コード例 #1
0
Thread_Control *_Thread_queue_Do_dequeue(
    Thread_queue_Control          *the_thread_queue,
    const Thread_queue_Operations *operations
#if defined(RTEMS_MULTIPROCESSING)
    ,
    Thread_queue_MP_callout        mp_callout
#endif
)
{
    Thread_queue_Context  queue_context;
    Thread_Control       *the_thread;

    _Thread_queue_Context_initialize( &queue_context );
    _Thread_queue_Context_set_MP_callout( &queue_context, mp_callout );
    _Thread_queue_Acquire( the_thread_queue, &queue_context );

    the_thread = _Thread_queue_First_locked( the_thread_queue, operations );

    if ( the_thread != NULL ) {
        _Thread_queue_Extract_critical(
            &the_thread_queue->Queue,
            operations,
            the_thread,
            &queue_context
        );
    } else {
        _Thread_queue_Release( the_thread_queue, &queue_context );
    }

    return the_thread;
}
コード例 #2
0
ファイル: threadqflush.c プロジェクト: Avanznow/rtems
void _Thread_queue_Flush(
  Thread_queue_Control       *the_thread_queue,
#if defined(RTEMS_MULTIPROCESSING)
  Thread_queue_Flush_callout  remote_extract_callout,
#else
  Thread_queue_Flush_callout  remote_extract_callout RTEMS_UNUSED,
#endif
  uint32_t                    status
)
{
  ISR_lock_Context  lock_context;
  Thread_Control   *the_thread;

  _Thread_queue_Acquire( the_thread_queue, &lock_context );

  while ( (the_thread = _Thread_queue_First_locked( the_thread_queue ) ) ) {
#if defined(RTEMS_MULTIPROCESSING)
    if ( _Objects_Is_local_id( the_thread->Object.id ) )
#endif
      the_thread->Wait.return_code = status;

    _Thread_queue_Extract_critical(
      &the_thread_queue->Queue,
      the_thread_queue->operations,
      the_thread,
      &lock_context
    );

#if defined(RTEMS_MULTIPROCESSING)
    if ( !_Objects_Is_local_id( the_thread->Object.id ) )
      ( *remote_extract_callout )( the_thread );
#endif

    _Thread_queue_Acquire( the_thread_queue, &lock_context );
  }

  _Thread_queue_Release( the_thread_queue, &lock_context );
}
コード例 #3
0
ファイル: coremutexsurrender.c プロジェクト: fsmd/RTEMS
CORE_mutex_Status _CORE_mutex_Surrender(
  CORE_mutex_Control                *the_mutex,
#if defined(RTEMS_MULTIPROCESSING)
  Objects_Id                         id,
  CORE_mutex_API_mp_support_callout  api_mutex_mp_support,
#else
  Objects_Id                         id __attribute__((unused)),
  CORE_mutex_API_mp_support_callout  api_mutex_mp_support __attribute__((unused)),
#endif
  ISR_lock_Context                  *lock_context
)
{
  Thread_Control *the_thread;
  Thread_Control *holder;

  holder = the_mutex->holder;

  /*
   *  The following code allows a thread (or ISR) other than the thread
   *  which acquired the mutex to release that mutex.  This is only
   *  allowed when the mutex in quetion is FIFO or simple Priority
   *  discipline.  But Priority Ceiling or Priority Inheritance mutexes
   *  must be released by the thread which acquired them.
   */

  if ( the_mutex->Attributes.only_owner_release ) {
    if ( !_Thread_Is_executing( holder ) ) {
      _ISR_lock_ISR_enable( lock_context );
      return CORE_MUTEX_STATUS_NOT_OWNER_OF_RESOURCE;
    }
  }

  _Thread_queue_Acquire_critical( &the_mutex->Wait_queue, lock_context );

  /* XXX already unlocked -- not right status */

  if ( !the_mutex->nest_count ) {
    _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
    return CORE_MUTEX_STATUS_SUCCESSFUL;
  }

  the_mutex->nest_count--;

  if ( the_mutex->nest_count != 0 ) {
    /*
     *  All error checking is on the locking side, so if the lock was
     *  allowed to acquired multiple times, then we should just deal with
     *  that.  The RTEMS_DEBUG is just a validation.
     */
    #if defined(RTEMS_DEBUG)
      switch ( the_mutex->Attributes.lock_nesting_behavior ) {
        case CORE_MUTEX_NESTING_ACQUIRES:
          _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
          return CORE_MUTEX_STATUS_SUCCESSFUL;
        #if defined(RTEMS_POSIX_API)
          case CORE_MUTEX_NESTING_IS_ERROR:
            /* should never occur */
            _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
            return CORE_MUTEX_STATUS_NESTING_NOT_ALLOWED;
        #endif
        case CORE_MUTEX_NESTING_BLOCKS:
          /* Currently no API exercises this behavior. */
          break;
      }
    #else
      _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
      /* must be CORE_MUTEX_NESTING_ACQUIRES or we wouldn't be here */
      return CORE_MUTEX_STATUS_SUCCESSFUL;
    #endif
  }

  /*
   *  Formally release the mutex before possibly transferring it to a
   *  blocked thread.
   */
  if ( _CORE_mutex_Is_inherit_priority( &the_mutex->Attributes ) ||
       _CORE_mutex_Is_priority_ceiling( &the_mutex->Attributes ) ) {
    CORE_mutex_Status pop_status =
      _CORE_mutex_Pop_priority( the_mutex, holder );

    if ( pop_status != CORE_MUTEX_STATUS_SUCCESSFUL ) {
      _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
      return pop_status;
    }

    holder->resource_count--;
  }
  the_mutex->holder = NULL;

