コード例 #1
0
ファイル: sqrlow_KS.c プロジェクト: goens/flint2
void _fmpz_poly_sqrlow_KS(fmpz * res, const fmpz * poly, long len, long n)
{
    int neg;
    long bits, limbs, loglen, sign = 0;
    mp_limb_t *arr_in, *arr_out;

    FMPZ_VEC_NORM(poly, len);

    if (len == 0)
    {
        _fmpz_vec_zero(res, n);
        return;
    }

    neg = (fmpz_sgn(poly + len - 1) > 0) ? 0 : -1;

    if (n > 2 * len - 1)
    {
        _fmpz_vec_zero(res + 2 * len - 1, n - (2 * len - 1));
        n = 2 * len - 1;
    }

    bits = _fmpz_vec_max_bits(poly, len);
    if (bits < 0)
    {
        sign = 1;
        bits = - bits;
    }

    loglen = FLINT_BIT_COUNT(len);
    bits   = 2 * bits + loglen + sign;
    limbs  = (bits * len - 1) / FLINT_BITS + 1;

    arr_in  = flint_calloc(limbs, sizeof(mp_limb_t));
    arr_out = flint_malloc((2 * limbs) * sizeof(mp_limb_t));

    _fmpz_poly_bit_pack(arr_in, poly, len, bits, neg);

    mpn_sqr(arr_out, arr_in, limbs);

    if (sign)
        _fmpz_poly_bit_unpack(res, n, arr_out, bits, 0);
    else
        _fmpz_poly_bit_unpack_unsigned(res, n, arr_out, bits);

    flint_free(arr_in);
    flint_free(arr_out);
}
コード例 #2
0
ファイル: bit_unpack.c プロジェクト: clear731/lattice
void
fmpz_poly_bit_unpack(fmpz_poly_t poly, const fmpz_t f, mp_bitcnt_t bit_size)
{
    slong len;
    mpz_t tmp;
    int negate, borrow;

    if (bit_size == 0 || fmpz_is_zero(f))
    {
        fmpz_poly_zero(poly);
        return;
    }

    /* Round up */
    len = (fmpz_bits(f) + bit_size - 1) / bit_size;
    negate = (fmpz_sgn(f) < 0) ? -1 : 0;

    mpz_init2(tmp, bit_size*len);

    /* TODO: avoid all this wastefulness */
    flint_mpn_zero(tmp->_mp_d, tmp->_mp_alloc);
    fmpz_get_mpz(tmp, f);

    fmpz_poly_fit_length(poly, len + 1);

    borrow = _fmpz_poly_bit_unpack(poly->coeffs, len,
                    tmp->_mp_d, bit_size, negate);

    if (borrow)
    {
        fmpz_set_si(poly->coeffs + len, negate ? WORD(-1) : WORD(1));
        _fmpz_poly_set_length(poly, len + 1);
    }
    else
    {
        _fmpz_poly_set_length(poly, len);
        _fmpz_poly_normalise(poly);
    }

    mpz_clear(tmp);
}
コード例 #3
0
ファイル: mullow_KS.c プロジェクト: goens/flint2
void
_fmpz_poly_mullow_KS(fmpz * res, const fmpz * poly1, long len1,
                                 const fmpz * poly2, long len2, long n)
{
    int neg1, neg2;
    long limbs1, limbs2, loglen;
    long bits1, bits2, bits;
    mp_limb_t *arr1, *arr2, *arr3;
    long sign = 0;

    FMPZ_VEC_NORM(poly1, len1);
    FMPZ_VEC_NORM(poly2, len2);

    if (!len1 | !len2)
    {
        _fmpz_vec_zero(res, n);
        return;
    }

    neg1 = (fmpz_sgn(poly1 + len1 - 1) > 0) ? 0 : -1;
    neg2 = (fmpz_sgn(poly2 + len2 - 1) > 0) ? 0 : -1;

    if (n > len1 + len2 - 1)
    {
       _fmpz_vec_zero(res + len1 + len2 - 1, n - (len1 + len2 - 1));
       n = len1 + len2 - 1;
    }

    bits1 = _fmpz_vec_max_bits(poly1, len1);
    if (bits1 < 0)
    {
        sign = 1;
        bits1 = -bits1;
    }

    if (poly1 != poly2)
    {
        bits2 = _fmpz_vec_max_bits(poly2, len2);
        if (bits2 < 0)
        {
            sign = 1;
            bits2 = -bits2;
        }
    }
    else
        bits2 = bits1;

    loglen = FLINT_BIT_COUNT(FLINT_MIN(len1, len2));
    bits = bits1 + bits2 + loglen + sign;

    limbs1 = (bits * len1 - 1) / FLINT_BITS + 1;
    limbs2 = (bits * len2 - 1) / FLINT_BITS + 1;

