void srslte_tdec_sse_decision(srslte_tdec_sse_t * h, uint8_t *output, uint32_t long_cb) { __m128i zero = _mm_set1_epi16(0); __m128i lsb_mask = _mm_set1_epi16(1); __m128i *appPtr = (__m128i*) h->app1; __m128i *outPtr = (__m128i*) output; __m128i ap, out, out0, out1; for (uint32_t i = 0; i < long_cb/16; i++) { ap = _mm_load_si128(appPtr); appPtr++; out0 = _mm_and_si128(_mm_cmpgt_epi16(ap, zero), lsb_mask); ap = _mm_load_si128(appPtr); appPtr++; out1 = _mm_and_si128(_mm_cmpgt_epi16(ap, zero), lsb_mask); out = _mm_packs_epi16(out0, out1); _mm_store_si128(outPtr, out); outPtr++; } if (long_cb%16) { for (int i=0;i<8;i++) { output[long_cb-8+i] = h->app1[long_cb-8+i]>0?1:0; } } }
static INLINE unsigned build_mask_linear(int c, int dcdx, int dcdy) { __m128i cstep0 = _mm_setr_epi32(c, c+dcdx, c+dcdx*2, c+dcdx*3); __m128i xdcdy = _mm_set1_epi32(dcdy); /* Get values across the quad */ __m128i cstep1 = _mm_add_epi32(cstep0, xdcdy); __m128i cstep2 = _mm_add_epi32(cstep1, xdcdy); __m128i cstep3 = _mm_add_epi32(cstep2, xdcdy); /* pack pairs of results into epi16 */ __m128i cstep01 = _mm_packs_epi32(cstep0, cstep1); __m128i cstep23 = _mm_packs_epi32(cstep2, cstep3); /* pack into epi8, preserving sign bits */ __m128i result = _mm_packs_epi16(cstep01, cstep23); /* extract sign bits to create mask */ return _mm_movemask_epi8(result); }
static int GetResidualCostSSE2(int ctx0, const VP8Residual* const res) { uint8_t levels[16], ctxs[16]; uint16_t abs_levels[16]; int n = res->first; // should be prob[VP8EncBands[n]], but it's equivalent for n=0 or 1 const int p0 = res->prob[n][ctx0][0]; CostArrayPtr const costs = res->costs; const uint16_t* t = costs[n][ctx0]; // bit_cost(1, p0) is already incorporated in t[] tables, but only if ctx != 0 // (as required by the syntax). For ctx0 == 0, we need to add it here or it'll // be missing during the loop. int cost = (ctx0 == 0) ? VP8BitCost(1, p0) : 0; if (res->last < 0) { return VP8BitCost(0, p0); } { // precompute clamped levels and contexts, packed to 8b. const __m128i zero = _mm_setzero_si128(); const __m128i kCst2 = _mm_set1_epi8(2); const __m128i kCst67 = _mm_set1_epi8(MAX_VARIABLE_LEVEL); const __m128i c0 = _mm_loadu_si128((const __m128i*)&res->coeffs[0]); const __m128i c1 = _mm_loadu_si128((const __m128i*)&res->coeffs[8]); const __m128i D0 = _mm_sub_epi16(zero, c0); const __m128i D1 = _mm_sub_epi16(zero, c1); const __m128i E0 = _mm_max_epi16(c0, D0); // abs(v), 16b const __m128i E1 = _mm_max_epi16(c1, D1); const __m128i F = _mm_packs_epi16(E0, E1); const __m128i G = _mm_min_epu8(F, kCst2); // context = 0,1,2 const __m128i H = _mm_min_epu8(F, kCst67); // clamp_level in [0..67] _mm_storeu_si128((__m128i*)&ctxs[0], G); _mm_storeu_si128((__m128i*)&levels[0], H); _mm_storeu_si128((__m128i*)&abs_levels[0], E0); _mm_storeu_si128((__m128i*)&abs_levels[8], E1); } for (; n < res->last; ++n) { const int ctx = ctxs[n]; const int level = levels[n]; const int flevel = abs_levels[n]; // full level cost += VP8LevelFixedCosts[flevel] + t[level]; // simplified VP8LevelCost() t = costs[n + 1][ctx]; } // Last coefficient is always non-zero { const int level = levels[n]; const int flevel = abs_levels[n]; assert(flevel != 0); cost += VP8LevelFixedCosts[flevel] + t[level]; if (n < 15) { const int b = VP8EncBands[n + 1]; const int ctx = ctxs[n]; const int last_p0 = res->prob[b][ctx][0]; cost += VP8BitCost(0, last_p0); } } return cost; }
__m128i test_mm_packs_epi16(__m128i A, __m128i B) { // DAG-LABEL: test_mm_packs_epi16 // DAG: call <16 x i8> @llvm.x86.sse2.packsswb.128(<8 x i16> %{{.*}}, <8 x i16> %{{.*}}) // // ASM-LABEL: test_mm_packs_epi16 // ASM: packsswb return _mm_packs_epi16(A, B); }
mlib_status __mlib_VectorConvert_S8_S32_Sat( mlib_s8 *z, const mlib_s32 *x, mlib_s32 n) { if (n < 1) return (MLIB_FAILURE); mlib_s32 i, ax, az, nstep, n1, n2, n3, xval; mlib_s32 *px = (mlib_s32 *)x; mlib_s8 *pz = (mlib_s8 *)z; __m128i zbuf, buf1, buf2, buf3, buf4, mask; ax = (mlib_addr)x & 15; az = (mlib_addr)z & 15; nstep = 16 / sizeof (mlib_s8); n1 = ((16 - ax) & 15) / sizeof (mlib_s32); n2 = (n - n1) / nstep; n3 = n - n1 - n2 * nstep; if (n2 < 1) { for (i = 0; i < n; i++) { xval = *px++; SAT_S8(xval); *pz++ = xval; } } else { for (i = 0; i < n1; i++) { xval = *px++; SAT_S8(xval); *pz++ = xval; } for (i = 0; i < n2; i++) { buf1 = _mm_load_si128((__m128i *)px); buf2 = _mm_load_si128((__m128i *)px + 1); buf3 = _mm_load_si128((__m128i *)px + 2); buf4 = _mm_load_si128((__m128i *)px + 3); buf1 = _mm_packs_epi32(buf1, buf2); buf3 = _mm_packs_epi32(buf3, buf4); zbuf = _mm_packs_epi16(buf1, buf3); _mm_storeu_si128((__m128i *)pz, zbuf); px += nstep; pz += nstep; } for (i = 0; i < n3; i++) { xval = *px++; SAT_S8(xval); *pz++ = xval; } } return (MLIB_SUCCESS); }
// Shift each byte of "x" by 3 bits while preserving by the sign bit. static WEBP_INLINE void SignedShift8b(__m128i* const x) { const __m128i zero = _mm_setzero_si128(); const __m128i signs = _mm_cmpgt_epi8(zero, *x); const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs); // s8 -> s16 sign extend const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs); const __m128i lo_1 = _mm_srai_epi16(lo_0, 3); const __m128i hi_1 = _mm_srai_epi16(hi_0, 3); *x = _mm_packs_epi16(lo_1, hi_1); }
static INLINE void build_masks(int c, int cdiff, int dcdx, int dcdy, unsigned *outmask, unsigned *partmask) { __m128i cstep0 = _mm_setr_epi32(c, c+dcdx, c+dcdx*2, c+dcdx*3); __m128i xdcdy = _mm_set1_epi32(dcdy); /* Get values across the quad */ __m128i cstep1 = _mm_add_epi32(cstep0, xdcdy); __m128i cstep2 = _mm_add_epi32(cstep1, xdcdy); __m128i cstep3 = _mm_add_epi32(cstep2, xdcdy); { __m128i cstep01, cstep23, result; cstep01 = _mm_packs_epi32(cstep0, cstep1); cstep23 = _mm_packs_epi32(cstep2, cstep3); result = _mm_packs_epi16(cstep01, cstep23); *outmask |= _mm_movemask_epi8(result); } { __m128i cio4 = _mm_set1_epi32(cdiff); __m128i cstep01, cstep23, result; cstep0 = _mm_add_epi32(cstep0, cio4); cstep1 = _mm_add_epi32(cstep1, cio4); cstep2 = _mm_add_epi32(cstep2, cio4); cstep3 = _mm_add_epi32(cstep3, cio4); cstep01 = _mm_packs_epi32(cstep0, cstep1); cstep23 = _mm_packs_epi32(cstep2, cstep3); result = _mm_packs_epi16(cstep01, cstep23); *partmask |= _mm_movemask_epi8(result); } }
// Updates values of 2 pixels at MB edge during complex filtering. // Update operations: // q = q - delta and p = p + delta; where delta = [(a_hi >> 7), (a_lo >> 7)] // Pixels 'pi' and 'qi' are int8_t on input, uint8_t on output (sign flip). static WEBP_INLINE void Update2Pixels(__m128i* const pi, __m128i* const qi, const __m128i* const a0_lo, const __m128i* const a0_hi) { const __m128i a1_lo = _mm_srai_epi16(*a0_lo, 7); const __m128i a1_hi = _mm_srai_epi16(*a0_hi, 7); const __m128i delta = _mm_packs_epi16(a1_lo, a1_hi); const __m128i sign_bit = _mm_set1_epi8(0x80); *pi = _mm_adds_epi8(*pi, delta); *qi = _mm_subs_epi8(*qi, delta); FLIP_SIGN_BIT2(*pi, *qi); }
