コード例 #1
0
float
__ieee754_atanhf (float x)
{
  float xa = fabsf (x);
  float t;
  if (isless (xa, 0.5f))
    {
      if (__glibc_unlikely (xa < 0x1.0p-28f))
	{
	  math_force_eval (huge + x);
	  if (fabsf (x) < FLT_MIN)
	    {
	      float force_underflow = x * x;
	      math_force_eval (force_underflow);
	    }
	  return x;
	}

      t = xa + xa;
      t = 0.5f * __log1pf (t + t * xa / (1.0f - xa));
    }
  else if (__glibc_likely (isless (xa, 1.0f)))
    t = 0.5f * __log1pf ((xa + xa) / (1.0f - xa));
  else
    {
      if (isgreater (xa, 1.0f))
	return (x - x) / (x - x);

      return x / 0.0f;
    }

  return __copysignf (t, x);
}
コード例 #2
0
ファイル: e_atanhf.c プロジェクト: Drakey83/steamlink-sdk
float
__ieee754_atanhf (float x)
{
  float xa = fabsf (x);
  float t;
  if (isless (xa, 0.5f))
    {
      if (__builtin_expect (xa < 0x1.0p-28f, 0))
	{
	  math_force_eval (huge + x);
	  return x;
	}

      t = xa + xa;
      t = 0.5f * __log1pf (t + t * xa / (1.0f - xa));
    }
  else if (__builtin_expect (isless (xa, 1.0f), 1))
    t = 0.5f * __log1pf ((xa + xa) / (1.0f - xa));
  else
    {
      if (isgreater (xa, 1.0f))
	return (x - x) / (x - x);

      return x / 0.0f;
    }

  return __copysignf (t, x);
}
コード例 #3
0
ファイル: s_asinhf.c プロジェクト: riscv/riscv-glibc
float
__asinhf(float x)
{
	float w;
	int32_t hx,ix;
	GET_FLOAT_WORD(hx,x);
	ix = hx&0x7fffffff;
	if(__builtin_expect(ix< 0x38000000, 0)) {	/* |x|<2**-14 */
	    math_check_force_underflow (x);
	    if(huge+x>one) return x;	/* return x inexact except 0 */
	}
	if(__builtin_expect(ix>0x47000000, 0)) {	/* |x| > 2**14 */
	    if(ix>=0x7f800000) return x+x;	/* x is inf or NaN */
	    w = __ieee754_logf(fabsf(x))+ln2;
	} else {
	    float xa = fabsf(x);
	    if (ix>0x40000000) {	/* 2**14 > |x| > 2.0 */
		w = __ieee754_logf(2.0f*xa+one/(__ieee754_sqrtf(xa*xa+one)+xa));
	    } else {		/* 2.0 > |x| > 2**-14 */
		float t = xa*xa;
		w =__log1pf(xa+t/(one+__ieee754_sqrtf(one+t)));
	    }
	}
	return __copysignf(w, x);
}
コード例 #4
0
ファイル: log10f.c プロジェクト: 5kg/osv
float log10f(float x)
{
	float f,hfsq,hi,lo,r,y;
	int32_t i,k,hx;

	GET_FLOAT_WORD(hx, x);

	k = 0;
	if (hx < 0x00800000) {  /* x < 2**-126  */
		if ((hx&0x7fffffff) == 0)
			return -two25/0.0f;  /* log(+-0)=-inf */
		if (hx < 0)
			return (x-x)/0.0f;   /* log(-#) = NaN */
		/* subnormal number, scale up x */
		k -= 25;
		x *= two25;
		GET_FLOAT_WORD(hx, x);
	}
	if (hx >= 0x7f800000)
		return x+x;
	if (hx == 0x3f800000)
		return 0.0f;  /* log(1) = +0 */
	k += (hx>>23) - 127;
	hx &= 0x007fffff;
	i = (hx+(0x4afb0d))&0x800000;
	SET_FLOAT_WORD(x, hx|(i^0x3f800000));  /* normalize x or x/2 */
	k += i>>23;
	y = (float)k;
	f = x - 1.0f;
	hfsq = 0.5f * f * f;
	r = __log1pf(f);

