void PSAdaptiveSizePolicy::compute_generation_free_space( size_t young_live, size_t eden_live, size_t old_live, size_t perm_live, size_t cur_eden, size_t max_old_gen_size, size_t max_eden_size, bool is_full_gc, GCCause::Cause gc_cause, CollectorPolicy* collector_policy) { // Update statistics // Time statistics are updated as we go, update footprint stats here _avg_base_footprint->sample(BaseFootPrintEstimate + perm_live); avg_young_live()->sample(young_live); avg_eden_live()->sample(eden_live); if (is_full_gc) { // old_live is only accurate after a full gc avg_old_live()->sample(old_live); } // This code used to return if the policy was not ready , i.e., // policy_is_ready() returning false. The intent was that // decisions below needed major collection times and so could // not be made before two major collections. A consequence was // adjustments to the young generation were not done until after // two major collections even if the minor collections times // exceeded the requested goals. Now let the young generation // adjust for the minor collection times. Major collection times // will be zero for the first collection and will naturally be // ignored. Tenured generation adjustments are only made at the // full collections so until the second major collection has // been reached, no tenured generation adjustments will be made. // Until we know better, desired promotion size uses the last calculation size_t desired_promo_size = _promo_size; // Start eden at the current value. The desired value that is stored // in _eden_size is not bounded by constraints of the heap and can // run away. // // As expected setting desired_eden_size to the current // value of desired_eden_size as a starting point // caused desired_eden_size to grow way too large and caused // an overflow down stream. It may have improved performance in // some case but is dangerous. size_t desired_eden_size = cur_eden; #ifdef ASSERT size_t original_promo_size = desired_promo_size; size_t original_eden_size = desired_eden_size; #endif // Cache some values. There's a bit of work getting these, so // we might save a little time. const double major_cost = major_gc_cost(); const double minor_cost = minor_gc_cost(); // Used for diagnostics clear_generation_free_space_flags(); // Limits on our growth size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average()); // This method sets the desired eden size. That plus the // desired survivor space sizes sets the desired young generation // size. This methods does not know what the desired survivor // size is but expects that other policy will attempt to make // the survivor sizes compatible with the live data in the // young generation. This limit is an estimate of the space left // in the young generation after the survivor spaces have been // subtracted out. size_t eden_limit = max_eden_size; // But don't force a promo size below the current promo size. Otherwise, // the promo size will shrink for no good reason. promo_limit = MAX2(promo_limit, _promo_size); const double gc_cost_limit = GCTimeLimit/100.0; // Which way should we go? // if pause requirement is not met // adjust size of any generation with average paus exceeding // the pause limit. Adjust one pause at a time (the larger) // and only make adjustments for the major pause at full collections. // else if throughput requirement not met // adjust the size of the generation with larger gc time. Only // adjust one generation at a time. // else // adjust down the total heap size. Adjust down the larger of the // generations. // Add some checks for a threshhold for a change. For example, // a change less than the necessary alignment is probably not worth // attempting. if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) || (_avg_major_pause->padded_average() > gc_pause_goal_sec())) { // // Check pauses // // Make changes only to affect one of the pauses (the larger) // at a time. adjust_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); } else if (_avg_minor_pause->padded_average() > gc_minor_pause_goal_sec()) { // Adjust only for the minor pause time goal adjust_for_minor_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); } else if(adjusted_mutator_cost() < _throughput_goal) { // This branch used to require that (mutator_cost() > 0.0 in 1.4.2. // This sometimes resulted in skipping to the minimize footprint // code. Change this to try and reduce GC time if mutator time is // negative for whatever reason. Or for future consideration, // bail out of the code if mutator time is negative. // // Throughput // assert(major_cost >= 0.0, "major cost is < 0.0"); assert(minor_cost >= 0.0, "minor cost is < 0.0"); // Try to reduce the GC times. adjust_for_throughput(is_full_gc, &desired_promo_size, &desired_eden_size); } else { // Be conservative about reducing the footprint. // Do a minimum number of major collections first. // Have reasonable averages for major and minor collections costs. if (UseAdaptiveSizePolicyFootprintGoal && young_gen_policy_is_ready() && avg_major_gc_cost()->average() >= 0.0 && avg_minor_gc_cost()->average() >= 0.0) { size_t desired_sum = desired_eden_size + desired_promo_size; desired_eden_size = adjust_eden_for_footprint(desired_eden_size, desired_sum); if (is_full_gc) { set_decide_at_full_gc(decide_at_full_gc_true); desired_promo_size = adjust_promo_for_footprint(desired_promo_size, desired_sum); } } } // Note we make the same tests as in the code block below; the code // seems a little easier to read with the printing in another block. if (PrintAdaptiveSizePolicy) { if (desired_promo_size > promo_limit) { // "free_in_old_gen" was the original value for used for promo_limit size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average()); gclog_or_tty->print_cr( "PSAdaptiveSizePolicy::compute_generation_free_space limits:" " desired_promo_size: " SIZE_FORMAT " promo_limit: " SIZE_FORMAT " free_in_old_gen: " SIZE_FORMAT " max_old_gen_size: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, desired_promo_size, promo_limit, free_in_old_gen, max_old_gen_size, (size_t) avg_old_live()->average()); } if (desired_eden_size > eden_limit) { gclog_or_tty->print_cr( "AdaptiveSizePolicy::compute_generation_free_space limits:" " desired_eden_size: " SIZE_FORMAT " old_eden_size: " SIZE_FORMAT " eden_limit: " SIZE_FORMAT " cur_eden: " SIZE_FORMAT " max_eden_size: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT, desired_eden_size, _eden_size, eden_limit, cur_eden, max_eden_size, (size_t)avg_young_live()->average()); } if (gc_cost() > gc_cost_limit) { gclog_or_tty->print_cr( "AdaptiveSizePolicy::compute_generation_free_space: gc time limit" " gc_cost: %f " " GCTimeLimit: %d", gc_cost(), GCTimeLimit); } } // Align everything and make a final limit check const size_t alignment = _intra_generation_alignment; desired_eden_size = align_size_up(desired_eden_size, alignment); desired_eden_size = MAX2(desired_eden_size, alignment); desired_promo_size = align_size_up(desired_promo_size, alignment); desired_promo_size = MAX2(desired_promo_size, alignment); eden_limit = align_size_down(eden_limit, alignment); promo_limit = align_size_down(promo_limit, alignment); // Is too much time being spent in GC? // Is the heap trying to grow beyond it's limits? const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average()); if (desired_promo_size > free_in_old_gen && desired_eden_size > eden_limit) { check_gc_overhead_limit(young_live, eden_live, max_old_gen_size, max_eden_size, is_full_gc, gc_cause, collector_policy); } // And one last limit check, now that we've aligned things. if (desired_eden_size > eden_limit) { // If the policy says to get a larger eden but // is hitting the limit, don't decrease eden. // This can lead to a general drifting down of the // eden size. Let the tenuring calculation push more // into the old gen. desired_eden_size = MAX2(eden_limit, cur_eden); } desired_promo_size = MIN2(desired_promo_size, promo_limit); if (PrintAdaptiveSizePolicy) { // Timing stats gclog_or_tty->print( "PSAdaptiveSizePolicy::compute_generation_free_space: costs" " minor_time: %f" " major_cost: %f" " mutator_cost: %f" " throughput_goal: %f", minor_gc_cost(), major_gc_cost(), mutator_cost(), _throughput_goal); // We give more details if Verbose is set if (Verbose) { gclog_or_tty->print( " minor_pause: %f" " major_pause: %f" " minor_interval: %f" " major_interval: %f" " pause_goal: %f", _avg_minor_pause->padded_average(), _avg_major_pause->padded_average(), _avg_minor_interval->average(), _avg_major_interval->average(), gc_pause_goal_sec()); } // Footprint stats gclog_or_tty->print( " live_space: " SIZE_FORMAT " free_space: " SIZE_FORMAT, live_space(), free_space()); // More detail if (Verbose) { gclog_or_tty->print( " base_footprint: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, (size_t)_avg_base_footprint->average(), (size_t)avg_young_live()->average(), (size_t)avg_old_live()->average()); } // And finally, our old and new sizes. gclog_or_tty->print(" old_promo_size: " SIZE_FORMAT " old_eden_size: " SIZE_FORMAT " desired_promo_size: " SIZE_FORMAT " desired_eden_size: " SIZE_FORMAT, _promo_size, _eden_size, desired_promo_size, desired_eden_size); gclog_or_tty->cr(); } decay_supplemental_growth(is_full_gc); set_promo_size(desired_promo_size); set_eden_size(desired_eden_size); };
void PSAdaptiveSizePolicy::compute_old_gen_free_space( size_t old_live, size_t cur_eden, size_t max_old_gen_size, bool is_full_gc) { // Update statistics // Time statistics are updated as we go, update footprint stats here if (is_full_gc) { // old_live is only accurate after a full gc avg_old_live()->sample(old_live); } // This code used to return if the policy was not ready , i.e., // policy_is_ready() returning false. The intent was that // decisions below needed major collection times and so could // not be made before two major collections. A consequence was // adjustments to the young generation were not done until after // two major collections even if the minor collections times // exceeded the requested goals. Now let the young generation // adjust for the minor collection times. Major collection times // will be zero for the first collection and will naturally be // ignored. Tenured generation adjustments are only made at the // full collections so until the second major collection has // been reached, no tenured generation adjustments will