static void aom_filter_block1d8_h4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32, filt2Reg, filt3Reg; __m128i secondFilters, thirdFilters; __m128i srcRegFilt32b1_1, srcRegFilt32b2, srcRegFilt32b3; __m128i srcReg32b1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); filt2Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32)); filt3Reg = _mm_load_si128((__m128i const *)(filt_h4 + 32 * 2)); for (i = output_height; i > 0; i -= 1) { srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); // filter the source buffer srcRegFilt32b3 = _mm_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2 = _mm_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm_maddubs_epi16(srcRegFilt32b2, thirdFilters); srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b3, srcRegFilt32b2); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; _mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1); output_ptr += output_pitch; } }
void demod_16qam_lte_b_sse(const cf_t *symbols, int8_t *llr, int nsymbols) { float *symbolsPtr = (float*) symbols; __m128i *resultPtr = (__m128i*) llr; __m128 symbol1, symbol2, symbol3, symbol4; __m128i symbol_i1, symbol_i2, symbol_i3, symbol_i4, symbol_i, symbol_abs, symbol_12, symbol_34; __m128i offset = _mm_set1_epi8(2*SCALE_BYTE_CONV_QAM16/sqrt(10)); __m128i result1n, result1a, result2n, result2a; __m128 scale_v = _mm_set1_ps(-SCALE_BYTE_CONV_QAM16); __m128i shuffle_negated_1 = _mm_set_epi8(0xff,0xff,7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0); __m128i shuffle_abs_1 = _mm_set_epi8(7,6,0xff,0xff,5,4,0xff,0xff,3,2,0xff,0xff,1,0,0xff,0xff); __m128i shuffle_negated_2 = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8); __m128i shuffle_abs_2 = _mm_set_epi8(15,14,0xff,0xff,13,12,0xff,0xff,11,10,0xff,0xff,9,8,0xff,0xff); for (int i=0;i<nsymbols/8;i++) { symbol1 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol2 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol3 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol4 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol_i1 = _mm_cvtps_epi32(_mm_mul_ps(symbol1, scale_v)); symbol_i2 = _mm_cvtps_epi32(_mm_mul_ps(symbol2, scale_v)); symbol_i3 = _mm_cvtps_epi32(_mm_mul_ps(symbol3, scale_v)); symbol_i4 = _mm_cvtps_epi32(_mm_mul_ps(symbol4, scale_v)); symbol_12 = _mm_packs_epi32(symbol_i1, symbol_i2); symbol_34 = _mm_packs_epi32(symbol_i3, symbol_i4); symbol_i = _mm_packs_epi16(symbol_12, symbol_34); symbol_abs = _mm_abs_epi8(symbol_i); symbol_abs = _mm_sub_epi8(symbol_abs, offset); result1n = _mm_shuffle_epi8(symbol_i, shuffle_negated_1); result1a = _mm_shuffle_epi8(symbol_abs, shuffle_abs_1); result2n = _mm_shuffle_epi8(symbol_i, shuffle_negated_2); result2a = _mm_shuffle_epi8(symbol_abs, shuffle_abs_2); _mm_store_si128(resultPtr, _mm_or_si128(result1n, result1a)); resultPtr++; _mm_store_si128(resultPtr, _mm_or_si128(result2n, result2a)); resultPtr++; } // Demodulate last symbols for (int i=8*(nsymbols/8);i<nsymbols;i++) { short yre = (int8_t) (SCALE_BYTE_CONV_QAM16*crealf(symbols[i])); short yim = (int8_t) (SCALE_BYTE_CONV_QAM16*cimagf(symbols[i])); llr[4*i+0] = -yre; llr[4*i+1] = -yim; llr[4*i+2] = abs(yre)-2*SCALE_BYTE_CONV_QAM16/sqrt(10); llr[4*i+3] = abs(yim)-2*SCALE_BYTE_CONV_QAM16/sqrt(10); } }
__m64 _m_packsswb(__m64 _MM1, __m64 _MM2) { __m128i lhs = {0}, rhs = {0}; lhs.m128i_i64[0] = _MM1.m64_i64; rhs.m128i_i64[0] = _MM2.m64_i64; lhs = _mm_packs_epi16(lhs, rhs); _MM1.m64_i32[0] = lhs.m128i_i32[0]; _MM1.m64_i32[1] = lhs.m128i_i32[2]; return _MM1; }
static void SetResidualCoeffsSSE2(const int16_t* const coeffs, VP8Residual* const res) { const __m128i c0 = _mm_loadu_si128((const __m128i*)(coeffs + 0)); const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8)); // Use SSE2 to compare 16 values with a single instruction. const __m128i zero = _mm_setzero_si128(); const __m128i m0 = _mm_packs_epi16(c0, c1); const __m128i m1 = _mm_cmpeq_epi8(m0, zero); // Get the comparison results as a bitmask into 16bits. Negate the mask to get // the position of entries that are not equal to zero. We don't need to mask // out least significant bits according to res->first, since coeffs[0] is 0 // if res->first > 0. const uint32_t mask = 0x0000ffffu ^ (uint32_t)_mm_movemask_epi8(m1); // The position of the most significant non-zero bit indicates the position of // the last non-zero value. assert(res->first == 0 || coeffs[0] == 0); res->last = mask ? BitsLog2Floor(mask) : -1; res->coeffs = coeffs; }
static void aom_filter_block1d4_h4_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m128i addFilterReg32, filt1Reg, firstFilters, srcReg32b1, srcRegFilt32b1_1; unsigned int i; src_ptr -= 3; addFilterReg32 = _mm_set1_epi16(32); filtersReg = _mm_loadu_si128((const __m128i *)filter); filtersReg = _mm_srai_epi16(filtersReg, 1); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi32(0x5040302u)); filt1Reg = _mm_load_si128((__m128i const *)(filtd4)); for (i = output_height; i > 0; i -= 1) { // load the 2 strides of source srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr); // filter the source buffer srcRegFilt32b1_1 = _mm_shuffle_epi8(srcReg32b1, filt1Reg); // multiply 4 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b1_1 = _mm_hadds_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); // shift by 6 bit each 16 bit srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32); srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve result srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128()); src_ptr += src_pixels_per_line; *((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1); output_ptr += output_pitch; } }
static INLINE unsigned sign_bits4(const __m128i *cstep, int cdiff) { /* Adjust the step values */ __m128i cio4 = _mm_set1_epi32(cdiff); __m128i cstep0 = _mm_add_epi32(cstep[0], cio4); __m128i cstep1 = _mm_add_epi32(cstep[1], cio4); __m128i cstep2 = _mm_add_epi32(cstep[2], cio4); __m128i cstep3 = _mm_add_epi32(cstep[3], cio4); /* Pack down to epi8 */ __m128i cstep01 = _mm_packs_epi32(cstep0, cstep1); __m128i cstep23 = _mm_packs_epi32(cstep2, cstep3); __m128i result = _mm_packs_epi16(cstep01, cstep23); /* Extract the sign bits */ return _mm_movemask_epi8(result); }
static void GF_FUNC_ALIGN VS_CC float_to_dst_8bit(const float *srcp, uint8_t *dstp, int width, int height, int src_stride, int dst_stride, float th, int bits) { __m128 tmax = _mm_set1_ps(th); for (int y = 0; y < height; y++) { for (int x = 0; x < width; x += 16) { __m128 xmf0 = _mm_cmpge_ps(_mm_load_ps(srcp + x), tmax); __m128 xmf1 = _mm_cmpge_ps(_mm_load_ps(srcp + x + 4), tmax); __m128 xmf2 = _mm_cmpge_ps(_mm_load_ps(srcp + x + 8), tmax); __m128 xmf3 = _mm_cmpge_ps(_mm_load_ps(srcp + x + 12), tmax); __m128i xmi0 = _mm_packs_epi32(_mm_castps_si128(xmf0), _mm_castps_si128(xmf1)); __m128i xmi1 = _mm_packs_epi32(_mm_castps_si128(xmf2), _mm_castps_si128(xmf3)); xmi0 = _mm_packs_epi16(xmi0, xmi1); _mm_store_si128((__m128i *)(dstp + x), xmi0); } srcp += src_stride; dstp += dst_stride; } }
