have to calculate the * address were the internal log ends. internal log location is * specified by fsbock no. * since currently we only consider one ag. so the bsblock no. is the * agblock no. */ xfs_fsblock_t fs_free_start = (xfs_fsblock_t)0; xfs_agblock_t ag_free_start = (xfs_agblock_t)0; unsigned long i; // struct xfs_buf **bpp = ; int error; error = xfs_read_agf(mp, NULL, 0, 0, &bp); if (error) return error; if (!bp) return 0; agf = XFS_BUF_TO_AGF(bp); if (bp) xfs_trans_brelse(NULL, bp); longest = be32_to_cpu(agf->agf_longest); printk("xfs_sffs: longest free extent %u blocks", longest); printk("xfs_sffs: free block num %u\n", be32_to_cpu(agf->agf_freeblks)); printk("xfs_sffs: logstart %lu, logblocks %u\n", mp->m_sb.sb_logstart, mp->m_sb.sb_logblocks); fs_free_start = mp->m_sb.sb_logstart + mp->m_sb.sb_logblocks; ag_free_start = XFS_FSB_TO_AGBNO(mp, fs_free_start); printk("xfs_sffs: free space starts from %u\n", ag_free_start); freesp->size = longest / XFS_SFFS_SZONE_BLKS; /* here the remainder blocks less than one superblock is discarded */ freesp->table = vmalloc(sizeof(struct xfs_sffs_superband_entry) * freesp->size); printk("xfs_sffs: vmalloc for freesp->table successfully\n"); /* * | |x|d|d|x|d| | | ... | * ^ ^ * | | * tail head -> * * tail first non-clean block * head first clean block * |d| allocated block * |x| invalid block (stale data block) * | | clean block * freecnt #clean block + #invalid block * * Note that both the log head and tail pointer stores AGBNO, * grows towards the right, and can wrap around from the start. * Also, we avoid the case to happen where the head pointer wraps * around and grows up to the same position of the tail pointer. * In this case we cannot tell whether the superband is full or * empty. So we set the upper limit of head pointer to be tail - 1 * (in a wrapping sense). By sacrificing one block, we can prevent * the ambigous case from happening. */ printk("%7s%11s%11s%11s%11s\n", "idx", "szonestart", "loghead", "logtail", "freecnt"); for (i = 0; i < freesp->size; i++) { freesp->table[i].szonestart = ag_free_start + XFS_SFFS_SZONE_BLKS * i; freesp->table[i].loghead = freesp->table[i].szonestart; freesp->table[i].logtail = freesp->table[i].szonestart; /* leave at least one guard block to prevent head pointer to hit tail poitner.*/ freesp->table[i].freecnt = XFS_SFFS_SZONE_BLKS - 1; /* printk("%7d%19u%19u%19u\n%7s%19x%19x%19x\n%7s%19lx%19lx%19lx\n", i, freesp->table[i].loghead, freesp->table[i].logtail, freesp->table[i].freecnt, "", freesp->table[i].loghead, freesp->table[i].logtail, freesp->table[i].freecnt, "", &freesp->table[i].loghead, &freesp->table[i].logtail, &freesp->table[i].freecnt); */ printk("%7lu%11u%11u%11u%11u\n", i, freesp->table[i].szonestart, freesp->table[i].loghead, freesp->table[i].logtail, freesp->table[i].freecnt); } printk("xfs_sffs: init xfs_sffs_freesp....\n"); printk("xfs_sffs: XFS_SFFS_ZONE_BLKS:%d\n", XFS_SFFS_ZONE_BLKS); printk("xfs_sffs: XFS_SFFS_SZONE_BLKS:%d\n", XFS_SFFS_SZONE_BLKS); printk("xfs_sffs: XFS_SFFS_SZONE_INIT_BLK_QUOTA:%d\n", XFS_SFFS_SZONE_INIT_BLK_QUOTA); printk("xfs_sffs: %lu table entries created\n", freesp->size); return 0; }