    if (poly1 == poly2)
    {
        arr1 = (mp_ptr) flint_calloc(limbs1, sizeof(mp_limb_t));
        arr2 = arr1;
        _fmpz_poly_bit_pack(arr1, poly1, len1, bits, neg1);
    }
    else
    {
        arr1 = (mp_ptr) flint_calloc(limbs1 + limbs2, sizeof(mp_limb_t));
        arr2 = arr1 + limbs1;
        _fmpz_poly_bit_pack(arr1, poly1, len1, bits, neg1);
        _fmpz_poly_bit_pack(arr2, poly2, len2, bits, neg2);
    }

    arr3 = (mp_ptr) flint_malloc((limbs1 + limbs2) * sizeof(mp_limb_t));

    if (limbs1 == limbs2)
        mpn_mul_n(arr3, arr1, arr2, limbs1);
    else if (limbs1 > limbs2)
        mpn_mul(arr3, arr1, limbs1, arr2, limbs2);
    else
        mpn_mul(arr3, arr2, limbs2, arr1, limbs1);
    
    if (sign)
        _fmpz_poly_bit_unpack(res, n, arr3, bits, neg1 ^ neg2);
    else
        _fmpz_poly_bit_unpack_unsigned(res, n, arr3, bits);

    flint_free(arr1);
    flint_free(arr3);
}
コード例 #4
0
ファイル: gcd_heuristic.c プロジェクト: goens/flint2
/* Assumes len1 != 0 != len2 */
int
_fmpz_poly_gcd_heuristic(fmpz * res, const fmpz * poly1, long len1, 
                                        const fmpz * poly2, long len2)
{
	ulong bits1, bits2, max_bits, pack_bits, bound_bits, bits_G, bits_Q;
   ulong limbs1, limbs2, limbsg, pack_limbs, qlimbs;
   ulong log_glen, log_length;
   long sign1, sign2, glen, qlen;
	fmpz_t ac, bc, d, gc;
   fmpz * A, * B, * G, * Q, * t;
   mp_ptr array1, array2, arrayg, q, temp;
   int divides;

   fmpz_init(ac);
   fmpz_init(bc);
   fmpz_init(d);
   
	/* compute gcd of content of poly1 and poly2 */
   _fmpz_poly_content(ac, poly1, len1);
   _fmpz_poly_content(bc, poly2, len2);
   fmpz_gcd(d, ac, bc);

   /* special case, one of the polys is a constant */
   if (len2 == 1) /* if len1 == 1 then so does len2 */
   {
      fmpz_set(res, d);

      fmpz_clear(ac);
      fmpz_clear(bc);
	   fmpz_clear(d);

      return 1;
   }
   
   /* divide poly1 and poly2 by their content */
   A = _fmpz_vec_init(len1);
   B = _fmpz_vec_init(len2);
   _fmpz_vec_scalar_divexact_fmpz(A, poly1, len1, ac);
   _fmpz_vec_scalar_divexact_fmpz(B, poly2, len2, bc);
   fmpz_clear(ac);
   fmpz_clear(bc);
	   
	/* special case, one of the polys is length 2 */
   if (len2 == 2) /* if len1 == 2 then so does len2 */
	{
		Q = _fmpz_vec_init(len1 - len2 + 1);
		if (_fmpz_poly_divides(Q, A, len1, B, 2))
      {
		   _fmpz_vec_scalar_mul_fmpz(res, B, 2, d);
         if (fmpz_sgn(res + 1) < 0)
            _fmpz_vec_neg(res, res, 2);
      }
		else  
      {
			fmpz_set(res, d);
         fmpz_zero(res + 1);
      }

		fmpz_clear(d);
		_fmpz_vec_clear(A, len1);
      _fmpz_vec_clear(B, len2);
      _fmpz_vec_clear(Q, len1 - len2 + 1);
      
      return 1;
	}
	
   /* 
      Determine how many bits (pack_bits) to pack into. The bound 
      bound_bits ensures that if G | A and G | B with G primitive 
      then G is the gcd of A and B. The bound is taken from 
      http://arxiv.org/abs/cs/0206032v1
   */
   bits1 = FLINT_ABS(_fmpz_vec_max_bits(A, len1));
	bits2 = FLINT_ABS(_fmpz_vec_max_bits(B, len2));
	max_bits = FLINT_MAX(bits1, bits2);
   			
	bound_bits = FLINT_MIN(bits1, bits2) + 6; 
	pack_bits = FLINT_MAX(bound_bits, max_bits); /* need to pack original polys */
   pack_limbs = (pack_bits - 1)/FLINT_BITS + 1;
   
	if (pack_bits >= 32) /* pack into multiples of limbs if >= 32 bits */
      pack_bits = FLINT_BITS*pack_limbs;
		