/** * SSE Implementation of \c cnsFormula (subroutine of cnsResponse). * \c scale, \c gaussI2 and \c regVar are 32bit floats (gaussI2 as A and B). * \c sobelX, \c sobelY, \c gaussI are signed short. * \c result is a packed vector of unsigned signed 8bit number with the x and y component * alternating and \c offset (unsigned char) added. */ ALWAYSINLINE static void cnsFormula(__m128i& result, __m128i sobelX, __m128i sobelY, __m128i& gaussI, const __m128& gaussI2A, const __m128& gaussI2B, const __m128& scale, const __m128& regVar, __m128i offset) { __m128 gaussIA = _mm_cvtepi32_ps(_mm_unpacklo_epi16(gaussI, _mm_setzero_si128())); __m128 gaussIB = _mm_cvtepi32_ps(_mm_unpackhi_epi16(gaussI, _mm_setzero_si128())); __m128 factorA = _mm_add_ps(_mm_sub_ps(gaussI2A, _mm_mul_ps(gaussIA, gaussIA)), regVar); // gaussI2-gaussI^2+regVar __m128 factorB = _mm_add_ps(_mm_sub_ps(gaussI2B, _mm_mul_ps(gaussIB, gaussIB)), regVar); factorA = _mm_mul_ps(_mm_rsqrt_ps(factorA), scale); // scale/sqrt(gaussI2-gaussI^2+regVar) factorB = _mm_mul_ps(_mm_rsqrt_ps(factorB), scale); // (2^-11)*sobelX*(scale/sqrt(gaussI2-gaussI^2+regVar)) __m128i factor = _mm_packs_epi32(_mm_cvtps_epi32(factorA), _mm_cvtps_epi32(factorB)); __m128i resultXepi16 = _mm_mulhi_epi16(_mm_slli_epi16(sobelX, 5), factor); __m128i resultYepi16 = _mm_mulhi_epi16(_mm_slli_epi16(sobelY, 5), factor); // Convert to 8bit and interleave X and Y // the second argument of packs duplicates values to higher bytes, but these are ignored later, unpacklo interleaves X and Y __m128i resultepi8 = _mm_unpacklo_epi8(_mm_packs_epi16(resultXepi16, resultXepi16), _mm_packs_epi16(resultYepi16, resultYepi16)); result = _mm_add_epi8(resultepi8, offset); // add offset, switching to epu8 }
void demod_64qam_lte_b_sse(const cf_t *symbols, int8_t *llr, int nsymbols) { float *symbolsPtr = (float*) symbols; __m128i *resultPtr = (__m128i*) llr; __m128 symbol1, symbol2, symbol3, symbol4; __m128i symbol_i1, symbol_i2, symbol_i3, symbol_i4, symbol_i, symbol_abs, symbol_abs2,symbol_12, symbol_34; __m128i offset1 = _mm_set1_epi8(4*SCALE_BYTE_CONV_QAM64/sqrt(42)); __m128i offset2 = _mm_set1_epi8(2*SCALE_BYTE_CONV_QAM64/sqrt(42)); __m128 scale_v = _mm_set1_ps(-SCALE_BYTE_CONV_QAM64); __m128i result11, result12, result13, result22, result21,result23, result31, result32, result33; __m128i shuffle_negated_1 = _mm_set_epi8(0xff,0xff,5,4,0xff,0xff,0xff,0xff,3,2,0xff,0xff,0xff,0xff,1,0); __m128i shuffle_negated_2 = _mm_set_epi8(11,10,0xff,0xff,0xff,0xff,9,8,0xff,0xff,0xff,0xff,7,6,0xff,0xff); __m128i shuffle_negated_3 = _mm_set_epi8(0xff,0xff,0xff,0xff,15,14,0xff,0xff,0xff,0xff,13,12,0xff,0xff,0xff,0xff); __m128i shuffle_abs_1 = _mm_set_epi8(5,4,0xff,0xff,0xff,0xff,3,2,0xff,0xff,0xff,0xff,1,0,0xff,0xff); __m128i shuffle_abs_2 = _mm_set_epi8(0xff,0xff,0xff,0xff,9,8,0xff,0xff,0xff,0xff,7,6,0xff,0xff,0xff,0xff); __m128i shuffle_abs_3 = _mm_set_epi8(0xff,0xff,15,14,0xff,0xff,0xff,0xff,13,12,0xff,0xff,0xff,0xff,11,10); __m128i shuffle_abs2_1 = _mm_set_epi8(0xff,0xff,0xff,0xff,3,2,0xff,0xff,0xff,0xff,1,0,0xff,0xff,0xff,0xff); __m128i shuffle_abs2_2 = _mm_set_epi8(0xff,0xff,9,8,0xff,0xff,0xff,0xff,7,6,0xff,0xff,0xff,0xff,5,4); __m128i shuffle_abs2_3 = _mm_set_epi8(15,14,0xff,0xff,0xff,0xff,13,12,0xff,0xff,0xff,0xff,11,10,0xff,0xff); for (int i=0;i<nsymbols/8;i++) { symbol1 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol2 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol3 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol4 = _mm_load_ps(symbolsPtr); symbolsPtr+=4; symbol_i1 = _mm_cvtps_epi32(_mm_mul_ps(symbol1, scale_v)); symbol_i2 = _mm_cvtps_epi32(_mm_mul_ps(symbol2, scale_v)); symbol_i3 = _mm_cvtps_epi32(_mm_mul_ps(symbol3, scale_v)); symbol_i4 = _mm_cvtps_epi32(_mm_mul_ps(symbol4, scale_v)); symbol_12 = _mm_packs_epi32(symbol_i1, symbol_i2); symbol_34 = _mm_packs_epi32(symbol_i3, symbol_i4); symbol_i = _mm_packs_epi16(symbol_12, symbol_34); symbol_abs = _mm_abs_epi8(symbol_i); symbol_abs = _mm_sub_epi8(symbol_abs, offset1); symbol_abs2 = _mm_sub_epi8(_mm_abs_epi8(symbol_abs), offset2); result11 = _mm_shuffle_epi8(symbol_i, shuffle_negated_1); result12 = _mm_shuffle_epi8(symbol_abs, shuffle_abs_1); result13 = _mm_shuffle_epi8(symbol_abs2, shuffle_abs2_1); result21 = _mm_shuffle_epi8(symbol_i, shuffle_negated_2); result22 = _mm_shuffle_epi8(symbol_abs, shuffle_abs_2); result23 = _mm_shuffle_epi8(symbol_abs2, shuffle_abs2_2); result31 = _mm_shuffle_epi8(symbol_i, shuffle_negated_3); result32 = _mm_shuffle_epi8(symbol_abs, shuffle_abs_3); result33 = _mm_shuffle_epi8(symbol_abs2, shuffle_abs2_3); _mm_store_si128(resultPtr, _mm_or_si128(_mm_or_si128(result11, result12),result13)); resultPtr++; _mm_store_si128(resultPtr, _mm_or_si128(_mm_or_si128(result21, result22),result23)); resultPtr++; _mm_store_si128(resultPtr, _mm_or_si128(_mm_or_si128(result31, result32),result33)); resultPtr++; } for (int i=8*(nsymbols/8);i<nsymbols;i++) { float yre = (int8_t) (SCALE_BYTE_CONV_QAM64*crealf(symbols[i])); float yim = (int8_t) (SCALE_BYTE_CONV_QAM64*cimagf(symbols[i])); llr[6*i+0] = -yre; llr[6*i+1] = -yim; llr[6*i+2] = abs(yre)-4*SCALE_BYTE_CONV_QAM64/sqrt(42); llr[6*i+3] = abs(yim)-4*SCALE_BYTE_CONV_QAM64/sqrt(42); llr[6*i+4] = abs(llr[6*i+2])-2*SCALE_BYTE_CONV_QAM64/sqrt(42); llr[6*i+5] = abs(llr[6*i+3])-2*SCALE_BYTE_CONV_QAM64/sqrt(42); } }
static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], const uint16_t* const sharpen, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); const __m128i zero = _mm_setzero_si128(); __m128i coeff0, coeff8; __m128i out0, out8; __m128i packed_out; // Load all inputs. // TODO(cduvivier): Make variable declarations and allocations aligned so that // we can use _mm_load_si128 instead of _mm_loadu_si128. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); // extract sign(in) (0x0000 if positive, 0xffff if negative) const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); // coeff = abs(in) = (in ^ sign) - sign coeff0 = _mm_xor_si128(in0, sign0); coeff8 = _mm_xor_si128(in8, sign8); coeff0 = _mm_sub_epi16(coeff0, sign0); coeff8 = _mm_sub_epi16(coeff8, sign8); // coeff = abs(in) + sharpen if (sharpen != NULL) { const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); } // out = (coeff * iQ + B) >> QFIX { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // out = (coeff * iQ + B) const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = QUANTDIV(coeff, iQ, B, QFIX) out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); // if (coeff > 2047) coeff = 2047 out0 = _mm_min_epi16(out0, max_coeff_2047); out8 = _mm_min_epi16(out8, max_coeff_2047); } // get sign back (if (sign[j]) out_n = -out_n) out0 = _mm_xor_si128(out0, sign0); out8 = _mm_xor_si128(out8, sign8); out0 = _mm_sub_epi16(out0, sign0); out8 = _mm_sub_epi16(out8, sign8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); // zigzag the output before storing it. // // The zigzag pattern can almost be reproduced with a small sequence of // shuffles. After it, we only need to swap the 7th (ending up in third // position instead of twelfth) and 8th values. { __m128i outZ0, outZ8; outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); _mm_storeu_si128((__m128i*)&out[0], outZ0); _mm_storeu_si128((__m128i*)&out[8], outZ8); packed_out = _mm_packs_epi16(outZ0, outZ8); } { const int16_t outZ_12 = out[12]; const int16_t outZ_3 = out[3]; out[3] = outZ_12; out[12] = outZ_3; } // detect if all 'out' values are zeroes or not return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); }
