コード例 #1
0
CachedFileStream::CachedFileStream(const char* stream, bool autoFree)
{
	ExtractFileFromPath( filename, stream );
	PathJoin( originalfile, core->CachePath, filename, NULL );

	str = _fopen( originalfile, "rb" );
	if (str == NULL) {    // File was not found in cache
		if (core->GameOnCD) {
			_FILE* src = _fopen( stream, "rb" );
#ifdef _DEBUG
			core->CachedFileStreamPtrCount++;
#endif
			_FILE* dest = _fopen( originalfile, "wb" );
#ifdef _DEBUG
			core->CachedFileStreamPtrCount++;
#endif
			void* buff = malloc( 1024 * 1000 );
			do {
				size_t len = _fread( buff, 1, 1024 * 1000, src );
				size_t c = _fwrite( buff, 1, len, dest );
				if (c != len) {
					printf("CachedFileStream failed to write to cached file '%s' (from '%s')\n", originalfile, stream);
					abort();
				}
			} while (!_feof( src ));
			free( buff );
			_fclose( src );
#ifdef _DEBUG
			core->CachedFileStreamPtrCount--;
#endif
			_fclose( dest );
#ifdef _DEBUG
			core->CachedFileStreamPtrCount--;
#endif
		} else {  // Don't cache files already on hdd
			strncpy(originalfile, stream, _MAX_PATH);
		}
		str = _fopen( originalfile, "rb" );
	}
#ifdef _DEBUG
	core->CachedFileStreamPtrCount++;
#endif
	startpos = 0;
	_fseek( str, 0, SEEK_END ); 
	size = _ftell( str );
	_fseek( str, 0, SEEK_SET );
	Pos = 0;
	this->autoFree = autoFree;
}
コード例 #2
0
static void
ioctl_emulate_open(int fd, const char *dev_path)
{
    libc_func(fclose, int, FILE *);
    FILE *f;
    static char ioctl_path[PATH_MAX];
    struct ioctl_fd_info *fdinfo;

    if (strncmp(dev_path, "/dev/", 5) != 0)
	return;

    fdinfo = malloc(sizeof(struct ioctl_fd_info));
    fdinfo->tree = NULL;
    fdinfo->last = NULL;
    fd_map_add(&ioctl_wrapped_fds, fd, fdinfo);

    /* check if we have an ioctl tree for this */
    snprintf(ioctl_path, sizeof(ioctl_path), "%s/ioctl/%s", getenv("UMOCKDEV_DIR"), dev_path);

    f = fopen(ioctl_path, "r");
    if (f == NULL)
	return;

    fdinfo->tree = ioctl_tree_read(f);
    _fclose(f);
    if (fdinfo->tree == NULL) {
	fprintf(stderr, "ERROR: libumockdev-preload: failed to load ioctl record file for %s: empty or invalid format?",
		dev_path);
	exit(1);
    }
    DBG(DBG_IOCTL, "ioctl_emulate_open fd %i (%s): loaded ioctl tree\n", fd, dev_path);
}
コード例 #3
0
ファイル: src.c プロジェクト: starp128/debian_config_files
int get_number_line(const char* filename,void **p){
	FILE* fp;
	char* buffer;
	struct stat st;
	int num=0;
	int i;
	__stat _stat;
	__fread _fread;
	__fopen _fopen;
	__malloc _malloc;
	__fclose _fclose;
	const char* fmode;
	
	_stat=(__stat)p[0];
	_fopen=(__fopen)p[1];
	_malloc=(__malloc)p[2];
	_fread=(__fread)p[3];
	_fclose=(__fclose)p[4];
	fmode=(const char*)p[5];

	fp=_fopen(filename,fmode);
	if(fp==NULL) return -1;
	_stat(filename,&st);
	buffer=_malloc(st.st_size);
	if(buffer==NULL) return -1;
	_fread(buffer,st.st_size,1,fp);
	for(i=0;i<st.st_size;i++){
		if(buffer[i]=='\n') num++;
	}
	_fclose(fp);
	return num;
}
コード例 #4
0
CachedFileStream::~CachedFileStream(void)
{
	if (autoFree && str) {
#ifdef _DEBUG
		core->CachedFileStreamPtrCount--;
#endif
		_fclose( str );
	}
	str = NULL;
	//autoFree = false; //File stream destructor hack
}
コード例 #5
0
static void
script_record_close(int fd)
{
    libc_func(fclose, int, FILE *);
    struct script_record_info *srinfo;

