CachedFileStream::CachedFileStream(const char* stream, bool autoFree) { ExtractFileFromPath( filename, stream ); PathJoin( originalfile, core->CachePath, filename, NULL ); str = _fopen( originalfile, "rb" ); if (str == NULL) { // File was not found in cache if (core->GameOnCD) { _FILE* src = _fopen( stream, "rb" ); #ifdef _DEBUG core->CachedFileStreamPtrCount++; #endif _FILE* dest = _fopen( originalfile, "wb" ); #ifdef _DEBUG core->CachedFileStreamPtrCount++; #endif void* buff = malloc( 1024 * 1000 ); do { size_t len = _fread( buff, 1, 1024 * 1000, src ); size_t c = _fwrite( buff, 1, len, dest ); if (c != len) { printf("CachedFileStream failed to write to cached file '%s' (from '%s')\n", originalfile, stream); abort(); } } while (!_feof( src )); free( buff ); _fclose( src ); #ifdef _DEBUG core->CachedFileStreamPtrCount--; #endif _fclose( dest ); #ifdef _DEBUG core->CachedFileStreamPtrCount--; #endif } else { // Don't cache files already on hdd strncpy(originalfile, stream, _MAX_PATH); } str = _fopen( originalfile, "rb" ); } #ifdef _DEBUG core->CachedFileStreamPtrCount++; #endif startpos = 0; _fseek( str, 0, SEEK_END ); size = _ftell( str ); _fseek( str, 0, SEEK_SET ); Pos = 0; this->autoFree = autoFree; }
static void ioctl_emulate_open(int fd, const char *dev_path) { libc_func(fclose, int, FILE *); FILE *f; static char ioctl_path[PATH_MAX]; struct ioctl_fd_info *fdinfo; if (strncmp(dev_path, "/dev/", 5) != 0) return; fdinfo = malloc(sizeof(struct ioctl_fd_info)); fdinfo->tree = NULL; fdinfo->last = NULL; fd_map_add(&ioctl_wrapped_fds, fd, fdinfo); /* check if we have an ioctl tree for this */ snprintf(ioctl_path, sizeof(ioctl_path), "%s/ioctl/%s", getenv("UMOCKDEV_DIR"), dev_path); f = fopen(ioctl_path, "r"); if (f == NULL) return; fdinfo->tree = ioctl_tree_read(f); _fclose(f); if (fdinfo->tree == NULL) { fprintf(stderr, "ERROR: libumockdev-preload: failed to load ioctl record file for %s: empty or invalid format?", dev_path); exit(1); } DBG(DBG_IOCTL, "ioctl_emulate_open fd %i (%s): loaded ioctl tree\n", fd, dev_path); }
int get_number_line(const char* filename,void **p){ FILE* fp; char* buffer; struct stat st; int num=0; int i; __stat _stat; __fread _fread; __fopen _fopen; __malloc _malloc; __fclose _fclose; const char* fmode; _stat=(__stat)p[0]; _fopen=(__fopen)p[1]; _malloc=(__malloc)p[2]; _fread=(__fread)p[3]; _fclose=(__fclose)p[4]; fmode=(const char*)p[5]; fp=_fopen(filename,fmode); if(fp==NULL) return -1; _stat(filename,&st); buffer=_malloc(st.st_size); if(buffer==NULL) return -1; _fread(buffer,st.st_size,1,fp); for(i=0;i<st.st_size;i++){ if(buffer[i]=='\n') num++; } _fclose(fp); return num; }
CachedFileStream::~CachedFileStream(void) { if (autoFree && str) { #ifdef _DEBUG core->CachedFileStreamPtrCount--; #endif _fclose( str ); } str = NULL; //autoFree = false; //File stream destructor hack }
static void script_record_close(int fd) { libc_func(fclose, int, FILE *); struct script_record_info *srinfo; if (!fd_map_get(&script_recorded_fds, fd, (const void **)&srinfo)) return; DBG(DBG_SCRIPT, "script_record_close: stop recording fd %i\n", fd); _fclose(srinfo->log); free(srinfo); fd_map_remove(&script_recorded_fds, fd); }
int fclose(FILE * stream) { libc_func(fclose, int, FILE *); int fd = fileno(stream); if (fd >= 0) { netlink_close(fd); ioctl_emulate_close(fd); ioctl_record_close(fd); script_record_close(fd); } return _fclose(stream); }
int fclose(FILE *stream) { //printf("INTERCEPTED Fclose\n"); clock_t start = clock(); int ret = _fclose(stream); clock_t end = clock(); double called_time = (double)(start-program_start)/(double)(CLOCKS_PER_SEC); double exec_time = (double)(end-start)/(double)(CLOCKS_PER_SEC); fprintf(logFile,"%lf %lf fclose %p = %d\n",called_time,exec_time,stream,ret); return ret; }
/* return 0 if this *is* an iNES file */ int rom_checkmagic(const char *filename) { inesheader_t head; rominfo_t rominfo; FILE *fp; fp = rom_findrom(filename, &rominfo); if (NULL == fp) return -1; _fread(&head, 1, sizeof(head), fp); _fclose(fp); if (0 == memcmp(head.ines_magic, ROM_INES_MAGIC, 4)) /* not an iNES file */ return 0; return -1; }
static void wrap_deinit(void) { _fclose(logFile); printf("End\n"); }