void alphaBlendSSE_8u(Mat& src1, Mat& src2, Mat& alpha, Mat& dest) { if(dest.empty())dest.create(src1.size(),CV_8U); const int imsize = (src1.size().area()/16); uchar* s1 = src1.data; uchar* s2 = src2.data; uchar* a = alpha.data; uchar* d = dest.data; const __m128i zero = _mm_setzero_si128(); const __m128i amax = _mm_set1_epi8(char(255)); int i=0; if(s1==d) { for(;i<imsize;++i) { __m128i ms1h = _mm_load_si128((__m128i*)(s1)); __m128i ms2h = _mm_load_si128((__m128i*)(s2)); __m128i mah = _mm_load_si128((__m128i*)(a)); __m128i imah = _mm_sub_epi8(amax,mah); __m128i ms1l = _mm_unpacklo_epi8(ms1h, zero); ms1h = _mm_unpackhi_epi8(ms1h, zero); __m128i ms2l = _mm_unpacklo_epi8(ms2h, zero); ms2h = _mm_unpackhi_epi8(ms2h, zero); __m128i mal = _mm_unpacklo_epi8(mah, zero); mah = _mm_unpackhi_epi8(mah, zero); __m128i imal = _mm_unpacklo_epi8(imah, zero); imah = _mm_unpackhi_epi8(imah, zero); ms1l = _mm_mullo_epi16(ms1l,mal); ms2l = _mm_mullo_epi16(ms2l,imal); ms1l = _mm_add_epi16(ms1l,ms2l); //ms1l = _mm_srli_epi16(ms1l,8); ms1l = _mm_srai_epi16(ms1l,8); ms1h = _mm_mullo_epi16(ms1h,mah); ms2h = _mm_mullo_epi16(ms2h,imah); ms1h = _mm_add_epi16(ms1h,ms2h); //ms1h = _mm_srli_epi16(ms1h,8); ms1h = _mm_srai_epi16(ms1h,8); _mm_stream_si128((__m128i*)s1,_mm_packs_epi16(ms1l,ms1h)); s1+=16; s2+=16; a+=16; } } else { for(;i<imsize;++i) { __m128i ms1h = _mm_load_si128((__m128i*)(s1)); __m128i ms2h = _mm_load_si128((__m128i*)(s2)); __m128i mah = _mm_load_si128((__m128i*)(a)); __m128i imah = _mm_sub_epi8(amax,mah); __m128i ms1l = _mm_unpacklo_epi8(ms1h, zero); ms1h = _mm_unpackhi_epi8(ms1h, zero); __m128i ms2l = _mm_unpacklo_epi8(ms2h, zero); ms2h = _mm_unpackhi_epi8(ms2h, zero); __m128i mal = _mm_unpacklo_epi8(mah, zero); mah = _mm_unpackhi_epi8(mah, zero); __m128i imal = _mm_unpacklo_epi8(imah, zero); imah = _mm_unpackhi_epi8(imah, zero); ms1l = _mm_mullo_epi16(ms1l,mal); ms2l = _mm_mullo_epi16(ms2l,imal); ms1l = _mm_add_epi16(ms1l,ms2l); //ms1l = _mm_srli_epi16(ms1l,8); ms1l = _mm_srai_epi16(ms1l,8); ms1h = _mm_mullo_epi16(ms1h,mah); ms2h = _mm_mullo_epi16(ms2h,imah); ms1h = _mm_add_epi16(ms1h,ms2h); //ms1h = _mm_srli_epi16(ms1h,8); ms1h = _mm_srai_epi16(ms1h,8); _mm_store_si128((__m128i*)d,_mm_packs_epi16(ms1l,ms1h)); s1+=16; s2+=16; a+=16; d+=16; } } { uchar* s1 = src1.data; uchar* s2 = src2.data; uchar* a = alpha.data; uchar* d = dest.data; for(int n=i*16;n<src1.size().area();n++) { d[n] = (a[n]*s1[n] + (255-a[n])*s2[n])>>8; } } }
// Simple quantization static int QuantizeBlockSSE2(int16_t in[16], int16_t out[16], int n, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(2047); const __m128i zero = _mm_set1_epi16(0); __m128i sign0, sign8; __m128i coeff0, coeff8; __m128i out0, out8; __m128i packed_out; // Load all inputs. // TODO(cduvivier): Make variable declarations and allocations aligned so that // we can use _mm_load_si128 instead of _mm_loadu_si128. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[0]); const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&mtx->sharpen_[8]); const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); const __m128i bias0 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); const __m128i bias8 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); const __m128i zthresh0 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[0]); const __m128i zthresh8 = _mm_loadu_si128((__m128i*)&mtx->zthresh_[8]); // sign(in) = in >> 15 (0x0000 if positive, 0xffff if negative) sign0 = _mm_srai_epi16(in0, 15); sign8 = _mm_srai_epi16(in8, 15); // coeff = abs(in) = (in ^ sign) - sign coeff0 = _mm_xor_si128(in0, sign0); coeff8 = _mm_xor_si128(in8, sign8); coeff0 = _mm_sub_epi16(coeff0, sign0); coeff8 = _mm_sub_epi16(coeff8, sign8); // coeff = abs(in) + sharpen coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); // if (coeff > 2047) coeff = 2047 coeff0 = _mm_min_epi16(coeff0, max_coeff_2047); coeff8 = _mm_min_epi16(coeff8, max_coeff_2047); // out = (coeff * iQ + B) >> QFIX; { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // expand bias from 16b to 32b __m128i bias_00 = _mm_unpacklo_epi16(bias0, zero); __m128i bias_04 = _mm_unpackhi_epi16(bias0, zero); __m128i bias_08 = _mm_unpacklo_epi16(bias8, zero); __m128i bias_12 = _mm_unpackhi_epi16(bias8, zero); // out = (coeff * iQ + B) out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = (coeff * iQ + B) >> QFIX; out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); } // get sign back (if (sign[j]) out_n = -out_n) out0 = _mm_xor_si128(out0, sign0); out8 = _mm_xor_si128(out8, sign8); out0 = _mm_sub_epi16(out0, sign0); out8 = _mm_sub_epi16(out8, sign8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); // if (coeff <= mtx->zthresh_) {in=0; out=0;} { __m128i cmp0 = _mm_cmpgt_epi16(coeff0, zthresh0); __m128i cmp8 = _mm_cmpgt_epi16(coeff8, zthresh8); in0 = _mm_and_si128(in0, cmp0); in8 = _mm_and_si128(in8, cmp8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); out0 = _mm_and_si128(out0, cmp0); out8 = _mm_and_si128(out8, cmp8); } // zigzag the output before storing it. // // The zigzag pattern can almost be reproduced with a small sequence of // shuffles. After it, we only need to swap the 7th (ending up in third // position instead of twelfth) and 8th values. { __m128i outZ0, outZ8; outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0)); outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0)); outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2)); outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1)); outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0)); outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0)); _mm_storeu_si128((__m128i*)&out[0], outZ0); _mm_storeu_si128((__m128i*)&out[8], outZ8); packed_out = _mm_packs_epi16(outZ0, outZ8); } { const int16_t outZ_12 = out[12]; const int16_t outZ_3 = out[3]; out[3] = outZ_12; out[12] = outZ_3; } // detect if all 'out' values are zeroes or not { int32_t tmp[4]; _mm_storeu_si128((__m128i*)tmp, packed_out); if (n) { tmp[0] &= ~0xff; } return (tmp[3] || tmp[2] || tmp[1] || tmp[0]); } }