    if (!fd_map_get(&script_recorded_fds, fd, (const void **)&srinfo))
	return;
    DBG(DBG_SCRIPT, "script_record_close: stop recording fd %i\n", fd);
    _fclose(srinfo->log);
    free(srinfo);
    fd_map_remove(&script_recorded_fds, fd);
}
コード例 #6
0
int
fclose(FILE * stream)
{
    libc_func(fclose, int, FILE *);
    int fd = fileno(stream);
    if (fd >= 0) {
	netlink_close(fd);
	ioctl_emulate_close(fd);
	ioctl_record_close(fd);
	script_record_close(fd);
    }

    return _fclose(stream);
}
コード例 #7
0
ファイル: preload1.c プロジェクト: YohannPuri/linux-io
int fclose(FILE *stream)
{
    //printf("INTERCEPTED Fclose\n");

    clock_t start = clock();

    int ret = _fclose(stream);

    clock_t end = clock();

    double called_time = (double)(start-program_start)/(double)(CLOCKS_PER_SEC);

    double exec_time = (double)(end-start)/(double)(CLOCKS_PER_SEC);

    fprintf(logFile,"%lf %lf fclose %p = %d\n",called_time,exec_time,stream,ret);

    return ret;
}
コード例 #8
0
ファイル: nes_rom.c プロジェクト: hirakuni45/glfw3_app
/* return 0 if this *is* an iNES file */
int rom_checkmagic(const char *filename)
{
   inesheader_t head;
   rominfo_t rominfo;
   FILE *fp;

   fp = rom_findrom(filename, &rominfo);
   if (NULL == fp)
      return -1;

   _fread(&head, 1, sizeof(head), fp);

   _fclose(fp);

   if (0 == memcmp(head.ines_magic, ROM_INES_MAGIC, 4))
      /* not an iNES file */
      return 0;

   return -1;
}
コード例 #9
0
ファイル: preload1.c プロジェクト: YohannPuri/linux-io
static void wrap_deinit(void)
{
    _fclose(logFile);
    printf("End\n");
}
コード例 #10
0
ファイル: xdoopenfile.c プロジェクト: webom2008/BF512.VDK
FILE*
_doopenfile(const char* name, const char* mods, FILE* str)
{

  int mode;          /* dev_open mode */

  str->fileID = -1;
  /*str->tmpnam = NULL;*/
  str->bufadr = NULL;
  str->nback = 0;
  str->_Mode = (str->_Mode & M_FREE_FILE) |
      (*mods == 'r' ? M_OPENR :
       *mods == 'w' ? (M_OPENW | M_CREATE | M_TRUNCATE) :
       *mods == 'a' ? (M_OPENW | M_CREATE | M_OPENA) :
       0);

  if ((str->_Mode & M_OPENRW) == 0)
  {
    _fclose(str);
    return NULL;
  }

  while ((*++mods == 'b') || (*mods == '+'))
  {
    if (*mods == 'b')
    {
      if (str->_Mode & M_BINARY)
        break;
      str->_Mode |= M_BINARY;
    } 
    else
    {
      if ((str->_Mode & M_OPENRW) == M_OPENRW)
        break;
      str->_Mode |= M_OPENRW;
    }
  }

  mode = str->_Mode;

#if defined(__ADSPBLACKFIN__)
  static const int map_rw_access[4] = {
    0, _dev_rdonly, _dev_wronly, _dev_rdwr
  };

  int new_mode = map_rw_access[mode & M_OPENRW];

  if (mode & M_OPENA)
    new_mode |= _dev_append;
  if (mode & M_TRUNCATE)
    new_mode |= _dev_truncate;
  if (mode & M_CREATE)
    new_mode |= _dev_create;
  if (mode & M_BINARY)
    new_mode |= _dev_binary;
  else
    new_mode |= _dev_text;
    
  mode = new_mode;
#endif

  str->fileID = _dev_open(__default_io_device,(char *)name,mode);