  /*
   *  Now we check if another thread was waiting for this mutex.  If so,
   *  transfer the mutex to that thread.
   */
  if ( ( the_thread = _Thread_queue_First_locked( &the_mutex->Wait_queue ) ) ) {
    /*
     * We must extract the thread now since this will restore its default
     * thread lock.  This is necessary to avoid a deadlock in the
     * _Thread_Change_priority() below due to a recursive thread queue lock
     * acquire.
     */
    _Thread_queue_Extract_locked( &the_mutex->Wait_queue, the_thread );

#if defined(RTEMS_MULTIPROCESSING)
    _Thread_Dispatch_disable();

    if ( _Objects_Is_local_id( the_thread->Object.id ) )
#endif
    {
      the_mutex->holder     = the_thread;
      the_mutex->nest_count = 1;

      switch ( the_mutex->Attributes.discipline ) {
        case CORE_MUTEX_DISCIPLINES_FIFO:
        case CORE_MUTEX_DISCIPLINES_PRIORITY:
          break;
        case CORE_MUTEX_DISCIPLINES_PRIORITY_INHERIT:
          _CORE_mutex_Push_priority( the_mutex, the_thread );
          the_thread->resource_count++;
          break;
        case CORE_MUTEX_DISCIPLINES_PRIORITY_CEILING:
          _CORE_mutex_Push_priority( the_mutex, the_thread );
          the_thread->resource_count++;
          _Thread_Raise_priority(
            the_thread,
            the_mutex->Attributes.priority_ceiling
          );
          break;
      }
    }

    _Thread_queue_Unblock_critical(
      &the_mutex->Wait_queue,
      the_thread,
      lock_context
    );

#if defined(RTEMS_MULTIPROCESSING)
    if ( !_Objects_Is_local_id( the_thread->Object.id ) ) {

      the_mutex->holder     = NULL;
      the_mutex->nest_count = 1;

      ( *api_mutex_mp_support)( the_thread, id );

    }

    _Thread_Dispatch_enable( _Per_CPU_Get() );
#endif
  } else {
    _Thread_queue_Release( &the_mutex->Wait_queue, lock_context );
  }

  /*
   *  Whether or not someone is waiting for the mutex, an
   *  inherited priority must be lowered if this is the last
   *  mutex (i.e. resource) this task has.
   */
  if ( !_Thread_Owns_resources( holder ) ) {
    /*
     * Ensure that the holder resource count is visible to all other processors
     * and that we read the latest priority restore hint.
     */
    _Atomic_Fence( ATOMIC_ORDER_ACQ_REL );

    if ( holder->priority_restore_hint ) {
      Per_CPU_Control *cpu_self;

      cpu_self = _Thread_Dispatch_disable();
      _Thread_Restore_priority( holder );
      _Thread_Dispatch_enable( cpu_self );
    }
  }

  return CORE_MUTEX_STATUS_SUCCESSFUL;
}
コード例 #4
0
ファイル: corerwlockobtainread.c プロジェクト: fsmd/RTEMS
void _CORE_RWLock_Obtain_for_reading(
  CORE_RWLock_Control                 *the_rwlock,
  Thread_Control                      *executing,
  Objects_Id                           id,
  bool                                 wait,
  Watchdog_Interval                    timeout,
  CORE_RWLock_API_mp_support_callout   api_rwlock_mp_support
)
{
  ISR_lock_Context lock_context;

  /*
   *  If unlocked, then OK to read.
   *  If locked for reading and no waiters, then OK to read.
   *  If any thread is waiting, then we wait.
   */

  _Thread_queue_Acquire( &the_rwlock->Wait_queue, &lock_context );
    switch ( the_rwlock->current_state ) {
      case CORE_RWLOCK_UNLOCKED:
	the_rwlock->current_state = CORE_RWLOCK_LOCKED_FOR_READING;
	the_rwlock->number_of_readers += 1;
	_Thread_queue_Release( &the_rwlock->Wait_queue, &lock_context );
	executing->Wait.return_code = CORE_RWLOCK_SUCCESSFUL;
	return;

      case CORE_RWLOCK_LOCKED_FOR_READING: {
        Thread_Control *waiter;
        waiter = _Thread_queue_First_locked( &the_rwlock->Wait_queue );
        if ( !waiter ) {
	  the_rwlock->number_of_readers += 1;
	  _Thread_queue_Release( &the_rwlock->Wait_queue, &lock_context );
	  executing->Wait.return_code = CORE_RWLOCK_SUCCESSFUL;
          return;
        }
        break;
      }
      case CORE_RWLOCK_LOCKED_FOR_WRITING:
        break;
    }

    /*
     *  If the thread is not willing to wait, then return immediately.
     */

    if ( !wait ) {
      _Thread_queue_Release( &the_rwlock->Wait_queue, &lock_context );
      executing->Wait.return_code = CORE_RWLOCK_UNAVAILABLE;
      return;
    }

    /*
     *  We need to wait to enter this critical section
     */

    executing->Wait.id          = id;
    executing->Wait.option      = CORE_RWLOCK_THREAD_WAITING_FOR_READ;
    executing->Wait.return_code = CORE_RWLOCK_SUCCESSFUL;

    _Thread_queue_Enqueue_critical(
       &the_rwlock->Wait_queue,
       executing,
       STATES_WAITING_FOR_RWLOCK,
       timeout,
       CORE_RWLOCK_TIMEOUT,
       &lock_context
    );

    /* return to API level so it can dispatch and we block */
}