コード例 #1
0
ファイル: cpu_subr.c プロジェクト: ryo/netbsd-src
void
cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
{
	const struct trapframe *tf = l->l_md.md_utf;
	__greg_t *gr = mcp->__gregs;
	__greg_t ras_pc;

	/* Save register context. Dont copy R0 - it is always 0 */
	memcpy(&gr[_REG_AT], &tf->tf_regs[_R_AST], sizeof(mips_reg_t) * 31);

	gr[_REG_MDLO]  = tf->tf_regs[_R_MULLO];
	gr[_REG_MDHI]  = tf->tf_regs[_R_MULHI];
	gr[_REG_CAUSE] = tf->tf_regs[_R_CAUSE];
	gr[_REG_EPC]   = tf->tf_regs[_R_PC];
	gr[_REG_SR]    = tf->tf_regs[_R_SR];
	mcp->_mc_tlsbase = (intptr_t)l->l_private;

	if ((ras_pc = (intptr_t)ras_lookup(l->l_proc,
	    (void *) (intptr_t)gr[_REG_EPC])) != -1)
		gr[_REG_EPC] = ras_pc;

	*flags |= _UC_CPU | _UC_TLSBASE;

	/* Save floating point register context, if any. */
	KASSERT(l == curlwp);
	if (fpu_used_p()) {
		size_t fplen;
		/*
		 * If this process is the current FP owner, dump its
		 * context to the PCB first.
		 */
		fpu_save();

		/*
		 * The PCB FP regs struct includes the FP CSR, so use the
		 * size of __fpregs.__fp_r when copying.
		 */
#if !defined(__mips_o32)
		if (_MIPS_SIM_NEWABI_P(l->l_proc->p_md.md_abi)) {
#endif
			fplen = sizeof(struct fpreg);
#if !defined(__mips_o32)
		} else {
			fplen = sizeof(struct fpreg_oabi);
		}
#endif
		struct pcb * const pcb = lwp_getpcb(l);
		memcpy(&mcp->__fpregs, &pcb->pcb_fpregs, fplen);
		*flags |= _UC_FPU;
	}
}
コード例 #2
0
ファイル: cpu_subr.c プロジェクト: ryo/netbsd-src
int
cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
{
	struct trapframe *tf = l->l_md.md_utf;
	struct proc *p = l->l_proc;
	const __greg_t *gr = mcp->__gregs;
	int error;

	/* Restore register context, if any. */
	if (flags & _UC_CPU) {
		error = cpu_mcontext_validate(l, mcp);
		if (error)
			return error;

		/* Save register context. */

#ifdef __mips_n32
		CTASSERT(_R_AST == _REG_AT);
		if (__predict_false(p->p_md.md_abi == _MIPS_BSD_API_O32)) {
			const mcontext_o32_t *mcp32 = (const mcontext_o32_t *)mcp;
			const __greg32_t *gr32 = mcp32->__gregs;
			for (size_t i = _R_AST; i < 32; i++) {
				tf->tf_regs[i] = gr32[i];
			}
		} else
#endif
		memcpy(&tf->tf_regs[_R_AST], &gr[_REG_AT],
		       sizeof(mips_reg_t) * 31);

		tf->tf_regs[_R_MULLO] = gr[_REG_MDLO];
		tf->tf_regs[_R_MULHI] = gr[_REG_MDHI];
		tf->tf_regs[_R_CAUSE] = gr[_REG_CAUSE];
		tf->tf_regs[_R_PC]    = gr[_REG_EPC];
		/* Do not restore SR. */
	}

	/* Restore the private thread context */
	if (flags & _UC_TLSBASE) {
		lwp_setprivate(l, (void *)(intptr_t)mcp->_mc_tlsbase);
	}

	/* Restore floating point register context, if any. */
	if (flags & _UC_FPU) {
		size_t fplen;

		/* Disable the FPU contents. */
		fpu_discard();

#if !defined(__mips_o32)
		if (_MIPS_SIM_NEWABI_P(l->l_proc->p_md.md_abi)) {
#endif
			fplen = sizeof(struct fpreg);
#if !defined(__mips_o32)
		} else {
			fplen = sizeof(struct fpreg_oabi);
		}
#endif
		/*
		 * The PCB FP regs struct includes the FP CSR, so use the
		 * proper size of fpreg when copying.
		 */
		struct pcb * const pcb = lwp_getpcb(l);
		memcpy(&pcb->pcb_fpregs, &mcp->__fpregs, fplen);
	}

	mutex_enter(p->p_lock);
	if (flags & _UC_SETSTACK)
		l->l_sigstk.ss_flags |= SS_ONSTACK;
	if (flags & _UC_CLRSTACK)
		l->l_sigstk.ss_flags &= ~SS_ONSTACK;
	mutex_exit(p->p_lock);