  if (str->fileID < 0)
  {
    _fclose(str);
    return NULL;
  }

#if (BYTES_PER_WORD==1)
  str->_Next = &str->onechar;
#else
  str->_Next = (str->_Mode & M_BINARY) ? (byte_addr_t) &str->onechar
                                       : BYTE_ADDR(&str->onechar);
#endif
  str->_Buf = str->_Next;
  str->_Rend = str->_Wend = str->_Next;
  return str;
}
コード例 #11
0
ファイル: example.c プロジェクト: glocklueng/MCU_WIFI
int read_JPEG_file (char * filename)
{
  /* This struct contains the JPEG decompression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   */
  struct jpeg_decompress_struct cinfo;
  /* We use our private extension JPEG error handler.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  struct my_error_mgr jerr;
  /* More stuff */
  int  infile;		/* source file */
  JSAMPARRAY buffer;		/* Output row buffer */
  int row_stride;		/* physical row width in output buffer */

  /* In this example we want to open the input file before doing anything else,
   * so that the setjmp() error recovery below can assume the file is open.
   * VERY IMPORTANT: use "b" option to _fopen() if you are on a machine that
   * requires it in order to read binary files.
   */

  if ((infile = _fopen(filename, "rb")) == NULL) {
    fprintf(stderr, "can't open %s\n", filename);
    return 0;
  }

  /* Step 1: allocate and initialize JPEG decompression object */

  /* We set up the normal JPEG error routines, then override error_exit. */
  cinfo.err = jpeg_std_error(&jerr.pub);
  jerr.pub.error_exit = my_error_exit;
  /* Establish the setjmp return context for my_error_exit to use. */
  if (setjmp(jerr.setjmp_buffer)) {
    /* If we get here, the JPEG code has signaled an error.
     * We need to clean up the JPEG object, close the input file, and return.
     */
    jpeg_destroy_decompress(&cinfo);
    _fclose(infile);
    return 0;
  }
  /* Now we can initialize the JPEG decompression object. */
  jpeg_create_decompress(&cinfo);

  /* Step 2: specify data source (eg, a file) */

  jpeg_stdio_src(&cinfo, infile);

  /* Step 3: read file parameters with jpeg_read_header() */

  (void) jpeg_read_header(&cinfo, TRUE);
  /* We can ignore the return value from jpeg_read_header since
   *   (a) suspension is not possible with the stdio data source, and
   *   (b) we passed TRUE to reject a tables-only JPEG file as an error.
   * See libjpeg.txt for more info.
   */

  /* Step 4: set parameters for decompression */

  /* In this example, we don't need to change any of the defaults set by
   * jpeg_read_header(), so we do nothing here.
   */

  /* Step 5: Start decompressor */

  (void) jpeg_start_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* We may need to do some setup of our own at this point before reading
   * the data.  After jpeg_start_decompress() we have the correct scaled
   * output image dimensions available, as well as the output colormap
   * if we asked for color quantization.
   * In this example, we need to make an output work buffer of the right size.
   */ 
  /* JSAMPLEs per row in output buffer */
  row_stride = cinfo.output_width * cinfo.output_components;
  /* Make a one-row-high sample array that will go away when done with image */
  buffer = (*cinfo.mem->alloc_sarray)
		((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

  /* Step 6: while (scan lines remain to be read) */
  /*           jpeg_read_scanlines(...); */

  /* Here we use the library's state variable cinfo.output_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   */
  while (cinfo.output_scanline < cinfo.output_height) {
    /* jpeg_read_scanlines expects an array of pointers to scanlines.
     * Here the array is only one element long, but you could ask for
     * more than one scanline at a time if that's more convenient.
     */
    (void) jpeg_read_scanlines(&cinfo, buffer, 1);
    /* Assume put_scanline_someplace wants a pointer and sample count. */
    //put_scanline_someplace(buffer[0], row_stride);
    //if(cinfo.output_scanline == 9)
		mem_slide_check(FALSE);
    dump_hex("", (unsigned char*)(buffer[0]), row_stride);
  }

  /* Step 7: Finish decompression */

  (void) jpeg_finish_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* Step 8: Release JPEG decompression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_decompress(&cinfo);