// FIXME
//      /* See log2f.c and log2.c for details. */
//      if (sizeof(float_t) > sizeof(float))
//              return (r - hfsq + f) * ((float_t)ivln10lo + ivln10hi) +
//                  y * ((float_t)log10_2lo + log10_2hi);
	hi = f - hfsq;
	GET_FLOAT_WORD(hx, hi);
	SET_FLOAT_WORD(hi, hx&0xfffff000);
	lo = (f - hi) - hfsq + r;
	return y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi +
	        hi*ivln10hi + y*log10_2hi;
}
コード例 #5
0
ファイル: s_clog10f.c プロジェクト: AubrCool/glibc
__complex__ float
__clog10f (__complex__ float x)
{
  __complex__ float result;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
    {
      /* Real and imaginary part are 0.0.  */
      __imag__ result = signbit (__real__ x) ? M_PI_LOG10Ef : 0.0;
      __imag__ result = __copysignf (__imag__ result, __imag__ x);
      /* Yes, the following line raises an exception.  */
      __real__ result = -1.0 / fabsf (__real__ x);
    }
  else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
    {
      /* Neither real nor imaginary part is NaN.  */
      float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
      int scale = 0;

      if (absx < absy)
	{
	  float t = absx;
	  absx = absy;
	  absy = t;
	}

      if (absx > FLT_MAX / 2.0f)
	{
	  scale = -1;
	  absx = __scalbnf (absx, scale);
	  absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
	}
      else if (absx < FLT_MIN && absy < FLT_MIN)
	{
	  scale = FLT_MANT_DIG;
	  absx = __scalbnf (absx, scale);
	  absy = __scalbnf (absy, scale);
	}

      if (absx == 1.0f && scale == 0)
	{
	  float absy2 = absy * absy;
	  if (absy2 <= FLT_MIN * 2.0f * (float) M_LN10)
	    {
	      float force_underflow = absy2 * absy2;
	      __real__ result = absy2 * ((float) M_LOG10E / 2.0f);
	      math_force_eval (force_underflow);
	    }
	  else
	    __real__ result = __log1pf (absy2) * ((float) M_LOG10E / 2.0f);
	}
      else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
	{
	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
	  if (absy >= FLT_EPSILON)
	    d2m1 += absy * absy;
	  __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
	}
      else if (absx < 1.0f
	       && absx >= 0.75f
	       && absy < FLT_EPSILON / 2.0f
	       && scale == 0)
	{
	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
	  __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
	}
      else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
	{
	  float d2m1 = __x2y2m1f (absx, absy);
	  __real__ result = __log1pf (d2m1) * ((float) M_LOG10E / 2.0f);
	}
      else
	{
	  float d = __ieee754_hypotf (absx, absy);
	  __real__ result = __ieee754_log10f (d) - scale * M_LOG10_2f;
	}

      __imag__ result = M_LOG10E * __ieee754_atan2f (__imag__ x, __real__ x);
    }
  else
    {
      __imag__ result = __nanf ("");
      if (rcls == FP_INFINITE || icls == FP_INFINITE)
	/* Real or imaginary part is infinite.  */
	__real__ result = HUGE_VALF;
      else
	__real__ result = __nanf ("");
    }

  return result;
}
コード例 #6
0
ファイル: s_clogf.c プロジェクト: Xilinx/eglibc
__complex__ float
__clogf (__complex__ float x)
{
  __complex__ float result;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__builtin_expect (rcls == FP_ZERO && icls == FP_ZERO, 0))
    {
      /* Real and imaginary part are 0.0.  */
      __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
      __imag__ result = __copysignf (__imag__ result, __imag__ x);
      /* Yes, the following line raises an exception.  */
      __real__ result = -1.0 / fabsf (__real__ x);
    }
  else if (__builtin_expect (rcls != FP_NAN && icls != FP_NAN, 1))
    {
      /* Neither real nor imaginary part is NaN.  */
      float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
      int scale = 0;

