// //Saving the Neural network to an xml file // void NN_File::saveToFile(const std::string & fileName) { TiXmlDocument doc; TiXmlElement * pRoot = new TiXmlElement("neuralnetwork"); doc.LinkEndChild(pRoot); addStructure(pRoot); addWeights(pRoot); doc.SaveFile(fileName); }
bool TestModel::execute(bool inThread) { Log(lDebug)<<"Executing the TestModel plugin by Totte Karlsson"; RoadRunner rr; rr.load(mModel); rr::SimulateOptions opt; opt.start = 0; opt.duration = 10; opt.steps = 14; TelluriumData data(rr.simulate(&opt)); mTestData.setValue(data); //Add noise const PluginManager* PM = this->getPluginManager(); Plugin* noise = PM->getPlugin("AddNoise"); if(!noise) { stringstream msg; msg<<"The TestModel plugin dependes on the AddNoise plugin, which is not yet loaded."; throw(Exception(msg.str())); } mTestDataWithNoise.setValue(mTestData.getValue()); noise->setPropertyValue("Sigma", mSigma.getValueHandle()); noise->setPropertyValue("InputData", mTestDataWithNoise.getValueHandle()); noise->execute(); mTestDataWithNoise.setValue(noise->getPropertyValueHandle("InputData")); //Add weights addWeights(); return true; }
//-------------------------------------------------------------- void ofxFatLine::add(const vector<ofVec3f> &thePoints, const vector<ofFloatColor> &theColors, const vector<double> &theWeights){ addVertices(thePoints); addColors(theColors); addWeights(theWeights); update(); }