static void vpx_filter_block1d16_h8_avx2(const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; __m256i srcReg32b1, srcReg32b2, filtersReg32; unsigned int i; ptrdiff_t src_stride, dst_stride; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2); filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2); filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2); filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2); // multiple the size of the source and destination stride by two src_stride = src_pixels_per_line << 1; dst_stride = output_pitch << 1; for (i = output_height; i > 1; i-=2) { // load the 2 strides of source srcReg32b1 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr - 3))); srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, _mm_loadu_si128((const __m128i *) (src_ptr+src_pixels_per_line-3)), 1); // filter the source buffer srcRegFilt32b1_1= _mm256_shuffle_epi8(srcReg32b1, filt1Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b1, filt2Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); // reading 2 strides of the next 16 bytes // (part of it was being read by earlier read) srcReg32b2 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + 5))); srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, _mm_loadu_si128((const __m128i *) (src_ptr+src_pixels_per_line+5)), 1); // add and saturate the results together srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); // filter the source buffer srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); // filter the source buffer srcRegFilt32b3= _mm256_shuffle_epi8(srcReg32b2, filt2Reg); srcRegFilt32b2= _mm256_shuffle_epi8(srcReg32b2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); // add and saturate the results together srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64); srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7); srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); src_ptr+=src_stride; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, _mm256_castsi256_si128(srcRegFilt32b1_1)); // save the next 16 bits _mm_store_si128((__m128i*)(output_ptr+output_pitch), _mm256_extractf128_si256(srcRegFilt32b1_1, 1)); output_ptr+=dst_stride; } // if the number of strides is odd. // process only 16 bytes if (i > 0) { __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; __m128i srcRegFilt2, srcRegFilt3; srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2= _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); // filter the source buffer srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg)); srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg64)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg64)); // shift by 7 bit each 16 bit srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); } }
/* ============ idSIMD_SSE::CmpLT dst[i] |= ( src0[i] < constant ) << bitNum; ============ */ void VPCALL idSIMD_SSE2::CmpLT( byte *dst, const byte bitNum, const float *src0, const float constant, const int count ) { int i, cnt, pre, post; float *aligned; __m128 xmm0, xmm1; __m128i xmm0i; int cnt_l; char *src0_p; char *constant_p; char *dst_p; int mask_l; int dst_l; /* if the float array is not aligned on a 4 byte boundary */ if ( ((int) src0) & 3 ) { /* unaligned memory access */ pre = 0; cnt = count >> 2; post = count - (cnt<<2); /* __asm mov edx, cnt __asm test edx, edx __asm je doneCmp */ cnt_l = cnt; if(cnt_l != 0) { /* __asm push ebx __asm neg edx __asm mov esi, src0 __asm prefetchnta [esi+64] __asm movss xmm1, constant __asm shufps xmm1, xmm1, R_SHUFFLEPS( 0, 0, 0, 0 ) __asm mov edi, dst __asm mov cl, bitNum */ cnt_l = -cnt_l; src0_p = (char *) src0; _mm_prefetch(src0_p+64, _MM_HINT_NTA); constant_p = (char *) &constant; xmm1 = _mm_load_ss((float *)constant_p); xmm1 = _mm_shuffle_ps(xmm1, xmm1, R_SHUFFLEPS( 0, 0, 0, 0 )); dst_p = (char *)dst; /* __asm loopNA: */ do { /* __asm movups xmm0, [esi] __asm prefetchnta [esi+128] __asm cmpltps xmm0, xmm1 __asm movmskps eax, xmm0 \ __asm mov ah, al __asm shr ah, 1 __asm mov bx, ax __asm shl ebx, 14 __asm mov bx, ax __asm and ebx, 0x01010101 __asm shl ebx, cl __asm or ebx, dword ptr [edi] __asm mov dword ptr [edi], ebx __asm add esi, 16 __asm add edi, 4 __asm inc edx __asm jl loopNA __asm pop ebx */ xmm0 = _mm_loadu_ps((float *) src0_p); _mm_prefetch(src0_p+128, _MM_HINT_NTA); xmm0 = _mm_cmplt_ps(xmm0, xmm1); // Simplify using SSE2 xmm0i = (__m128i) xmm0; xmm0i = _mm_packs_epi32(xmm0i, xmm0i); xmm0i = _mm_packs_epi16(xmm0i, xmm0i); mask_l = _mm_cvtsi128_si32(xmm0i); // End mask_l = mask_l & 0x01010101; mask_l = mask_l << bitNum; dst_l = *((int *) dst_p); mask_l = mask_l | dst_l; *((int *) dst_p) = mask_l; src0_p = src0_p + 16; dst_p = dst_p + 4; cnt_l = cnt_l + 1; } while (cnt_l < 0); } }
static void vpx_filter_block1d16_v8_avx2(const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i filtersReg; __m256i addFilterReg64; __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; __m256i srcReg32b11, srcReg32b12, filtersReg32; __m256i firstFilters, secondFilters, thirdFilters, forthFilters; unsigned int i; ptrdiff_t src_stride, dst_stride; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the // same data in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // have the same data in both lanes of a 256 bit register filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); // duplicate only the first 16 bits (first and second byte) // across 256 bit register firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 256 bit register secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 256 bit register thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 256 bit register forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); // multiple the size of the source and destination stride by two src_stride = src_pitch << 1; dst_stride = out_pitch << 1; // load 16 bytes 7 times in stride of src_pitch srcReg32b1 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr))); srcReg32b2 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch))); srcReg32b3 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2))); srcReg32b4 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3))); srcReg32b5 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4))); srcReg32b6 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5))); srcReg32b7 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); // have each consecutive loads on the same 256 register srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, _mm256_castsi256_si128(srcReg32b2), 1); srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, _mm256_castsi256_si128(srcReg32b3), 1); srcReg32b3 = _mm256_inserti128_si256(srcReg32b3, _mm256_castsi256_si128(srcReg32b4), 1); srcReg32b4 = _mm256_inserti128_si256(srcReg32b4, _mm256_castsi256_si128(srcReg32b5), 1); srcReg32b5 = _mm256_inserti128_si256(srcReg32b5, _mm256_castsi256_si128(srcReg32b6), 1); srcReg32b6 = _mm256_inserti128_si256(srcReg32b6, _mm256_castsi256_si128(srcReg32b7), 1); // merge every two consecutive registers except the last one srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); // save srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); // save srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); // save srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); // save srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); for (i = output_height; i > 1; i-=2) { // load the last 2 loads of 16 bytes and have every two // consecutive loads in the same 256 bit register srcReg32b8 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7))); srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, _mm256_castsi256_si128(srcReg32b8), 1); srcReg32b9 = _mm256_castsi128_si256( _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8))); srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, _mm256_castsi256_si128(srcReg32b9), 1); // merge every two consecutive registers // save srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); // multiply 2 adjacent elements with the filter and add the result srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); // add and saturate the results together srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_min_epi16(srcReg32b8, srcReg32b12)); srcReg32b10 = _mm256_adds_epi16(srcReg32b10, _mm256_max_epi16(srcReg32b8, srcReg32b12)); // multiply 2 adjacent elements with the filter and add the result srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); // multiply 2 adjacent elements with the filter and add the result srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); // add and saturate the results together srcReg32b1 = _mm256_adds_epi16(srcReg32b1, _mm256_min_epi16(srcReg32b8, srcReg32b12)); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, _mm256_max_epi16(srcReg32b8, srcReg32b12)); srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64); srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64); // shift by 7 bit each 16 bit srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7); srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); src_ptr+=src_stride; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, _mm256_castsi256_si128(srcReg32b1)); // save the next 16 bits _mm_store_si128((__m128i*)(output_ptr+out_pitch), _mm256_extractf128_si256(srcReg32b1, 1)); output_ptr+=dst_stride; // save part of the registers for next strides srcReg32b10 = srcReg32b11; srcReg32b1 = srcReg32b3; srcReg32b11 = srcReg32b2; srcReg32b3 = srcReg32b5; srcReg32b2 = srcReg32b4; srcReg32b5 = srcReg32b7; srcReg32b7 = srcReg32b9; } if (i > 0) { __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; // load the last 16 bytes srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); // merge the last 2 results together srcRegFilt4 = _mm_unpacklo_epi8( _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); srcRegFilt7 = _mm_unpackhi_epi8( _mm256_castsi256_si128(srcReg32b7), srcRegFilt8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), _mm256_castsi256_si128(firstFilters)); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), _mm256_castsi256_si128(firstFilters)); srcRegFilt7 = _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); // multiply 2 adjacent elements with the filter and add the result srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), _mm256_castsi256_si128(secondFilters)); srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), _mm256_castsi256_si128(secondFilters)); // multiply 2 adjacent elements with the filter and add the result srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), _mm256_castsi256_si128(thirdFilters)); srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), _mm256_castsi256_si128(thirdFilters)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_min_epi16(srcRegFilt4, srcRegFilt6)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm_min_epi16(srcRegFilt5, srcRegFilt7)); // add and saturate the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm_max_epi16(srcRegFilt4, srcRegFilt6)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm_max_epi16(srcRegFilt5, srcRegFilt7)); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg64)); srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg64)); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1); } }
void lp_rast_triangle_3_16(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; const struct lp_rast_plane *plane = GET_PLANES(tri); int x = (arg.triangle.plane_mask & 0xff) + task->x; int y = (arg.triangle.plane_mask >> 8) + task->y; unsigned i, j; struct { unsigned mask:16; unsigned i:8; unsigned j:8; } out[16]; unsigned nr = 0; __m128i p0 = _mm_load_si128((__m128i *)&plane[0]); /* c, dcdx, dcdy, eo */ __m128i p1 = _mm_load_si128((__m128i *)&plane[1]); /* c, dcdx, dcdy, eo */ __m128i p2 = _mm_load_si128((__m128i *)&plane[2]); /* c, dcdx, dcdy, eo */ __m128i zero = _mm_setzero_si128(); __m128i c; __m128i dcdx; __m128i dcdy; __m128i rej4; __m128i dcdx2; __m128i dcdx3; __m128i span_0; /* 0,dcdx,2dcdx,3dcdx for plane 0 */ __m128i span_1; /* 0,dcdx,2dcdx,3dcdx for plane 1 */ __m128i span_2; /* 0,dcdx,2dcdx,3dcdx for plane 2 */ __m128i unused; transpose4_epi32(&p0, &p1, &p2, &zero, &c, &dcdx, &dcdy, &rej4); /* Adjust dcdx; */ dcdx = _mm_sub_epi32(zero, dcdx); c = _mm_add_epi32(c, mm_mullo_epi32(dcdx, _mm_set1_epi32(x))); c = _mm_add_epi32(c, mm_mullo_epi32(dcdy, _mm_set1_epi32(y))); rej4 = _mm_slli_epi32(rej4, 2); /* Adjust so we can just check the sign bit (< 0 comparison), instead of having to do a less efficient <= 0 comparison */ c = _mm_sub_epi32(c, _mm_set1_epi32(1)); rej4 = _mm_add_epi32(rej4, _mm_set1_epi32(1)); dcdx2 = _mm_add_epi32(dcdx, dcdx); dcdx3 = _mm_add_epi32(dcdx2, dcdx); transpose4_epi32(&zero, &dcdx, &dcdx2, &dcdx3, &span_0, &span_1, &span_2, &unused); for (i = 0; i < 4; i++) { __m128i cx = c; for (j = 0; j < 4; j++) { __m128i c4rej = _mm_add_epi32(cx, rej4); __m128i rej_masks = _mm_srai_epi32(c4rej, 31); /* if (is_zero(rej_masks)) */ if (_mm_movemask_epi8(rej_masks) == 0) { __m128i c0_0 = _mm_add_epi32(SCALAR_EPI32(cx, 0), span_0); __m128i c1_0 = _mm_add_epi32(SCALAR_EPI32(cx, 1), span_1); __m128i c2_0 = _mm_add_epi32(SCALAR_EPI32(cx, 2), span_2); __m128i c_0 = _mm_or_si128(_mm_or_si128(c0_0, c1_0), c2_0); __m128i c0_1 = _mm_add_epi32(c0_0, SCALAR_EPI32(dcdy, 0)); __m128i c1_1 = _mm_add_epi32(c1_0, SCALAR_EPI32(dcdy, 1)); __m128i c2_1 = _mm_add_epi32(c2_0, SCALAR_EPI32(dcdy, 2)); __m128i c_1 = _mm_or_si128(_mm_or_si128(c0_1, c1_1), c2_1); __m128i c_01 = _mm_packs_epi32(c_0, c_1); __m128i c0_2 = _mm_add_epi32(c0_1, SCALAR_EPI32(dcdy, 0)); __m128i c1_2 = _mm_add_epi32(c1_1, SCALAR_EPI32(dcdy, 1)); __m128i c2_2 = _mm_add_epi32(c2_1, SCALAR_EPI32(dcdy, 2)); __m128i c_2 = _mm_or_si128(_mm_or_si128(c0_2, c1_2), c2_2); __m128i c0_3 = _mm_add_epi32(c0_2, SCALAR_EPI32(dcdy, 0)); __m128i c1_3 = _mm_add_epi32(c1_2, SCALAR_EPI32(dcdy, 1)); __m128i c2_3 = _mm_add_epi32(c2_2, SCALAR_EPI32(dcdy, 2)); __m128i c_3 = _mm_or_si128(_mm_or_si128(c0_3, c1_3), c2_3); __m128i c_23 = _mm_packs_epi32(c_2, c_3); __m128i c_0123 = _mm_packs_epi16(c_01, c_23); unsigned mask = _mm_movemask_epi8(c_0123); out[nr].i = i; out[nr].j = j; out[nr].mask = mask; if (mask != 0xffff) nr++; } cx = _mm_add_epi32(cx, _mm_slli_epi32(dcdx, 2)); } c = _mm_add_epi32(c, _mm_slli_epi32(dcdy, 2)); } for (i = 0; i < nr; i++) lp_rast_shade_quads_mask(task, &tri->inputs, x + 4 * out[i].j, y + 4 * out[i].i, 0xffff & ~out[i].mask); }