	return (0);
}
コード例 #3
0
void
EMULNAME(syscall)(struct lwp *l, u_int status, u_int cause, vaddr_t pc)
{
	struct proc *p = l->l_proc;
	struct trapframe *tf = l->l_md.md_utf;
	struct reg *reg = &tf->tf_registers;
	mips_reg_t *fargs = &reg->r_regs[_R_A0];
	register_t *args = NULL;
	register_t copyargs[2+SYS_MAXSYSARGS];
	vaddr_t usp;
	size_t nargs;
	const struct sysent *callp;
	int code, error;
#if defined(__mips_o32)
	const int abi = _MIPS_BSD_API_O32;
	KASSERTMSG(p->p_md.md_abi == abi,
	    "pid %d(%p): md_abi(%d) != abi(%d)",
	    p->p_pid, p, p->p_md.md_abi, abi);
	size_t nregs = 4;
#else
	const int abi = p->p_md.md_abi;
	size_t nregs = _MIPS_SIM_NEWABI_P(abi) ? 8 : 4;
	size_t i;
#endif

	LWP_CACHE_CREDS(l, p);

	curcpu()->ci_data.cpu_nsyscall++;

	if (cause & MIPS_CR_BR_DELAY)
		reg->r_regs[_R_PC] = mips_emul_branch(tf, pc, 0, false);
	else
		reg->r_regs[_R_PC] = pc + sizeof(uint32_t);

	callp = p->p_emul->e_sysent;
	const mips_reg_t saved_v0 = reg->r_regs[_R_V0];
	code = saved_v0 - SYSCALL_SHIFT;

	if (code == SYS_syscall
	    || (code == SYS___syscall && abi != _MIPS_BSD_API_O32)) {
		/*
		 * Code is first argument, followed by actual args.
		 */
		code = *fargs++ - SYSCALL_SHIFT;
		nregs--;
	} else if (code == SYS___syscall) {
		/*
		 * Like syscall, but code is a quad, so as to maintain
		 * quad alignment for the rest of the arguments.
		 */
		code = fargs[_QUAD_LOWWORD] - SYSCALL_SHIFT;
		fargs += 2;
		nregs -= 2;
	}

	if (code >= p->p_emul->e_nsysent)
		callp += p->p_emul->e_nosys;
	else
		callp += code;

	nargs = callp->sy_narg;
#if !defined(__mips_o32)
	if (abi != _MIPS_BSD_API_O32) {
#endif
		CTASSERT(sizeof(copyargs[0]) == sizeof(fargs[0]));
		if (nargs <= nregs) {
			/*
			 * Just use the trapframe for the source of arguments
			 */
			args = fargs;
		} else {
			const size_t nsaved = _MIPS_SIM_NEWABI_P(abi) ? 0 : 4;
			KASSERT(nargs <= __arraycount(copyargs));
			args = copyargs;
			/*
			 * Copy the arguments passed via register from the				 * trapframe to our argument array
			 */
			memcpy(copyargs, fargs, nregs * sizeof(register_t));
			/*
			 * Start copying args skipping the register slots
			 * slots on the stack.
			 */
			usp = reg->r_regs[_R_SP] + nsaved*sizeof(register_t);
			error = copyin((register_t *)usp, &copyargs[nregs],
			    (nargs - nregs) * sizeof(copyargs[0]));
			if (error)
				goto bad;
		}
#if !defined(__mips_o32)
	} else do {
		/*
		 * The only difference between O32 and N32 is the calling
		 * sequence.  If you make O32 
		 */
		int32_t copy32args[SYS_MAXSYSARGS];
		int32_t *cargs = copy32args; 
		unsigned int arg64mask = SYCALL_ARG_64_MASK(callp);
		bool doing_arg64;
		size_t narg64 = SYCALL_NARGS64(callp);
		/*
		 * All arguments are 32bits wide and 64bit arguments use
		 * two 32bit registers or stack slots.  We need to remarshall
		 * them into 64bit slots
		 */
		args = copyargs;
		CTASSERT(sizeof(copy32args[0]) != sizeof(fargs[0]));