      if (absx < absy)
	{
	  float t = absx;
	  absx = absy;
	  absy = t;
	}

      if (absx > FLT_MAX / 2.0f)
	{
	  scale = -1;
	  absx = __scalbnf (absx, scale);
	  absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
	}
      else if (absx < FLT_MIN && absy < FLT_MIN)
	{
	  scale = FLT_MANT_DIG;
	  absx = __scalbnf (absx, scale);
	  absy = __scalbnf (absy, scale);
	}

      if (absx == 1.0f && scale == 0)
	{
	  float absy2 = absy * absy;
	  if (absy2 <= FLT_MIN * 2.0f)
	    {
#if __FLT_EVAL_METHOD__ == 0
	      __real__ result = absy2 / 2.0f - absy2 * absy2 / 4.0f;
#else
	      volatile float force_underflow = absy2 * absy2 / 4.0f;
	      __real__ result = absy2 / 2.0f - force_underflow;
#endif
	    }
	  else
	    __real__ result = __log1pf (absy2) / 2.0f;
	}
      else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
	{
	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
	  if (absy >= FLT_EPSILON)
	    d2m1 += absy * absy;
	  __real__ result = __log1pf (d2m1) / 2.0f;
	}
      else if (absx < 1.0f
	       && absx >= 0.75f
	       && absy < FLT_EPSILON / 2.0f
	       && scale == 0)
	{
	  float d2m1 = (absx - 1.0f) * (absx + 1.0f);
	  __real__ result = __log1pf (d2m1) / 2.0f;
	}
      else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
	{
	  float d2m1 = __x2y2m1f (absx, absy);
	  __real__ result = __log1pf (d2m1) / 2.0f;
	}
      else
	{
	  float d = __ieee754_hypotf (absx, absy);
	  __real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
	}

      __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
    }
  else
    {
      __imag__ result = __nanf ("");
      if (rcls == FP_INFINITE || icls == FP_INFINITE)
	/* Real or imaginary part is infinite.  */
	__real__ result = HUGE_VALF;
      else
	__real__ result = __nanf ("");
    }

  return result;
}
コード例 #7
0
ファイル: s_catanf.c プロジェクト: alucas/glibc
__complex__ float
__catanf (__complex__ float x)
{
  __complex__ float res;
  int rcls = fpclassify (__real__ x);
  int icls = fpclassify (__imag__ x);

  if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
    {
      if (rcls == FP_INFINITE)
	{
	  __real__ res = __copysignf (M_PI_2, __real__ x);
	  __imag__ res = __copysignf (0.0, __imag__ x);
	}
      else if (icls == FP_INFINITE)
	{
	  if (rcls >= FP_ZERO)
	    __real__ res = __copysignf (M_PI_2, __real__ x);
	  else
	    __real__ res = __nanf ("");
	  __imag__ res = __copysignf (0.0, __imag__ x);
	}
      else if (icls == FP_ZERO || icls == FP_INFINITE)
	{
	  __real__ res = __nanf ("");
	  __imag__ res = __copysignf (0.0, __imag__ x);
	}
      else
	{
	  __real__ res = __nanf ("");
	  __imag__ res = __nanf ("");
	}
    }
  else if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
    {
      res = x;
    }
  else
    {
      if (fabsf (__real__ x) >= 16.0f / FLT_EPSILON
	  || fabsf (__imag__ x) >= 16.0f / FLT_EPSILON)
	{
	  __real__ res = __copysignf ((float) M_PI_2, __real__ x);
	  if (fabsf (__real__ x) <= 1.0f)
	    __imag__ res = 1.0f / __imag__ x;
	  else if (fabsf (__imag__ x) <= 1.0f)
	    __imag__ res = __imag__ x / __real__ x / __real__ x;
	  else
	    {
	      float h = __ieee754_hypotf (__real__ x / 2.0f,
					  __imag__ x / 2.0f);
	      __imag__ res = __imag__ x / h / h / 4.0f;
	    }
	}
      else
	{
	  float den, absx, absy;