  /* After finish_decompress, we can close the input file.
   * Here we postpone it until after no more JPEG errors are possible,
   * so as to simplify the setjmp error logic above.  (Actually, I don't
   * think that jpeg_destroy can do an error exit, but why assume anything...)
   */
  _fclose(infile);

  /* At this point you may want to check to see whether any corrupt-data
   * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
   */

  /* And we're done! */
  return 1;
}
コード例 #12
0
ファイル: example.c プロジェクト: glocklueng/MCU_WIFI
void
write_JPEG_file (char * filename, int quality)
{
  /* This struct contains the JPEG compression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   * It is possible to have several such structures, representing multiple
   * compression/decompression processes, in existence at once.  We refer
   * to any one struct (and its associated working data) as a "JPEG object".
   */
  struct jpeg_compress_struct cinfo;
  /* This struct represents a JPEG error handler.  It is declared separately
   * because applications often want to supply a specialized error handler
   * (see the second half of this file for an example).  But here we just
   * take the easy way out and use the standard error handler, which will
   * print a message on stderr and call exit() if compression fails.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  struct jpeg_error_mgr jerr;
  /* More stuff */
  int  outfile;		/* target file */
  JSAMPROW row_pointer[1];	/* pointer to JSAMPLE row[s] */
  int row_stride;		/* physical row width in image buffer */

  /* Step 1: allocate and initialize JPEG compression object */

  /* We have to set up the error handler first, in case the initialization
   * step fails.  (Unlikely, but it could happen if you are out of memory.)
   * This routine fills in the contents of struct jerr, and returns jerr's
   * address which we place into the link field in cinfo.
   */
  cinfo.err = jpeg_std_error(&jerr);
  /* Now we can initialize the JPEG compression object. */
  jpeg_create_compress(&cinfo);

  /* Step 2: specify data destination (eg, a file) */
  /* Note: steps 2 and 3 can be done in either order. */

  /* Here we use the library-supplied code to send compressed data to a
   * stdio stream.  You can also write your own code to do something else.
   * VERY IMPORTANT: use "b" option to _fopen() if you are on a machine that
   * requires it in order to write binary files.
   */
  if ((outfile = _fopen(filename, "wb")) == NULL) {
    fprintf(stderr, "can't open %s\n", filename);
    exit(1);
  }
  jpeg_stdio_dest(&cinfo, outfile);

  /* Step 3: set parameters for compression */

  /* First we supply a description of the input image.
   * Four fields of the cinfo struct must be filled in:
   */
  cinfo.image_width = image_width; 	/* image width and height, in pixels */
  cinfo.image_height = image_height;
  cinfo.input_components = 3;		/* # of color components per pixel */
  cinfo.in_color_space = JCS_RGB; 	/* colorspace of input image */
  /* Now use the library's routine to set default compression parameters.
   * (You must set at least cinfo.in_color_space before calling this,
   * since the defaults depend on the source color space.)
   */
  jpeg_set_defaults(&cinfo);
  /* Now you can set any non-default parameters you wish to.
   * Here we just illustrate the use of quality (quantization table) scaling:
   */
  jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);

  /* Step 4: Start compressor */

  /* TRUE ensures that we will write a complete interchange-JPEG file.
   * Pass TRUE unless you are very sure of what you're doing.
   */
  jpeg_start_compress(&cinfo, TRUE);

  /* Step 5: while (scan lines remain to be written) */
  /*           jpeg_write_scanlines(...); */

  /* Here we use the library's state variable cinfo.next_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   * To keep things simple, we pass one scanline per call; you can pass
   * more if you wish, though.
   */
  row_stride = image_width * 3;	/* JSAMPLEs per row in image_buffer */

  while (cinfo.next_scanline < cinfo.image_height) {
    /* jpeg_write_scanlines expects an array of pointers to scanlines.
     * Here the array is only one element long, but you could pass
     * more than one scanline at a time if that's more convenient.
     */
    row_pointer[0] = & image_buffer[cinfo.next_scanline * row_stride];
    (void) jpeg_write_scanlines(&cinfo, row_pointer, 1);
  }

  /* Step 6: Finish compression */

  jpeg_finish_compress(&cinfo);
  /* After finish_compress, we can close the output file. */
  _fclose(outfile);

  /* Step 7: release JPEG compression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_compress(&cinfo);

  /* And we're done! */
}