/* Requirements : HL_SR508 */ void _c_int00(void) { /* USER CODE BEGIN (5) */ /* USER CODE END */ /* Initialize Core Registers to avoid CCM Error */ _coreInitRegisters_(); /* USER CODE BEGIN (6) */ /* USER CODE END */ /* Initialize Stack Pointers */ _coreInitStackPointer_(); /* USER CODE BEGIN (7) */ /* USER CODE END */ /* Work Around for Errata DEVICE#140: ( Only on Rev A silicon) * * Errata Description: * The Core Compare Module(CCM-R4) may cause nERROR to be asserted after a cold power-on * Workaround: * Clear ESM Group2 Channel 2 error in ESMSR2 and Compare error in CCMSR register */ if (DEVICE_ID_REV == 0x802AAD05U) { _esmCcmErrorsClear_(); } /* USER CODE BEGIN (8) */ /* USER CODE END */ /* Enable CPU Event Export */ /* This allows the CPU to signal any single-bit or double-bit errors detected * by its ECC logic for accesses to program flash or data RAM. */ _coreEnableEventBusExport_(); /* USER CODE BEGIN (11) */ /* USER CODE END */ /* Workaround for Errata CORTEXR4 66 */ _errata_CORTEXR4_66_(); /* Workaround for Errata CORTEXR4 57 */ _errata_CORTEXR4_57_(); /* Reset handler: the following instructions read from the system exception status register * to identify the cause of the CPU reset. */ /* check for power-on reset condition */ /*SAFETYMCUSW 139 S MR:13.7 <APPROVED> "Hardware status bit read check" */ if ((SYS_EXCEPTION & POWERON_RESET) != 0U) { /* USER CODE BEGIN (12) */ /* USER CODE END */ /* clear all reset status flags */ SYS_EXCEPTION = 0xFFFFU; /* USER CODE BEGIN (13) */ /* USER CODE END */ /* USER CODE BEGIN (14) */ /* USER CODE END */ /* USER CODE BEGIN (15) */ /* USER CODE END */ /* continue with normal start-up sequence */ } /*SAFETYMCUSW 139 S MR:13.7 <APPROVED> "Hardware status bit read check" */ else if ((SYS_EXCEPTION & OSC_FAILURE_RESET) != 0U) { /* Reset caused due to oscillator failure. Add user code here to handle oscillator failure */ /* USER CODE BEGIN (16) */ /* USER CODE END */ } /*SAFETYMCUSW 139 S MR:13.7 <APPROVED> "Hardware status bit read check" */ else if ((SYS_EXCEPTION & WATCHDOG_RESET) !=0U) { /* Reset caused due * 1) windowed watchdog violation - Add user code here to handle watchdog violation. * 2) ICEPICK Reset - After loading code via CCS / System Reset through CCS */ /* Check the WatchDog Status register */ if(WATCHDOG_STATUS != 0U) { /* Add user code here to handle watchdog violation. */ /* USER CODE BEGIN (17) */ /* USER CODE END */ /* Clear the Watchdog reset flag in Exception Status register */ SYS_EXCEPTION = WATCHDOG_RESET; /* USER CODE BEGIN (18) */ /* USER CODE END */ } else { /* Clear the ICEPICK reset flag in Exception Status register */ SYS_EXCEPTION = ICEPICK_RESET; /* USER CODE BEGIN (19) */ /* USER CODE END */ } } /*SAFETYMCUSW 139 S MR:13.7 <APPROVED> "Hardware status bit read check" */ else if ((SYS_EXCEPTION & CPU_RESET) !=0U) { /* Reset caused due to CPU reset. CPU reset can be caused by CPU self-test completion, or by toggling the "CPU RESET" bit of the CPU Reset Control Register. */ /* USER CODE BEGIN (20) */ /* USER CODE END */ /* clear all reset status flags */ SYS_EXCEPTION = CPU_RESET; /* USER CODE BEGIN (21) */ /* USER CODE END */ } /*SAFETYMCUSW 139 S MR:13.7 <APPROVED> "Hardware status bit read check" */ else if ((SYS_EXCEPTION & SW_RESET) != 0U) { /* Reset caused due to software reset. Add user code to handle software reset. */ /* USER CODE BEGIN (22) */ /* USER CODE END */ } else { /* Reset caused by nRST being driven low externally. Add user code to handle external reset. */ /* USER CODE BEGIN (23) */ /* USER CODE END */ } /* Check if there were ESM group3 errors during power-up. * These could occur during eFuse auto-load or during reads from flash OTP * during power-up. Device operation is not reliable and not recommended * in this case. * An ESM group3 error only drives the nERROR pin low. An external circuit * that monitors the nERROR pin must take the appropriate action to ensure that * the system is placed in a safe state, as determined by the application. */ if ((esmREG->SR1[2]) != 0U) { /* USER