void lp_rast_triangle_3_4(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; const struct lp_rast_plane *plane = GET_PLANES(tri); unsigned x = (arg.triangle.plane_mask & 0xff) + task->x; unsigned y = (arg.triangle.plane_mask >> 8) + task->y; __m128i p0 = _mm_load_si128((__m128i *)&plane[0]); /* c, dcdx, dcdy, eo */ __m128i p1 = _mm_load_si128((__m128i *)&plane[1]); /* c, dcdx, dcdy, eo */ __m128i p2 = _mm_load_si128((__m128i *)&plane[2]); /* c, dcdx, dcdy, eo */ __m128i zero = _mm_setzero_si128(); __m128i c; __m128i dcdx; __m128i dcdy; __m128i dcdx2; __m128i dcdx3; __m128i span_0; /* 0,dcdx,2dcdx,3dcdx for plane 0 */ __m128i span_1; /* 0,dcdx,2dcdx,3dcdx for plane 1 */ __m128i span_2; /* 0,dcdx,2dcdx,3dcdx for plane 2 */ __m128i unused; transpose4_epi32(&p0, &p1, &p2, &zero, &c, &dcdx, &dcdy, &unused); /* Adjust dcdx; */ dcdx = _mm_sub_epi32(zero, dcdx); c = _mm_add_epi32(c, mm_mullo_epi32(dcdx, _mm_set1_epi32(x))); c = _mm_add_epi32(c, mm_mullo_epi32(dcdy, _mm_set1_epi32(y))); /* Adjust so we can just check the sign bit (< 0 comparison), instead of having to do a less efficient <= 0 comparison */ c = _mm_sub_epi32(c, _mm_set1_epi32(1)); dcdx2 = _mm_add_epi32(dcdx, dcdx); dcdx3 = _mm_add_epi32(dcdx2, dcdx); transpose4_epi32(&zero, &dcdx, &dcdx2, &dcdx3, &span_0, &span_1, &span_2, &unused); { __m128i c0_0 = _mm_add_epi32(SCALAR_EPI32(c, 0), span_0); __m128i c1_0 = _mm_add_epi32(SCALAR_EPI32(c, 1), span_1); __m128i c2_0 = _mm_add_epi32(SCALAR_EPI32(c, 2), span_2); __m128i c_0 = _mm_or_si128(_mm_or_si128(c0_0, c1_0), c2_0); __m128i c0_1 = _mm_add_epi32(c0_0, SCALAR_EPI32(dcdy, 0)); __m128i c1_1 = _mm_add_epi32(c1_0, SCALAR_EPI32(dcdy, 1)); __m128i c2_1 = _mm_add_epi32(c2_0, SCALAR_EPI32(dcdy, 2)); __m128i c_1 = _mm_or_si128(_mm_or_si128(c0_1, c1_1), c2_1); __m128i c_01 = _mm_packs_epi32(c_0, c_1); __m128i c0_2 = _mm_add_epi32(c0_1, SCALAR_EPI32(dcdy, 0)); __m128i c1_2 = _mm_add_epi32(c1_1, SCALAR_EPI32(dcdy, 1)); __m128i c2_2 = _mm_add_epi32(c2_1, SCALAR_EPI32(dcdy, 2)); __m128i c_2 = _mm_or_si128(_mm_or_si128(c0_2, c1_2), c2_2); __m128i c0_3 = _mm_add_epi32(c0_2, SCALAR_EPI32(dcdy, 0)); __m128i c1_3 = _mm_add_epi32(c1_2, SCALAR_EPI32(dcdy, 1)); __m128i c2_3 = _mm_add_epi32(c2_2, SCALAR_EPI32(dcdy, 2)); __m128i c_3 = _mm_or_si128(_mm_or_si128(c0_3, c1_3), c2_3); __m128i c_23 = _mm_packs_epi32(c_2, c_3); __m128i c_0123 = _mm_packs_epi16(c_01, c_23); unsigned mask = _mm_movemask_epi8(c_0123); if (mask != 0xffff) lp_rast_shade_quads_mask(task, &tri->inputs, x, y, 0xffff & ~mask); } }
void vp9_filter_block1d16_h8_intrin_ssse3(unsigned char *src_ptr, unsigned int src_pixels_per_line, unsigned char *output_ptr, unsigned int output_pitch, unsigned int output_height, int16_t *filter) { __m128i addFilterReg64, filtersReg, srcReg1, srcReg2; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1_1, srcRegFilt2_1, srcRegFilt2, srcRegFilt3; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((__m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg =_mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg1 = _mm_loadu_si128((__m128i *)(src_ptr-3)); // filter the source buffer srcRegFilt1_1= _mm_shuffle_epi8(srcReg1, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1_1 = _mm_maddubs_epi16(srcRegFilt1_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg1, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg1, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); // reading the next 16 bytes. // (part of it was being read by earlier read) srcReg2 = _mm_loadu_si128((__m128i *)(src_ptr+5)); // add and saturate the results together srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); // filter the source buffer srcRegFilt2_1= _mm_shuffle_epi8(srcReg2, filt1Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt2_1 = _mm_maddubs_epi16(srcRegFilt2_1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, forthFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); // filter the source buffer srcRegFilt3= _mm_shuffle_epi8(srcReg2, filt2Reg); srcRegFilt2= _mm_shuffle_epi8(srcReg2, filt3Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); // add and saturate the results together srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, addFilterReg64); srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); // shrink to 8 bit each 16 bits, the first lane contain the first // convolve result and the second lane contain the second convolve // result srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); src_ptr+=src_pixels_per_line; // save 16 bytes _mm_store_si128((__m128i*)output_ptr, srcRegFilt1_1); output_ptr+=output_pitch; } }
void aom_filter_block1d8_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, thirdFilters, forthFilters, srcReg; __m128i filt1Reg, filt2Reg, filt3Reg, filt4Reg; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits (first and second byte) // across 128 bit register firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits (third and forth byte) // across 128 bit register secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits (fifth and sixth byte) // across 128 bit register thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits (seventh and eighth byte) // across 128 bit register forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); filt1Reg = _mm_load_si128((__m128i const *)filt1_global); filt2Reg = _mm_load_si128((__m128i const *)filt2_global); filt3Reg = _mm_load_si128((__m128i const *)filt3_global); filt4Reg = _mm_load_si128((__m128i const *)filt4_global); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1 = _mm_shuffle_epi8(srcReg, filt1Reg); srcRegFilt2 = _mm_shuffle_epi8(srcReg, filt2Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // filter the source buffer srcRegFilt3 = _mm_shuffle_epi8(srcReg, filt3Reg); srcRegFilt4 = _mm_shuffle_epi8(srcReg, filt4Reg); // multiply 2 adjacent elements with the filter and add the result srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, thirdFilters); srcRegFilt4 = _mm_maddubs_epi16(srcRegFilt4, forthFilters); // add and saturate all the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pixels_per_line; // save only 8 bytes _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); output_ptr += output_pitch; } }
void aom_filter_block1d8_v8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { __m128i addFilterReg64, filtersReg, minReg; __m128i firstFilters, secondFilters, thirdFilters, forthFilters; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt5; __m128i srcReg1, srcReg2, srcReg3, srcReg4, srcReg5, srcReg6, srcReg7; __m128i srcReg8; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter firstFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x100u)); // duplicate only the second 16 bits in the filter secondFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x302u)); // duplicate only the third 16 bits in the filter thirdFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x504u)); // duplicate only the forth 16 bits in the filter forthFilters = _mm_shuffle_epi8(filtersReg, _mm_set1_epi16(0x706u)); // load the first 7 rows of 8 bytes srcReg1 = _mm_loadl_epi64((const __m128i *)src_ptr); srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch)); srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2)); srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3)); srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4)); srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5)); srcReg7 