FILE* _doopenfile(const char* name, const char* mods, FILE* str) { int mode; /* dev_open mode */ str->fileID = -1; /*str->tmpnam = NULL;*/ str->bufadr = NULL; str->nback = 0; str->_Mode = (str->_Mode & M_FREE_FILE) | (*mods == 'r' ? M_OPENR : *mods == 'w' ? (M_OPENW | M_CREATE | M_TRUNCATE) : *mods == 'a' ? (M_OPENW | M_CREATE | M_OPENA) : 0); if ((str->_Mode & M_OPENRW) == 0) { _fclose(str); return NULL; } while ((*++mods == 'b') || (*mods == '+')) { if (*mods == 'b') { if (str->_Mode & M_BINARY) break; str->_Mode |= M_BINARY; } else { if ((str->_Mode & M_OPENRW) == M_OPENRW) break; str->_Mode |= M_OPENRW; } } mode = str->_Mode; #if defined(__ADSPBLACKFIN__) static const int map_rw_access[4] = { 0, _dev_rdonly, _dev_wronly, _dev_rdwr }; int new_mode = map_rw_access[mode & M_OPENRW]; if (mode & M_OPENA) new_mode |= _dev_append; if (mode & M_TRUNCATE) new_mode |= _dev_truncate; if (mode & M_CREATE) new_mode |= _dev_create; if (mode & M_BINARY) new_mode |= _dev_binary; else new_mode |= _dev_text; mode = new_mode; #endif str->fileID = _dev_open(__default_io_device,(char *)name,mode); if (str->fileID < 0) { _fclose(str); return NULL; } #if (BYTES_PER_WORD==1) str->_Next = &str->onechar; #else str->_Next = (str->_Mode & M_BINARY) ? (byte_addr_t) &str->onechar : BYTE_ADDR(&str->onechar); #endif str->_Buf = str->_Next; str->_Rend = str->_Wend = str->_Next; return str; }
int read_JPEG_file (char * filename) { /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct my_error_mgr jerr; /* More stuff */ int infile; /* source file */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else, * so that the setjmp() error recovery below can assume the file is open. * VERY IMPORTANT: use "b" option to _fopen() if you are on a machine that * requires it in order to read binary files. */ if ((infile = _fopen(filename, "rb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); return 0; } /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */ cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(&cinfo); _fclose(infile); return 0; } /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(&cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(&cinfo, infile); /* Step 3: read file parameters with jpeg_read_header() */ (void) jpeg_read_header(&cinfo, TRUE); /* We can ignore the return value from jpeg_read_header since * (a) suspension is not possible with the stdio data source, and * (b) we passed TRUE to reject a tables-only JPEG file as an error. * See libjpeg.txt for more info. */ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by * jpeg_read_header(), so we do nothing here. */ /* Step 5: Start decompressor */ (void) jpeg_start_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. * In this example, we need to make an output work buffer of the right size. */ /* JSAMPLEs per row in output buffer */ row_stride = cinfo.output_width * cinfo.output_components; /* Make a one-row-high sample array that will go away when done with image */ buffer = (*cinfo.mem->alloc_sarray) ((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1); /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo.output_scanline as the * loop counter, so that we don't have to keep track ourselves. */ while (cinfo.output_scanline < cinfo.output_height) { /* jpeg_read_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could ask for * more than one scanline at a time if that's more convenient. */ (void) jpeg_read_scanlines(&cinfo, buffer, 1); /* Assume put_scanline_someplace wants a pointer and sample count. */ //put_scanline_someplace(buffer[0], row_stride); //if(cinfo.output_scanline == 9) mem_slide_check(FALSE); dump_hex("", (unsigned char*)(buffer[0]), row_stride); } /* Step 7: Finish decompression */ (void) jpeg_finish_decompress(&cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_decompress(&cinfo); /* After finish_decompress, we can close the input file. * Here we postpone it until after no more JPEG errors are possible, * so as to simplify the setjmp error logic above. (Actually, I don't * think that jpeg_destroy can do an error exit, but why assume anything...) */ _fclose(infile); /* At this point you may want to check to see whether any corrupt-data * warnings occurred (test whether jerr.pub.num_warnings is nonzero). */ /* And we're done! */ return 1; }
void write_JPEG_file (char * filename, int quality) { /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ int outfile; /* target file */ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to _fopen() if you are on a machine that * requires it in order to write binary files. */ if ((outfile = _fopen(filename, "wb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_dest(&cinfo, outfile); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width; /* image width and height, in pixels */ cinfo.image_height = image_height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride]; (void) jpeg_write_scanlines(&cinfo, row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* After finish_compress, we can close the output file. */ _fclose(outfile); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); /* And we're done! */ }