CODE BEGIN (24) */ /* USER CODE END */ /*SAFETYMCUSW 5 C MR:NA <APPROVED> "for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below" */ /*SAFETYMCUSW 26 S MR:NA <APPROVED> "for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below" */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below" */ for(;;) { }/* Wait */ /* USER CODE BEGIN (25) */ /* USER CODE END */ } /* USER CODE BEGIN (26) */ /* USER CODE END */ /* Initialize System - Clock, Flash settings with Efuse self check */ systemInit(); /* Workaround for Errata PBIST#4 */ errata_PBIST_4(); /* Run a diagnostic check on the memory self-test controller. * This function chooses a RAM test algorithm and runs it on an on-chip ROM. * The memory self-test is expected to fail. The function ensures that the PBIST controller * is capable of detecting and indicating a memory self-test failure. */ pbistSelfCheck(); /* Run PBIST on STC ROM */ pbistRun((uint32)STC_ROM_PBIST_RAM_GROUP, ((uint32)PBIST_TripleReadSlow | (uint32)PBIST_TripleReadFast)); /* Wait for PBIST for STC ROM to be completed */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while(pbistIsTestCompleted() != TRUE) { }/* Wait */ /* Check if PBIST on STC ROM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* PBIST and STC ROM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ pbistFail(); } /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* Run PBIST on PBIST ROM */ pbistRun((uint32)PBIST_ROM_PBIST_RAM_GROUP, ((uint32)PBIST_TripleReadSlow | (uint32)PBIST_TripleReadFast)); /* Wait for PBIST for PBIST ROM to be completed */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while(pbistIsTestCompleted() != TRUE) { }/* Wait */ /* Check if PBIST ROM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* PBIST and STC ROM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ pbistFail(); } /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* USER CODE BEGIN (29) */ /* USER CODE END */ /* USER CODE BEGIN (31) */ /* USER CODE END */ /* Disable RAM ECC before doing PBIST for Main RAM */ _coreDisableRamEcc_(); /* Run PBIST on CPU RAM. * The PBIST controller needs to be configured separately for single-port and dual-port SRAMs. * The CPU RAM is a single-port memory. The actual "RAM Group" for all on-chip SRAMs is defined in the * device datasheet. */ pbistRun(0x08300020U, /* ESRAM Single Port PBIST */ (uint32)PBIST_March13N_SP); /* USER CODE BEGIN (32) */ /* USER CODE END */ /* Wait for PBIST for CPU RAM to be completed */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while(pbistIsTestCompleted() != TRUE) { }/* Wait */ /* USER CODE BEGIN (33) */ /* USER CODE END */ /* Check if CPU RAM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* CPU RAM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ /* USER CODE BEGIN (34) */ /* USER CODE END */ pbistFail(); /* USER CODE BEGIN (35) */ /* USER CODE END */ } /* USER CODE BEGIN (36) */ /* USER CODE END */ /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* USER CODE BEGIN (37) */ /* USER CODE END */ /* Initialize CPU RAM. * This function uses the system module's hardware for auto-initialization of memories and their * associated protection schemes. The CPU RAM is initialized by setting bit 0 of the MSIENA register. * Hence the value 0x1 passed to the function. * This function will initialize the entire CPU RAM and the corresponding ECC locations. */ memoryInit(0x1U); /* USER CODE BEGIN (38) */ /* USER CODE END */ /* Enable ECC checking for TCRAM accesses. * This function enables the CPU's ECC logic for accesses to B0TCM and B1TCM. */ _coreEnableRamEcc_(); /* USER CODE BEGIN (39) */ /* USER CODE END */ /* Start PBIST on all dual-port memories */ /* NOTE : Please Refer DEVICE DATASHEET for the list of Supported Dual port Memories. PBIST test performed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ pbistRun( (uint32)0x00000000U /* EMAC RAM */ | (uint32)0x00000000U /* USB RAM */ | (uint32)0x00000800U /* DMA RAM */ | (uint32)0x00000200U /* VIM RAM */ | (uint32)0x00000040U /* MIBSPI1 RAM */ | (uint32)0x00000080U /* MIBSPI3 RAM */ | (uint32)0x00000100U /* MIBSPI5 RAM */ | (uint32)0x00000004U /* CAN1 RAM */ | (uint32)0x00000008U /* CAN2 RAM */ | (uint32)0x00000010U /* CAN3 RAM */ | (uint32)0x00000400U /* ADC1 RAM */ | (uint32)0x00020000U /* ADC2 RAM */ | (uint32)0x00001000U /* HET1 RAM */ | (uint32)0x00040000U /* HET2 RAM */ | (uint32)0x00002000U /* HTU1 RAM */ | (uint32)0x00080000U /* HTU2 RAM */ | (uint32)0x00004000U /* RTP RAM */ | (uint32)0x00008000U /* FRAY RAM */ ,(uint32) PBIST_March13N_DP); /* USER CODE BEGIN (40) */ /* USER CODE END */ /* Test the CPU ECC mechanism for RAM accesses. * The checkBxRAMECC functions cause deliberate single-bit and double-bit errors in TCRAM accesses * by corrupting 1 or 2 bits in the ECC. Reading from the TCRAM location with a 2-bit error * in the ECC causes a data abort exception. The data abort handler is written to look for * deliberately caused exception and to return the code execution to the instruction * following the one that caused the abort. */ checkRAMECC(); /* USER CODE BEGIN (41) */ /* USER CODE END */ /* USER CODE BEGIN (43) */ /* USER CODE END */ /* Wait for PBIST for CPU RAM to be completed */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while(pbistIsTestCompleted() != TRUE) { }/* Wait */ /* USER CODE BEGIN (44) */ /* USER CODE END */ /* Check if CPU RAM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* USER CODE BEGIN (45) */ /* USER CODE END */ /* CPU RAM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ /* USER CODE BEGIN (46) */ /* USER CODE END */ pbistFail(); /* USER CODE BEGIN (47) */ /* USER CODE END */ } /* USER CODE BEGIN (48) */ /* USER CODE END */ /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* USER CODE BEGIN (55) */ /* USER CODE END */ /* Release the MibSPI1 modules from local reset. * This will cause the MibSPI1 RAMs to get initialized along with the parity memory. */ mibspiREG1->GCR0 = 0x1U; /* Release the MibSPI3 modules from local reset. * This will cause the MibSPI3 RAMs to get initialized along with the parity memory. */ mibspiREG3->GCR0 = 0x1U; /* Release the MibSPI5 modules from local reset. * This will cause the MibSPI5 RAMs to get initialized along with the parity memory. */ mibspiREG5->GCR0 = 0x1U; /* USER CODE BEGIN (56) */ /* USER CODE END */ /* Enable parity on selected RAMs */ enableParity(); /* Initialize all on-chip SRAMs except for MibSPIx RAMs * The MibSPIx modules have their own auto-initialization mechanism which is triggered * as soon as the modules are brought out of local reset. */ /* The system module auto-init will hang on the MibSPI RAM if the module is still in local reset. */ /* NOTE : Please Refer DEVICE DATASHEET for the list of Supported Memories and their channel numbers. Memory Initialization is perfomed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ memoryInit( (uint32)((uint32)1U << 1U) /* DMA RAM */ | (uint32)((uint32)1U << 2U) /* VIM RAM */ | (uint32)((uint32)1U << 5U) /* CAN1 RAM */ | (uint32)((uint32)1U << 6U) /* CAN2 RAM */ | (uint32)((uint32)1U << 10U) /* CAN3 RAM */ | (uint32)((uint32)1U << 8U) /* ADC1 RAM */ | (uint32)((uint32)1U << 14U) /* ADC2 RAM */ | (uint32)((uint32)1U << 3U) /* HET1 RAM */ | (uint32)((uint32)1U << 4U) /* HTU1 RAM */ | (uint32)((uint32)1U << 15U) /* HET2 RAM */ | (uint32)((uint32)1U << 16U) /* HTU2 RAM */ ); /* Disable parity */ disableParity(); /* Test the parity protection mechanism for peripheral RAMs NOTE : Please Refer DEVICE DATASHEET for the list of Supported Memories with parity. Parity Self check is perfomed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ /* USER CODE BEGIN (57) */ /* USER CODE END */ het1ParityCheck(); /* USER CODE BEGIN (58) */ /* USER CODE END */ htu1ParityCheck(); /* USER CODE BEGIN (59) */ /* USER CODE END */ het2ParityCheck(); /* USER CODE BEGIN (60) */ /* USER CODE END */ htu2ParityCheck(); /* USER CODE BEGIN (61) */ /* USER CODE END */ adc1ParityCheck(); /* USER CODE BEGIN (62) */ /* USER CODE END */ adc2ParityCheck(); /* USER CODE BEGIN (63) */ /* USER CODE