	  absx = fabsf (__real__ x);
	  absy = fabsf (__imag__ x);
	  if (absx < absy)
	    {
	      float t = absx;
	      absx = absy;
	      absy = t;
	    }

	  if (absy < FLT_EPSILON / 2.0f)
	    {
	      den = (1.0f - absx) * (1.0f + absx);
	      if (den == -0.0f)
		den = 0.0f;
	    }
	  else if (absx >= 1.0f)
	    den = (1.0f - absx) * (1.0f + absx) - absy * absy;
	  else if (absx >= 0.75f || absy >= 0.5f)
	    den = -__x2y2m1f (absx, absy);
	  else
	    den = (1.0f - absx) * (1.0f + absx) - absy * absy;

	  __real__ res = 0.5f * __ieee754_atan2f (2.0f * __real__ x, den);

	  if (fabsf (__imag__ x) == 1.0f
	      && fabsf (__real__ x) < FLT_EPSILON * FLT_EPSILON)
	    __imag__ res = (__copysignf (0.5f, __imag__ x)
			    * ((float) M_LN2
			       - __ieee754_logf (fabsf (__real__ x))));
	  else
	    {
	      float r2 = 0.0f, num, f;

	      if (fabsf (__real__ x) >= FLT_EPSILON * FLT_EPSILON)
		r2 = __real__ x * __real__ x;

	      num = __imag__ x + 1.0f;
	      num = r2 + num * num;

	      den = __imag__ x - 1.0f;
	      den = r2 + den * den;

	      f = num / den;
	      if (f < 0.5f)
		__imag__ res = 0.25f * __ieee754_logf (f);
	      else
		{
		  num = 4.0f * __imag__ x;
		  __imag__ res = 0.25f * __log1pf (num / den);
		}
	    }
	}

      if (fabsf (__real__ res) < FLT_MIN)
	{
	  volatile float force_underflow = __real__ res * __real__ res;
	  (void) force_underflow;
	}
      if (fabsf (__imag__ res) < FLT_MIN)
	{
	  volatile float force_underflow = __imag__ res * __imag__ res;
	  (void) force_underflow;
	}
    }

  return res;
}
コード例 #8
0
ファイル: k_casinhf.c プロジェクト: Xilinx/eglibc
__complex__ float
__kernel_casinhf (__complex__ float x, int adj)
{
  __complex__ float res;
  float rx, ix;
  __complex__ float y;

  /* Avoid cancellation by reducing to the first quadrant.  */
  rx = fabsf (__real__ x);
  ix = fabsf (__imag__ x);

  if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
    {
      /* For large x in the first quadrant, x + csqrt (1 + x * x)
	 is sufficiently close to 2 * x to make no significant
	 difference to the result; avoid possible overflow from
	 the squaring and addition.  */
      __real__ y = rx;
      __imag__ y = ix;

      if (adj)
	{
	  float t = __real__ y;
	  __real__ y = __copysignf (__imag__ y, __imag__ x);
	  __imag__ y = t;
	}

      res = __clogf (y);
      __real__ res += (float) M_LN2;
    }
  else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f)
    {
      float s = __ieee754_hypotf (1.0f, rx);

      __real__ res = __ieee754_logf (rx + s);
      if (adj)
	__imag__ res = __ieee754_atan2f (s, __imag__ x);
      else
	__imag__ res = __ieee754_atan2f (ix, s);
    }
  else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f)
    {
      float s = __ieee754_sqrtf ((ix + 1.0f) * (ix - 1.0f));

      __real__ res = __ieee754_logf (ix + s);
      if (adj)
	__imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
      else
	__imag__ res = __ieee754_atan2f (s, rx);
    }
  else if (ix > 1.0f && ix < 1.5f && rx < 0.5f)
    {
      if (rx < FLT_EPSILON * FLT_EPSILON)
	{
	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
	  float s = __ieee754_sqrtf (ix2m1);