   /* allocate space to pack into */
   limbs1 = (pack_bits*len1 - 1)/FLINT_BITS + 1;
   limbs2 = (pack_bits*len2 - 1)/FLINT_BITS + 1;
	array1 = flint_calloc(limbs1, sizeof(mp_limb_t));
   array2 = flint_calloc(limbs2, sizeof(mp_limb_t));
   arrayg = flint_calloc(limbs2, sizeof(mp_limb_t));
   
   /* pack first poly and normalise */
   sign1 = (long) fmpz_sgn(A + len1 - 1);
	_fmpz_poly_bit_pack(array1, A, len1, pack_bits, sign1);
	while (array1[limbs1 - 1] == 0) limbs1--;

   /* pack second poly and normalise */
   sign2 = (long) fmpz_sgn(B + len2 - 1);
   _fmpz_poly_bit_pack(array2, B, len2, pack_bits, sign2);
	while (array2[limbs2 - 1] == 0) limbs2--;
	
	/* compute integer GCD */
   limbsg = mpn_gcd_full(arrayg, array1, limbs1, array2, limbs2);
	
   /* 
      Make space for unpacked gcd. May have one extra coeff due to 
      1 0 -x being packed as 0 -1 -x. 
   */
   glen = FLINT_MIN((limbsg*FLINT_BITS)/pack_bits + 1, len2); 
   G = _fmpz_vec_init(glen);
   
   /* unpack gcd */
   _fmpz_poly_bit_unpack(G, glen, arrayg, pack_bits, 0);
   while (G[glen - 1] == 0) glen--;
   
	/* divide by any content */
   fmpz_init(gc);
	_fmpz_poly_content(gc, G, glen);

   if (!fmpz_is_one(gc)) 
      limbsg = mpn_tdiv_q_fmpz_inplace(arrayg, limbsg, gc);

   /* make space for quotient and remainder of first poly by gcd */
   qlimbs = limbs1 - limbsg + 1;
   qlen = FLINT_MIN(len1, (qlimbs*FLINT_BITS)/pack_bits + 1);
   qlimbs = (qlen*pack_bits - 1)/FLINT_BITS + 1;
   q = flint_calloc(qlimbs, sizeof(mp_limb_t));
   temp = flint_malloc(limbsg*sizeof(mp_limb_t));
   
	divides = 0;

   if (mpn_divides(q, array1, limbs1, arrayg, limbsg, temp)) 
	{
      /* unpack quotient of first poly by gcd */
      Q = _fmpz_vec_init(len1); 
      t = _fmpz_vec_init(len1 + glen);
      _fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
      while (Q[qlen - 1] == 0) qlen--;
      
      /* divide by content */
      _fmpz_vec_scalar_divexact_fmpz(G, G, glen, gc);
		
      /* check if we really need to multiply out to check for exact quotient */
      bits_G = FLINT_ABS(_fmpz_vec_max_bits(G, glen));
		bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
		log_glen = FLINT_BIT_COUNT(glen);
		log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));
       
	   divides = (bits_G + bits_Q + log_length < pack_bits);
     
      if (!divides) /* need to multiply out to check exact quotient */
         divides = multiplies_out(A, len1, Q, qlen, G, glen, sign1, t);

		if (divides) /* quotient really was exact */
		{
         mpn_zero(q, qlimbs);
          
         if (mpn_divides(q, array2, limbs2, arrayg, limbsg, temp)) 
	      {
            /* unpack quotient of second poly by gcd */
            qlimbs = limbs2 - limbsg + 1;
            qlen = FLINT_MIN(len2, (qlimbs*FLINT_BITS - 1)/pack_bits + 1);
            _fmpz_poly_bit_unpack(Q, qlen, q, pack_bits, 0);
            while (Q[qlen - 1] == 0) qlen--;
            
            /* check if we really need to multiply out to check for exact quotient */
            bits_Q = FLINT_ABS(_fmpz_vec_max_bits(Q, qlen));
				log_length = FLINT_MIN(log_glen, FLINT_BIT_COUNT(qlen));

				divides = (bits_G + bits_Q + log_length < pack_bits);
		      
            if (!divides) /* we need to multiply out */
               divides = multiplies_out(B, len2, Q, qlen, G, glen, sign1, t);
			} 
		} 

      _fmpz_vec_clear(t, len1 + glen);
      _fmpz_vec_clear(Q, len1);
	}

   flint_free(q); 
	flint_free(temp); 
	flint_free(arrayg); 
	flint_free(array1); 
	flint_free(array2); 
	fmpz_clear(gc); 
	
	_fmpz_vec_clear(A, len1);
	_fmpz_vec_clear(B, len2);
	
   /* we found the gcd, so multiply by content */
   if (divides)
   {
	   _fmpz_vec_zero(res + glen, len2 - glen);
      _fmpz_vec_scalar_mul_fmpz(res, G, glen, d);
   }
		
   fmpz_clear(d);
   _fmpz_vec_clear(G, glen);
		
   return divides;
}