END */ can1ParityCheck(); /* USER CODE BEGIN (64) */ /* USER CODE END */ can2ParityCheck(); /* USER CODE BEGIN (65) */ /* USER CODE END */ can3ParityCheck(); /* USER CODE BEGIN (66) */ /* USER CODE END */ vimParityCheck(); /* USER CODE BEGIN (67) */ /* USER CODE END */ dmaParityCheck(); /* USER CODE BEGIN (68) */ /* USER CODE END */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while ((mibspiREG1->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI1 RAM to complete initialization */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while ((mibspiREG3->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI3 RAM to complete initialization */ /*SAFETYMCUSW 28 D MR:NA <APPROVED> "Hardware status bit read check" */ while ((mibspiREG5->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI5 RAM to complete initialization */ /* USER CODE BEGIN (69) */ /* USER CODE END */ mibspi1ParityCheck(); /* USER CODE BEGIN (70) */ /* USER CODE END */ mibspi3ParityCheck(); /* USER CODE BEGIN (71) */ /* USER CODE END */ mibspi5ParityCheck(); /* USER CODE BEGIN (72) */ /* USER CODE END */ /* Enable IRQ offset via Vic controller */ _coreEnableIrqVicOffset_(); /* USER CODE BEGIN (73) */ /* USER CODE END */ /* Initialize VIM table */ vimInit(); /* USER CODE BEGIN (74) */ /* USER CODE END */ /* Configure system response to error conditions signaled to the ESM group1 */ /* This function can be configured from the ESM tab of HALCoGen */ esmInit(); /* initialize copy table */ __TI_auto_init(); /* USER CODE BEGIN (75) */ /* USER CODE END */ /* call the application */ /*SAFETYMCUSW 296 S MR:8.6 <APPROVED> "Startup code(library functions at block scope)" */ /*SAFETYMCUSW 326 S MR:8.2 <APPROVED> "Startup code(Declaration for main in library)" */ /*SAFETYMCUSW 60 D MR:8.8 <APPROVED> "Startup code(Declaration for main in library;Only doing an extern for the same)" */ main(); /* USER CODE BEGIN (76) */ /* USER CODE END */ /*SAFETYMCUSW 122 S MR:20.11 <APPROVED> "Startup code(exit and abort need to be present)" */ exit(0); /* USER CODE BEGIN (77) */ /* USER CODE END */ }
void _c_int00() { register uint32_t temp; /* USER CODE BEGIN (5) */ /* USER CODE END */ /* Enable VFP Unit */ _coreEnableVfp_(); /* Initialize Core Registers */ _coreInitRegisters_(); /* USER CODE BEGIN (6) */ /* USER CODE END */ /* read the system exception status register */ temp = systemREG1->SYSESR; /* USER CODE BEGIN (7) */ /* USER CODE END */ /* check for power-on reset condition */ if (temp & 0x8000) { /* clear all reset status flags */ systemREG1->SYSESR = 0xFFFF; /* USER CODE BEGIN (8) */ /* USER CODE END */ /* continue with normal start-up sequence */ } else if (temp & 0x4000) { /* Reset caused due to oscillator failure. Add user code here to handle oscillator failure */ /* USER CODE BEGIN (9) */ /* USER CODE END */ } else if (temp & 0x2000) { /* Reset caused due to windowed watchdog violation. Add user code here to handle watchdog violation */ /* USER CODE BEGIN (10) */ /* USER CODE END */ } else if (temp & 0x20) { /* Reset caused due to CPU reset. CPU reset can be caused by CPU self-test completion, or by toggling the "CPU RESET" bit of the CPU Reset Control Register. Add user code to handle CPU reset: check for selftest completion without any error and continue start-up. */ /* USER CODE BEGIN (11) */ /* USER CODE END */ } else if (temp & 0x10) { /* Reset caused due to software reset. Add user code to handle software reset. */ /* USER CODE BEGIN (12) */ /* USER CODE END */ } else { /* Reset caused by nRST being driven low externally. Add user code to handle external reset. */ /* USER CODE BEGIN (13) */ /* USER CODE END */ } /* Initialize Stack Pointers */ _coreInitStackPointer_(); /* Enable IRQ offset via Vic controller */ _coreEnableIrqVicOffset_(); /* Initialize System */ systemInit(); /* Initialize memory */ // _memoryInit_(); /* Enable CPU Event Export */ /* This allows the CPU to signal any single-bit or double-bit errors detected * by its ECC logic for accesses to program flash or data RAM. */ // _coreEnableEventBusExport_(); /* Enable ECC checking for TCRAM accesses. * This function enables the CPU's ECC logic for accesses to B0TCM and B1TCM. */ // _coreEnableRamEcc_(); /* Initialize VIM table */ { uint32_t i; for (i = 0; i < 90U; i++) { vimRAM->ISR[i] = s_vim_init[i]; } } /* set IRQ/FIQ priorities */ vimREG->FIRQPR0 = SYS_FIQ | (SYS_FIQ << 1U) | (SYS_IRQ << 2U) | (SYS_IRQ << 3U) | (SYS_IRQ << 4U) | (SYS_IRQ << 5U) | (SYS_IRQ << 6U) | (SYS_IRQ << 7U) | (SYS_IRQ << 8U) | (SYS_IRQ << 9U) | (SYS_IRQ << 10U) | (SYS_IRQ << 11U) | (SYS_IRQ << 12U) | (SYS_IRQ << 13U) | (SYS_IRQ << 14U) | (SYS_IRQ << 15U) | (SYS_IRQ << 16U) | (SYS_IRQ << 17U) | (SYS_IRQ << 18U) | (SYS_IRQ << 19U) | (SYS_IRQ << 20U) | (SYS_IRQ << 21U) | (SYS_IRQ << 22U) | (SYS_IRQ << 23U) | (SYS_IRQ << 24U) | (SYS_IRQ << 25U) | (SYS_IRQ << 26U) | (SYS_IRQ << 27U) | (SYS_IRQ << 28U) | (SYS_IRQ << 29U) | (SYS_IRQ << 30U) | (SYS_IRQ << 31U); vimREG->FIRQPR1 = SYS_IRQ | (SYS_IRQ << 1U) | (SYS_IRQ << 2U) | (SYS_IRQ << 3U) | (SYS_IRQ << 4U) | (SYS_IRQ << 5U) | (SYS_IRQ << 6U) | (SYS_IRQ << 7U) | (SYS_IRQ << 8U) | (SYS_IRQ << 9U) | (SYS_IRQ << 10U) | (SYS_IRQ << 11U) | (SYS_IRQ << 12U) | (SYS_IRQ << 13U) | (SYS_IRQ << 14U) | (SYS_IRQ << 15U) | (SYS_IRQ << 16U) | (SYS_IRQ << 17U) | (SYS_IRQ << 18U) | (SYS_IRQ << 19U) | (SYS_IRQ << 20U) | (SYS_IRQ << 21U) | (SYS_IRQ << 22U) | (SYS_IRQ << 23U) | (SYS_IRQ << 24U) | (SYS_IRQ << 25U) | (SYS_IRQ << 26U) | (SYS_IRQ << 27U) | (SYS_IRQ << 28U) | (SYS_IRQ << 29U) | (SYS_IRQ << 30U) | (SYS_IRQ << 31U); vimREG->FIRQPR2 = SYS_IRQ | (SYS_IRQ << 1U) | (SYS_IRQ << 2U) | (SYS_IRQ << 3U) | (SYS_IRQ << 4U) | (SYS_IRQ << 5U) | (SYS_IRQ << 6U) | (SYS_IRQ << 7U) | (SYS_IRQ << 8U) | (SYS_IRQ << 9U) | (SYS_IRQ << 10U) | (SYS_IRQ << 11U) | (SYS_IRQ << 12U) | (SYS_IRQ << 13U) | (SYS_IRQ << 14U) | (SYS_IRQ << 15U) | (SYS_IRQ << 16U) | (SYS_IRQ << 17U) | (SYS_IRQ << 18U) | (SYS_IRQ << 19U) | (SYS_IRQ << 20U) | (SYS_IRQ << 21U) | (SYS_IRQ << 22U) | (SYS_IRQ << 23U) | (SYS_IRQ << 24U) | (SYS_IRQ << 25U); /* enable interrupts */ vimREG->REQMASKSET0 = 1U | (1U << 1U) | (0U << 2U) | (0U << 3U) | (0U << 4U) | (0U << 5U) | (0U << 6U) | (0U << 7U) | (0U << 8U) | (0U << 9U) | (0U << 10U) | (0U << 11U) | (0U << 12U) | (0U << 13U) | (0U << 14U) | (0U << 15U) | (0U << 16U) | (0U << 17U) | (0U << 18U) | (0U << 19U) | (0U << 20U) | (0U << 21U) | (0U << 22U) | (0U << 23U) | (0U << 24U) | (0U << 25U) | (0U << 26U) | (0U << 27U) | (0U << 28U) | (0U << 29U) | (0U << 30U) | (0U << 31U); vimREG->REQMASKSET1 = 0U | (0U << 1U) | (0U << 2U) | (0U << 3U) | (0U << 4U) | (0U << 5U) | (0U << 6U) | (0U << 7U) | (0U << 8U) | (0U << 9U) | (0U << 10U) | (0U << 11U) | (0U << 12U) | (0U << 13U) | (0U << 14U) | (0U << 15U) | (0U << 16U) | (0U << 17U) | (0U << 18U) | (0U << 19U) | (0U << 20U) | (0U << 21U) | (0U << 22U) | (0U << 23U) | (0U << 24U) | (0U << 25U) | (0U << 26U) | (0U << 27U) | (0U << 28U) | (0U << 29U) | (0U << 30U) | (0U << 31U); vimREG->REQMASKSET2 = 0U | (0U << 1U) | (0U << 2U) | (0U << 3U) | (0U << 4U) | (0U << 5U) | (0U << 6U) | (0U << 7U) | (0U << 8U) | (0U << 9U) | (0U << 10U) | (0U << 11U) | (0U << 12U) | (0U << 13U) | (0U << 14U) | (0U << 15U) | (0U << 16U) | (0U << 17U) | (0U << 18U) | (0U << 19U) | (0U << 20U) | (0U << 21U) | (0U << 22U) | (0U << 23U) | (0U << 24U) | (0U << 25U); /* initalise copy table */ if ((uint32_t *)&__binit__ != (uint32_t *)0xFFFFFFFFU) { extern void copy_in(void *binit); copy_in((void *)&__binit__); } /* initalise the C global variables */ if (&__TI_Handler_Table_Base < &__TI_Handler_Table_Limit) { uint8_t **tablePtr = (uint8_t **)&__TI_CINIT_Base; uint8_t **tableLimit = (uint8_t **)&__TI_CINIT_Limit; while (tablePtr < tableLimit) { uint8_t *loadAdr = *tablePtr++; uint8_t *runAdr = *tablePtr++; uint8_t idx = *loadAdr++; handler_fptr handler = (handler_fptr)(&__TI_Handler_Table_Base)[idx]; (*handler)((const uint8_t *)loadAdr, runAdr); } } /* initalise contructors */ if (__TI_PINIT_Base < __TI_PINIT_Limit) { void (**p0)() = (void *)__TI_PINIT_Base; while ((uint32_t)p0 < __TI_PINIT_Limit) { void (*p)() = *p0++; p(); } } /* USER CODE BEGIN (14) */ /* USER CODE END */ /* configure muxed pins */ muxInit(); /* call the application */ main(); exit(); }