	  __real__ res = __log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f;
	  if (adj)
	    __imag__ res = __ieee754_atan2f (rx, __copysignf (s, __imag__ x));
	  else
	    __imag__ res = __ieee754_atan2f (s, rx);
	}
      else
	{
	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
	  float rx2 = rx * rx;
	  float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
	  float d = __ieee754_sqrtf (ix2m1 * ix2m1 + f);
	  float dp = d + ix2m1;
	  float dm = f / dp;
	  float r1 = __ieee754_sqrtf ((dm + rx2) / 2.0f);
	  float r2 = rx * ix / r1;

	  __real__ res
	    = __log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
	  if (adj)
	    __imag__ res = __ieee754_atan2f (rx + r1, __copysignf (ix + r2,
								   __imag__ x));
	  else
	    __imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
	}
    }
  else if (ix == 1.0f && rx < 0.5f)
    {
      if (rx < FLT_EPSILON / 8.0f)
	{
	  __real__ res = __log1pf (2.0f * (rx + __ieee754_sqrtf (rx))) / 2.0f;
	  if (adj)
	    __imag__ res = __ieee754_atan2f (__ieee754_sqrtf (rx),
					     __copysignf (1.0f, __imag__ x));
	  else
	    __imag__ res = __ieee754_atan2f (1.0f, __ieee754_sqrtf (rx));
	}
      else
	{
	  float d = rx * __ieee754_sqrtf (4.0f + rx * rx);
	  float s1 = __ieee754_sqrtf ((d + rx * rx) / 2.0f);
	  float s2 = __ieee754_sqrtf ((d - rx * rx) / 2.0f);

	  __real__ res = __log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f;
	  if (adj)
	    __imag__ res = __ieee754_atan2f (rx + s1,
					     __copysignf (1.0f + s2,
							  __imag__ x));
	  else
	    __imag__ res = __ieee754_atan2f (1.0f + s2, rx + s1);
	}
    }
  else if (ix < 1.0f && rx < 0.5f)
    {
      if (ix >= FLT_EPSILON)
	{
	  if (rx < FLT_EPSILON * FLT_EPSILON)
	    {
	      float onemix2 = (1.0f + ix) * (1.0f - ix);
	      float s = __ieee754_sqrtf (onemix2);

	      __real__ res = __log1pf (2.0f * rx / s) / 2.0f;
	      if (adj)
		__imag__ res = __ieee754_atan2f (s, __imag__ x);
	      else
		__imag__ res = __ieee754_atan2f (ix, s);
	    }
	  else
	    {
	      float onemix2 = (1.0f + ix) * (1.0f - ix);
	      float rx2 = rx * rx;
	      float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
	      float d = __ieee754_sqrtf (onemix2 * onemix2 + f);
	      float dp = d + onemix2;
	      float dm = f / dp;
	      float r1 = __ieee754_sqrtf ((dp + rx2) / 2.0f);
	      float r2 = rx * ix / r1;

	      __real__ res
		= __log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
	      if (adj)
		__imag__ res = __ieee754_atan2f (rx + r1,
						 __copysignf (ix + r2,
							      __imag__ x));
	      else
		__imag__ res = __ieee754_atan2f (ix + r2, rx + r1);
	    }
	}
      else
	{
	  float s = __ieee754_hypotf (1.0f, rx);

	  __real__ res = __log1pf (2.0f * rx * (rx + s)) / 2.0f;
	  if (adj)
	    __imag__ res = __ieee754_atan2f (s, __imag__ x);
	  else
	    __imag__ res = __ieee754_atan2f (ix, s);
	}
      if (__real__ res < FLT_MIN)
	{
	  volatile float force_underflow = __real__ res * __real__ res;
	  (void) force_underflow;
	}
    }
  else
    {
      __real__ y = (rx - ix) * (rx + ix) + 1.0f;
      __imag__ y = 2.0f * rx * ix;

      y = __csqrtf (y);