		/*
		 * If there are no 64bit arguments and all arguments were in
		 * registers, just use the trapframe for the source of arguments
		 */
		if (nargs <= nregs && narg64 == 0) {
			args = fargs;
			break;
		}

		if (nregs <= nargs + narg64) {
			/*
			 * Grab the non-register arguments from the stack
			 * after skipping the slots for the 4 register passed
			 * arguments.
			 */
			usp = reg->r_regs[_R_SP] + 4*sizeof(int32_t);
			error = copyin((int32_t *)usp, copy32args,
			    (nargs + narg64 - nregs) * sizeof(copy32args[0]));
			if (error)
				goto bad;
		}
		/*
		 * Copy all the arguments to copyargs, starting with the ones
		 * in registers.  Using the hints in the 64bit argmask,
		 * we marshall the passed 32bit values into 64bit slots.  If we
		 * encounter a 64 bit argument, we grab two adjacent 32bit
		 * values and synthesize the 64bit argument.
		 */
		for (i = 0, doing_arg64 = false; i < nargs + narg64;) {
			register_t arg;
			if (nregs > 0) {
				arg = (int32_t) *fargs++; 
				nregs--;
			} else {
				arg = *cargs++;
			}
			if (__predict_true((arg64mask & 1) == 0)) {
				/*
				 * Just copy it with sign extension on
				 */
				copyargs[i++] = (int32_t) arg;
				arg64mask >>= 1;
				continue;
			}
			/*
			 * 64bit arg.  grab the low 32 bits, discard the high.
			 */
			arg = (uint32_t)arg;
			if (!doing_arg64) {
				/*
				 * Pick up the 1st word of a 64bit arg.
				 * If lowword == 1 then highword == 0,
				 * so this is the highword and thus
				 * shifted left by 32, otherwise
				 * lowword == 0 and highword == 1 so
				 * it isn't shifted at all.  Remember
				 * we still need another word.
				 */
				doing_arg64 = true;
				copyargs[i] = arg << (_QUAD_LOWWORD*32);
				narg64--;	/* one less 64bit arg */
			} else {
				/*
				 * Pick up the 2nd word of a 64bit arg.
				 * if highword == 1, it's shifted left
				 * by 32, otherwise lowword == 1 and
				 * highword == 0 so it isn't shifted at
				 * all.  And now head to the next argument.
				 */
				doing_arg64 = false;
				copyargs[i++] |= arg << (_QUAD_HIGHWORD*32);
				arg64mask >>= 1;
			}
		}
	} while (/*CONSTCOND*/ 0);	/* avoid a goto */
#endif

#ifdef MIPS_SYSCALL_DEBUG
	if (p->p_emul->e_syscallnames)
		printf("syscall %s:", p->p_emul->e_syscallnames[code]);
	else
		printf("syscall %u:", code);
	if (nargs == 0)
		printf(" <no args>");
	else for (size_t j = 0; j < nargs; j++) {
		if (j == nregs) printf(" *");
		printf(" [%s%zu]=%#"PRIxREGISTER,
		    SYCALL_ARG_64_P(callp, j) ? "+" : "",
		    j, args[j]);
	}
	printf("\n");
#endif

	error = sy_invoke(callp, l, args, &reg->r_regs[_R_V0], code);

	switch (error) {
	case 0:
#if !defined(__mips_o32)
		if (abi == _MIPS_BSD_API_O32 && SYCALL_RET_64_P(callp)) {
			/*
			 * If this is from O32 and it's a 64bit quantity,
			 * split it into 2 32bit values in adjacent registers.
			 */
			mips_reg_t tmp = reg->r_regs[_R_V0];
			reg->r_regs[_R_V0 + _QUAD_LOWWORD] = (int32_t) tmp;
			reg->r_regs[_R_V0 + _QUAD_HIGHWORD] = tmp >> 32; 
		}
#endif
#ifdef MIPS_SYSCALL_DEBUG
		if (p->p_emul->e_syscallnames)
			printf("syscall %s:", p->p_emul->e_syscallnames[code]);
		else
			printf("syscall %u:", code);
		printf(" return v0=%#"PRIxREGISTER" v1=%#"PRIxREGISTER"\n",
		    reg->r_regs[_R_V0], reg->r_regs[_R_V1]);
#endif
		reg->r_regs[_R_A3] = 0;
		break;
	case ERESTART:
		reg->r_regs[_R_V0] = saved_v0; /* restore syscall code */
		reg->r_regs[_R_PC] = pc;
		break;
	case EJUSTRETURN:
		break;	/* nothing to do */
	default:
	bad:
		if (p->p_emul->e_errno)
			error = p->p_emul->e_errno[error];
		reg->r_regs[_R_V0] = error;
		reg->r_regs[_R_A3] = 1;
#ifdef MIPS_SYSCALL_DEBUG
		if (p->p_emul->e_syscallnames)
			printf("syscall %s:", p->p_emul->e_syscallnames[code]);
		else
			printf("syscall %u:", code);
		printf(" return error=%d\n", error);
#endif
		break;
	}