void _c_int00(void) { /* USER CODE BEGIN (5) */ /* USER CODE END */ /* Reset handler: the following instructions read from the system exception status register * to identify the cause of the CPU reset. */ switch(getResetSource()) { case POWERON_RESET: case DEBUG_RESET: case EXT_RESET: /* USER CODE BEGIN (6) */ /* USER CODE END */ /* Initialize L2RAM to avoid ECC errors right after power on */ _memInit_(); /* USER CODE BEGIN (7) */ /* USER CODE END */ /* Initialize Core Registers to avoid CCM Error */ _coreInitRegisters_(); /* USER CODE BEGIN (8) */ /* USER CODE END */ /* Initialize Stack Pointers */ _coreInitStackPointer_(); /* USER CODE BEGIN (9) */ /* USER CODE END */ /* Enable CPU Event Export */ /* This allows the CPU to signal any single-bit or double-bit errors detected * by its ECC logic for accesses to program flash or data RAM. */ _coreEnableEventBusExport_(); /* USER CODE BEGIN (10) */ /* USER CODE END */ /* Check if there were ESM group3 errors during power-up. * These could occur during eFuse auto-load or during reads from flash OTP * during power-up. Device operation is not reliable and not recommended * in this case. */ if ((esmREG->SR1[2]) != 0U) { esmGroup3Notification(esmREG,esmREG->SR1[2]); } /* Initialize System - Clock, Flash settings with Efuse self check */ systemInit(); /* USER CODE BEGIN (11) */ /* USER CODE END */ /* Enable IRQ offset via Vic controller */ _coreEnableIrqVicOffset_(); /* Initialize VIM table */ vimInit(); /* USER CODE BEGIN (12) */ /* USER CODE END */ /* Configure system response to error conditions signaled to the ESM group1 */ /* This function can be configured from the ESM tab of HALCoGen */ esmInit(); /* USER CODE BEGIN (13) */ /* USER CODE END */ break; case OSC_FAILURE_RESET: /* USER CODE BEGIN (14) */ /* USER CODE END */ break; case WATCHDOG_RESET: /* USER CODE BEGIN (15) */ /* USER CODE END */ break; case CPU0_RESET: case CPU1_RESET: /* USER CODE BEGIN (16) */ /* USER CODE END */ /* Initialize Core Registers to avoid CCM Error */ _coreInitRegisters_(); /* USER CODE BEGIN (17) */ /* USER CODE END */ /* Initialize Stack Pointers */ _coreInitStackPointer_(); /* USER CODE BEGIN (18) */ /* USER CODE END */ /* Enable CPU Event Export */ /* This allows the CPU to signal any single-bit or double-bit errors detected * by its ECC logic for accesses to program flash or data RAM. */ _coreEnableEventBusExport_(); /* USER CODE BEGIN (19) */ /* USER CODE END */ break; case SW_RESET: /* USER CODE BEGIN (20) */ /* USER CODE END */ break; default: /* USER CODE BEGIN (21) */ /* USER CODE END */ break; } /* USER CODE BEGIN (22) */ /* USER CODE END */ _mpuInit_(); /* USER CODE BEGIN (23) */ /* USER CODE END */ _cacheEnable_(); /* USER CODE BEGIN (24) */ /* USER CODE END */ /* USER CODE BEGIN (25) */ /* USER CODE END */ /* initialize global variable and constructors */ __TI_auto_init(); /* USER CODE BEGIN (26) */ /* USER CODE END */ /* call the application */ /*SAFETYMCUSW 296 S MR:8.6 <APPROVED> "Startup code(library functions at block scope)" */ /*SAFETYMCUSW 326 S MR:8.2 <APPROVED> "Startup code(Declaration for main in library)" */ /*SAFETYMCUSW 60 D MR:8.8 <APPROVED> "Startup code(Declaration for main in library;Only doing an extern for the same)" */ main(); /* USER CODE BEGIN (27) */ /* USER CODE END */ /*SAFETYMCUSW 122 S MR:20.11 <APPROVED> "Startup code(exit and abort need to be present)" */ exit(0); /* USER CODE BEGIN (28) */ /* USER CODE END */ }