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6)); for (i = 0; i < output_height; i++) { // load the last 8 bytes srcReg8 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 7)); // merge the result together srcRegFilt1 = _mm_unpacklo_epi8(srcReg1, srcReg2); srcRegFilt3 = _mm_unpacklo_epi8(srcReg3, srcReg4); // merge the result together srcRegFilt2 = _mm_unpacklo_epi8(srcReg5, srcReg6); srcRegFilt5 = _mm_unpacklo_epi8(srcReg7, srcReg8); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt3 = _mm_maddubs_epi16(srcRegFilt3, secondFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, thirdFilters); srcRegFilt5 = _mm_maddubs_epi16(srcRegFilt5, forthFilters); // add and saturate the results together minReg = _mm_min_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt5); srcRegFilt2 = _mm_max_epi16(srcRegFilt2, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bit srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pitch; // shift down a row srcReg1 = srcReg2; srcReg2 = srcReg3; srcReg3 = srcReg4; srcReg4 = srcReg5; srcReg5 = srcReg6; srcReg6 = srcReg7; srcReg7 = srcReg8; // save only 8 bytes convolve result _mm_storel_epi64((__m128i *)&output_ptr[0], srcRegFilt1); output_ptr += out_pitch; } }
void aom_filter_block1d4_h8_intrin_ssse3( const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { __m128i firstFilters, secondFilters, shuffle1, shuffle2; __m128i srcRegFilt1, srcRegFilt2, srcRegFilt3, srcRegFilt4; __m128i addFilterReg64, filtersReg, srcReg, minReg; unsigned int i; // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 addFilterReg64 = _mm_set1_epi32((int)0x0400040u); filtersReg = _mm_loadu_si128((const __m128i *)filter); // converting the 16 bit (short) to 8 bit (byte) and have the same data // in both lanes of 128 bit register. filtersReg = _mm_packs_epi16(filtersReg, filtersReg); // duplicate only the first 16 bits in the filter into the first lane firstFilters = _mm_shufflelo_epi16(filtersReg, 0); // duplicate only the third 16 bit in the filter into the first lane secondFilters = _mm_shufflelo_epi16(filtersReg, 0xAAu); // duplicate only the seconds 16 bits in the filter into the second lane // firstFilters: k0 k1 k0 k1 k0 k1 k0 k1 k2 k3 k2 k3 k2 k3 k2 k3 firstFilters = _mm_shufflehi_epi16(firstFilters, 0x55u); // duplicate only the forth 16 bits in the filter into the second lane // secondFilters: k4 k5 k4 k5 k4 k5 k4 k5 k6 k7 k6 k7 k6 k7 k6 k7 secondFilters = _mm_shufflehi_epi16(secondFilters, 0xFFu); // loading the local filters shuffle1 = _mm_load_si128((__m128i const *)filt1_4_h8); shuffle2 = _mm_load_si128((__m128i const *)filt2_4_h8); for (i = 0; i < output_height; i++) { srcReg = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); // filter the source buffer srcRegFilt1 = _mm_shuffle_epi8(srcReg, shuffle1); srcRegFilt2 = _mm_shuffle_epi8(srcReg, shuffle2); // multiply 2 adjacent elements with the filter and add the result srcRegFilt1 = _mm_maddubs_epi16(srcRegFilt1, firstFilters); srcRegFilt2 = _mm_maddubs_epi16(srcRegFilt2, secondFilters); // extract the higher half of the lane srcRegFilt3 = _mm_srli_si128(srcRegFilt1, 8); srcRegFilt4 = _mm_srli_si128(srcRegFilt2, 8); minReg = _mm_min_epi16(srcRegFilt3, srcRegFilt2); // add and saturate all the results together srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); srcRegFilt3 = _mm_max_epi16(srcRegFilt3, srcRegFilt2); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, minReg); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt3); srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, addFilterReg64); // shift by 7 bit each 16 bits srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); // shrink to 8 bit each 16 bits srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt1); src_ptr += src_pixels_per_line; // save only 4 bytes *((int *)&output_ptr[0]) = _mm_cvtsi128_si32(srcRegFilt1); output_ptr += output_pitch; } }
static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], const uint16_t* const sharpen, const VP8Matrix* const mtx) { const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); const __m128i zero = _mm_setzero_si128(); __m128i out0, out8; __m128i packed_out; // Load all inputs. // TODO(cduvivier): Make variable declarations and allocations aligned so that // we can use _mm_load_si128 instead of _mm_loadu_si128. __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); // coeff = abs(in) __m128i coeff0 = _mm_abs_epi16(in0); __m128i coeff8 = _mm_abs_epi16(in8); // coeff = abs(in) + sharpen if (sharpen != NULL) { const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); coeff0 = _mm_add_epi16(coeff0, sharpen0); coeff8 = _mm_add_epi16(coeff8, sharpen8); } // out = (coeff * iQ + B) >> QFIX { // doing calculations with 32b precision (QFIX=17) // out = (coeff * iQ) const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); // out = (coeff * iQ + B) const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); out_00 = _mm_add_epi32(out_00, bias_00); out_04 = _mm_add_epi32(out_04, bias_04); out_08 = _mm_add_epi32(out_08, bias_08); out_12 = _mm_add_epi32(out_12, bias_12); // out = QUANTDIV(coeff, iQ, B, QFIX) out_00 = _mm_srai_epi32(out_00, QFIX); out_04 = _mm_srai_epi32(out_04, QFIX); out_08 = _mm_srai_epi32(out_08, QFIX); out_12 = _mm_srai_epi32(out_12, QFIX); // pack result as 16b out0 = _mm_packs_epi32(out_00, out_04); out8 = _mm_packs_epi32(out_08, out_12); // if (coeff > 2047) coeff = 2047 out0 = _mm_min_epi16(out0, max_coeff_2047); out8 = _mm_min_epi16(out8, max_coeff_2047); } // put sign back out0 = _mm_sign_epi16(out0, in0); out8 = _mm_sign_epi16(out8, in8); // in = out * Q in0 = _mm_mullo_epi16(out0, q0); in8 = _mm_mullo_epi16(out8, q8); _mm_storeu_si128((__m128i*)&in[0], in0); _mm_storeu_si128((__m128i*)&in[8], in8); // zigzag the output before storing it. The re-ordering is: // 0 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 // -> 0 1 4[8]5 2 3 6 | 9 12 13 10 [7]11 14 15 // There's only two misplaced entries ([8] and [7]) that are crossing the // reg's boundaries. // We use pshufb instead of pshuflo/pshufhi. { const __m128i kCst_lo = PSHUFB_CST(0, 1, 4, -1, 5, 2, 3, 6); const __m128i kCst_7 = PSHUFB_CST(-1, -1, -1, -1, 7, -1, -1, -1); const __m128i tmp_lo = _mm_shuffle_epi8(out0, kCst_lo); const __m128i tmp_7 = _mm_shuffle_epi8(out0, kCst_7); // extract #7 const __m128i kCst_hi = PSHUFB_CST(1, 4, 5, 2, -1, 3, 6, 7); const __m128i kCst_8 = PSHUFB_CST(-1, -1, -1, 0, -1, -1, -1, -1); const __m128i tmp_hi = _mm_shuffle_epi8(out8, kCst_hi); const __m128i tmp_8 = _mm_shuffle_epi8(out8, kCst_8); // extract #8 const __m128i out_z0 = _mm_or_si128(tmp_lo, tmp_8); const __m128i out_z8 = _mm_or_si128(tmp_hi, tmp_7); _mm_storeu_si128((__m128i*)&out[0], out_z0); _mm_storeu_si128((__m128i*)&out[8], out_z8); packed_out = _mm_packs_epi16(out_z0, out_z8); } // detect if all 'out' values are zeroes or not return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff); }