      __real__ y += rx;
      __imag__ y += ix;

      if (adj)
	{
	  float t = __real__ y;
	  __real__ y = __copysignf (__imag__ y, __imag__ x);
	  __imag__ y = t;
	}

      res = __clogf (y);
    }

  /* Give results the correct sign for the original argument.  */
  __real__ res = __copysignf (__real__ res, __real__ x);
  __imag__ res = __copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));

  return res;
}
コード例 #9
0
ファイル: lgamma_negf.c プロジェクト: riscv/riscv-glibc
float
__lgamma_negf (float x, int *signgamp)
{
  /* Determine the half-integer region X lies in, handle exact
     integers and determine the sign of the result.  */
  int i = __floorf (-2 * x);
  if ((i & 1) == 0 && i == -2 * x)
    return 1.0f / 0.0f;
  float xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
  i -= 4;
  *signgamp = ((i & 2) == 0 ? -1 : 1);

  SET_RESTORE_ROUNDF (FE_TONEAREST);

  /* Expand around the zero X0 = X0_HI + X0_LO.  */
  float x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
  float xdiff = x - x0_hi - x0_lo;

  /* For arguments in the range -3 to -2, use polynomial
     approximations to an adjusted version of the gamma function.  */
  if (i < 2)
    {
      int j = __floorf (-8 * x) - 16;
      float xm = (-33 - 2 * j) * 0.0625f;
      float x_adj = x - xm;
      size_t deg = poly_deg[j];
      size_t end = poly_end[j];
      float g = poly_coeff[end];
      for (size_t j = 1; j <= deg; j++)
	g = g * x_adj + poly_coeff[end - j];
      return __log1pf (g * xdiff / (x - xn));
    }

  /* The result we want is log (sinpi (X0) / sinpi (X))
     + log (gamma (1 - X0) / gamma (1 - X)).  */
  float x_idiff = fabsf (xn - x), x0_idiff = fabsf (xn - x0_hi - x0_lo);
  float log_sinpi_ratio;
  if (x0_idiff < x_idiff * 0.5f)
    /* Use log not log1p to avoid inaccuracy from log1p of arguments
       close to -1.  */
    log_sinpi_ratio = __ieee754_logf (lg_sinpi (x0_idiff)
				      / lg_sinpi (x_idiff));
  else
    {
      /* Use log1p not log to avoid inaccuracy from log of arguments
	 close to 1.  X0DIFF2 has positive sign if X0 is further from
	 XN than X is from XN, negative sign otherwise.  */
      float x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5f;
      float sx0d2 = lg_sinpi (x0diff2);
      float cx0d2 = lg_cospi (x0diff2);
      log_sinpi_ratio = __log1pf (2 * sx0d2
				  * (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
    }

  float log_gamma_ratio;
  float y0 = math_narrow_eval (1 - x0_hi);
  float y0_eps = -x0_hi + (1 - y0) - x0_lo;
  float y = math_narrow_eval (1 - x);
  float y_eps = -x + (1 - y);
  /* We now wish to compute LOG_GAMMA_RATIO
     = log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)).  XDIFF
     accurately approximates the difference Y0 + Y0_EPS - Y -
     Y_EPS.  Use Stirling's approximation.  */
  float log_gamma_high
    = (xdiff * __log1pf ((y0 - e_hi - e_lo + y0_eps) / e_hi)
       + (y - 0.5f + y_eps) * __log1pf (xdiff / y));
  /* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)).  */
  float y0r = 1 / y0, yr = 1 / y;
  float y0r2 = y0r * y0r, yr2 = yr * yr;
  float rdiff = -xdiff / (y * y0);
  float bterm[NCOEFF];
  float dlast = rdiff, elast = rdiff * yr * (yr + y0r);
  bterm[0] = dlast * lgamma_coeff[0];
  for (size_t j = 1; j < NCOEFF; j++)
    {
      float dnext = dlast * y0r2 + elast;
      float enext = elast * yr2;
      bterm[j] = dnext * lgamma_coeff[j];
      dlast = dnext;
      elast = enext;
    }
  float log_gamma_low = 0;
  for (size_t j = 0; j < NCOEFF; j++)
    log_gamma_low += bterm[NCOEFF - 1 - j];
  log_gamma_ratio = log_gamma_high + log_gamma_low;

  return log_sinpi_ratio + log_gamma_ratio;
}