void afterSTC(void) { SL_CCMR4F_FailInfo failInfoCCMR4F; /* CCMR4 Self Test fail info */ volatile boolean retVal; /* For function return values */ SL_PBIST_FailInfo failInfoPBISTSRAM; /* PBIST Failure information for TCM RAM */ SL_SelfTest_Result failInfoFlash; /* Flash Self test failure information */ SL_SelfTest_Result failInfoTCMRAM; /* TCM RAM Failure information */ SL_PBIST_FailInfo failInfoPBISTOthers;/* PBIST Failure information for non-TCM memories */ SL_PSCON_FailInfo failInfoPSCON; /* PSCON failure information */ SL_EFuse_Config stConfigEFuse; /* EFuse self test configuration */ /* Make sure that CCM-R4F is working as expected. * This function puts the CCM-R4F module through its self-test modes. * It ensures that the CCM-R4F is indeed capable of detecting a CPU mismatch, * and is also capable of indicating a mismatch error to the ESM. */ /* Can be enabled when in release*/ /* Execute PBIST tests on required peripheral SRAMs */ _SL_HoldNClear_nError(); retVal = SL_SelfTest_PBIST( PBIST_EXECUTE, PBIST_RAMGROUP_01_PBIST_ROM, PBISTALGO_TRIPLE_READ_FAST_READ); while (TRUE != SL_SelfTest_WaitCompletion_PBIST()); SL_SelfTest_Status_PBIST(&failInfoPBISTSRAM); if (failInfoPBISTSRAM.stResult != ST_PASS) { while(1); } /* Run a diagnostic check on the memory self-test controller. * This function chooses a RAM test algorithm and runs it on an on-chip ROM. * The memory self-test is expected to fail. The function ensures that the PBIST controller * is capable of detecting and indicating a memory self-test failure. */ /* PBIST test on STC ROM */ retVal = SL_SelfTest_PBIST( PBIST_EXECUTE, (PBIST_RAMGROUP_02_STC_ROM), PBISTALGO_TRIPLE_READ_FAST_READ); while (TRUE != SL_SelfTest_WaitCompletion_PBIST()); SL_SelfTest_Status_PBIST(&failInfoPBISTOthers); if (failInfoPBISTSRAM.stResult != ST_PASS) { while(1); } /* Run PBIST on CPU RAM. * The PBIST controller needs to be configured separately for single-port and dual-port SRAMs. * The CPU RAM is a single-port memory. The actual "RAM Group" for all on-chip SRAMs is defined in the * device datasheet. */ retVal = SL_SelfTest_PBIST( PBIST_EXECUTE, /* Execute PBIST test */ (PBIST_RAMGROUP_06_ESRAM1 | PBIST_RAMGROUP_21_ESRAM5 /* On all TCM RAMs */ ), PBISTALGO_MARCH13N_RED_1PORT); while (TRUE != SL_SelfTest_WaitCompletion_PBIST()); /* Get SRAM PBIST Status */ SL_SelfTest_Status_PBIST(&failInfoPBISTSRAM); if (failInfoPBISTSRAM.stResult != ST_PASS) { while(1); } /* Disable PBIST clocks and disable memory self-test mode */ SL_SelfTest_PBIST_StopExec(); /* Initialize CPU RAM. * This function uses the system module's hardware for auto-initialization of memories and their * associated protection schemes. The CPU RAM is initialized by setting bit 0 of the MSIENA register. * Hence the value 0x1 passed to the function. * This function will initialize the entire CPU RAM and the corresponding ECC locations. */ SL_Init_Memory(RAMTYPE_RAM); //SL_Init_ECCFlash(10, FLASHECC_DEFAULT); /* Enable Flash ECC */ SL_Init_ECCTCMRAM(10, TRUE); /* Enable TCM RAM ECC */ /* Execute PBIST tests on required peripheral SRAMs */ retVal = SL_SelfTest_PBIST( PBIST_EXECUTE, (PBIST_RAMGROUP_03_DCAN1 | PBIST_RAMGROUP_04_DCAN2 | PBIST_RAMGROUP_05_DCAN3 | PBIST_RAMGROUP_07_MIBSPI1 | PBIST_RAMGROUP_08_MIBSPI3 | PBIST_RAMGROUP_09_MIBSPI5 | PBIST_RAMGROUP_10_VIM | PBIST_RAMGROUP_11_MIBADC1 | PBIST_RAMGROUP_12_DMA | PBIST_RAMGROUP_13_N2HET1 | PBIST_RAMGROUP_14_HETTU1 | PBIST_RAMGROUP_16_FRAY | PBIST_RAMGROUP_18_MIBADC2 | PBIST_RAMGROUP_19_N2HET2 | PBIST_RAMGROUP_20_HETTU2 ), PBISTALGO_MARCH13N_RED_2PORT); while (TRUE != SL_SelfTest_WaitCompletion_PBIST()); SL_SelfTest_Status_PBIST(&failInfoPBISTOthers); /* Check the PBIST status and if there is a failure then wait*/ if (failInfoPBISTOthers.stResult != ST_PASS) { while(1); } /* PBIST test on STC ROM */ retVal = SL_SelfTest_PBIST( PBIST_EXECUTE, (PBIST_RAMGROUP_17_FRAY), PBISTALGO_MARCH13N_RED_1PORT); while (TRUE != SL_SelfTest_WaitCompletion_PBIST()); SL_SelfTest_Status_PBIST(&failInfoPBISTOthers); /* Check the PBIST status and if there is a failure then wait*/ if (failInfoPBISTOthers.stResult != ST_PASS) { while(1); } /* Run 1Bit ECC test on TCM RAM */ retVal = SL_SelfTest_SRAM(SRAM_ECC_ERROR_FORCING_1BIT, TRUE, &failInfoTCMRAM); if(retVal == FALSE) while(1); /* Run 1Bit ECC error profiling test on TCM RAM */ retVal = SL_SelfTest_SRAM(SRAM_ECC_ERROR_PROFILING, TRUE, &failInfoTCMRAM); if(retVal == FALSE) while(1); retVal = SL_SelfTest_SRAM(SRAM_ECC_ERROR_FORCING_2BIT, TRUE, &failInfoTCMRAM); if(retVal == FALSE) while(1); //SL_Init_ECCFlash(10, FLASHECC_DEFAULT); /* Enable Flash ECC */ /* Run Diagmode 1 */ retVal = SL_SelfTest_FEE(FEE_ECC_DATA_CORR_MODE, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run 1 bit selftest */ retVal = SL_SelfTest_FEE(FEE_ECC_TEST_MODE_1BIT, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run 2 bit selftest */ retVal = SL_SelfTest_FEE(FEE_ECC_TEST_MODE_2BIT, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run Diagmode 2 */ retVal = SL_SelfTest_FEE(FEE_ECC_SYN_REPORT_MODE, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run Diagmode 3 */ retVal = SL_SelfTest_FEE(FEE_ECC_MALFUNCTION_MODE1, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run Diagmode 4 */ retVal = SL_SelfTest_FEE(FEE_ECC_MALFUNCTION_MODE2, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run 1Bit ECC test on Flash */ retVal = SL_SelfTest_Flash(FLASH_ECC_TEST_MODE_1BIT, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); /* Run 2Bit ECC test on Flash */ retVal = SL_SelfTest_Flash(FLASH_ECC_TEST_MODE_2BIT, TRUE, &failInfoFlash); if(retVal == FALSE) while(1); SL_SelfTest_Status_PBIST(&failInfoPBISTOthers); /* Check the PBIST status and if there is a failure then wait*/ if (failInfoPBISTOthers.stResult != ST_PASS) { while(1); } /* Disable PBIST clocks and disable memory self-test mode */ SL_SelfTest_PBIST_StopExec(); /* Run PSCON self tests in sync mode */ retVal = SL_SelfTest_PSCON(PSCON_SELF_TEST, TRUE, &failInfoPSCON); if(retVal == FALSE) while(1); retVal = SL_SelfTest_PSCON(PSCON_ERROR_FORCING, TRUE, &failInfoPSCON); if(retVal == FALSE) while(1); retVal = SL_SelfTest_PSCON(PSCON_SELF_TEST_ERROR_FORCING, TRUE, &failInfoPSCON); if(retVal == FALSE) while(1); retVal = SL_SelfTest_PSCON(PSCON_PMA_TEST, TRUE, &failInfoPSCON); if (FALSE != retVal) { /* Must fail, since PMA tests cannot be run in privilege modes */ while(1); } /* Run EFuse self tests */ stConfigEFuse.numPatterns = 600u; stConfigEFuse.seedSignature = 0x5362F97Fu; stConfigEFuse.failInfo.stResult= ST_FAIL; stConfigEFuse.failInfo.failInfo= EFUSE_ERROR_NONE; retVal = SL_SelfTest_EFuse(EFUSE_SELF_TEST_STUCK_AT_ZERO, TRUE, &stConfigEFuse); if(retVal == FALSE) while(1); retVal = SL_SelfTest_EFuse(EFUSE_SELF_TEST_ECC, TRUE, &stConfigEFuse); while (TRUE != SL_SelfTest_Status_EFuse(&stConfigEFuse.failInfo)); if(retVal == FALSE) while(1); #if 0 /*This block can be enabled when not running the code with debugger.The ccmr4f tests do not run with debugger connected*/ /* With debugger connected, CCM is disabled so do not run when debugger is connected */ if (RESET_TYPE_DEBUG != resetReason) { /* Try CCMR4F Fault Injection */ retVal = SL_SelfTest_CCMR4F(CCMR4F_SELF_TEST, TRUE, &failInfoCCMR4F); if(retVal == FALSE) while(1); retVal = SL_SelfTest_CCMR4F(CCMR4F_ERROR_FORCING_TEST, TRUE, &failInfoCCMR4F); if(retVal == FALSE) while(1); retVal = SL_SelfTest_CCMR4F(CCMR4F_SELF_TEST_ERROR_FORCING, TRUE, &failInfoCCMR4F); if(retVal == FALSE) while(1); } #endif /* Run RAD Self tests on TCMRAM */ retVal = SL_SelfTest_SRAM(SRAM_RADECODE_DIAGNOSTICS, TRUE, &failInfoTCMRAM); if(retVal == FALSE) while(1); retVal = SL_SelfTest_SRAM(SRAM_PAR_ADDR_CTRL_SELF_TEST, TRUE, &failInfoTCMRAM); if(retVal == FALSE) while(1); /* Enable IRQ offset via Vic controller */ _coreEnableIrqVicOffset_(); /* Initialize VIM table */ vimInit(); SL_ESM_Init(ESM_ApplicationCallback); /* Configure system response to error conditions signaled to the ESM group1 */ /* This function can be configured from the ESM tab of HALCoGen */ esmInit(); /* initialize copy table */ __TI_auto_init(); /* call the application */ /*SAFETYMCUSW 296 S MR:8.6 <APPROVED> "Startup code(library functions at block scope)" */ /*SAFETYMCUSW 326 S MR:8.2 <APPROVED> "Startup code(Declaration for main in library)" */ /*SAFETYMCUSW 60 D MR:8.8 <APPROVED> "Startup code(Declaration for main in library;Only doing an extern for the same)" */ main(); /*SAFETYMCUSW 122 S MR:20.11 <APPROVED> "Startup code(exit and abort need to be present)" */ exit(); }