be made. // Until we know better, desired promotion size uses the last calculation size_t desired_promo_size = _promo_size; // Start eden at the current value. The desired value that is stored // in _eden_size is not bounded by constraints of the heap and can // run away. // // As expected setting desired_eden_size to the current // value of desired_eden_size as a starting point // caused desired_eden_size to grow way too large and caused // an overflow down stream. It may have improved performance in // some case but is dangerous. size_t desired_eden_size = cur_eden; // Cache some values. There's a bit of work getting these, so // we might save a little time. const double major_cost = major_gc_cost(); const double minor_cost = minor_gc_cost(); // Limits on our growth size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average()); // But don't force a promo size below the current promo size. Otherwise, // the promo size will shrink for no good reason. promo_limit = MAX2(promo_limit, _promo_size); const double gc_cost_limit = GCTimeLimit/100.0; // Which way should we go? // if pause requirement is not met // adjust size of any generation with average paus exceeding // the pause limit. Adjust one pause at a time (the larger) // and only make adjustments for the major pause at full collections. // else if throughput requirement not met // adjust the size of the generation with larger gc time. Only // adjust one generation at a time. // else // adjust down the total heap size. Adjust down the larger of the // generations. // Add some checks for a threshold for a change. For example, // a change less than the necessary alignment is probably not worth // attempting. if ((_avg_minor_pause->padded_average() > gc_pause_goal_sec()) || (_avg_major_pause->padded_average() > gc_pause_goal_sec())) { // // Check pauses // // Make changes only to affect one of the pauses (the larger) // at a time. if (is_full_gc) { set_decide_at_full_gc(decide_at_full_gc_true); adjust_promo_for_pause_time(is_full_gc, &desired_promo_size, &desired_eden_size); } } else if (adjusted_mutator_cost() < _throughput_goal) { // This branch used to require that (mutator_cost() > 0.0 in 1.4.2. // This sometimes resulted in skipping to the minimize footprint // code. Change this to try and reduce GC time if mutator time is // negative for whatever reason. Or for future consideration, // bail out of the code if mutator time is negative. // // Throughput // assert(major_cost >= 0.0, "major cost is < 0.0"); assert(minor_cost >= 0.0, "minor cost is < 0.0"); // Try to reduce the GC times. if (is_full_gc) { set_decide_at_full_gc(decide_at_full_gc_true); adjust_promo_for_throughput(is_full_gc, &desired_promo_size); } } else { // Be conservative about reducing the footprint. // Do a minimum number of major collections first. // Have reasonable averages for major and minor collections costs. if (UseAdaptiveSizePolicyFootprintGoal && young_gen_policy_is_ready() && avg_major_gc_cost()->average() >= 0.0 && avg_minor_gc_cost()->average() >= 0.0) { if (is_full_gc) { set_decide_at_full_gc(decide_at_full_gc_true); size_t desired_sum = desired_eden_size + desired_promo_size; desired_promo_size = adjust_promo_for_footprint(desired_promo_size, desired_sum); } } } // Note we make the same tests as in the code block below; the code // seems a little easier to read with the printing in another block. if (desired_promo_size > promo_limit) { // "free_in_old_gen" was the original value for used for promo_limit size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average()); log_debug(gc, ergo)( "PSAdaptiveSizePolicy::compute_old_gen_free_space limits:" " desired_promo_size: " SIZE_FORMAT " promo_limit: " SIZE_FORMAT " free_in_old_gen: " SIZE_FORMAT " max_old_gen_size: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, desired_promo_size, promo_limit, free_in_old_gen, max_old_gen_size, (size_t) avg_old_live()->average()); } if (gc_cost() > gc_cost_limit) { log_debug(gc, ergo)( "PSAdaptiveSizePolicy::compute_old_gen_free_space: gc time limit" " gc_cost: %f " " GCTimeLimit: " UINTX_FORMAT, gc_cost(), GCTimeLimit); } // Align everything and make a final limit check desired_promo_size = align_size_up(desired_promo_size, _space_alignment); desired_promo_size = MAX2(desired_promo_size, _space_alignment); promo_limit = align_size_down(promo_limit, _space_alignment); // And one last limit check, now that we've aligned things. desired_promo_size = MIN2(desired_promo_size, promo_limit); // Timing stats log_debug(gc, ergo)("PSAdaptiveSizePolicy::compute_old_gen_free_space: costs minor_time: %f major_cost: %f mutator_cost: %f throughput_goal: %f", minor_gc_cost(), major_gc_cost(), mutator_cost(), _throughput_goal); log_trace(gc, ergo)("Minor_pause: %f major_pause: %f minor_interval: %f major_interval: %f pause_goal: %f", _avg_minor_pause->padded_average(), _avg_major_pause->padded_average(), _avg_minor_interval->average(), _avg_major_interval->average(), gc_pause_goal_sec()); // Footprint stats log_debug(gc, ergo)("Live_space: " SIZE_FORMAT " free_space: " SIZE_FORMAT, live_space(), free_space()); log_trace(gc, ergo)("Base_footprint: " SIZE_FORMAT " avg_young_live: " SIZE_FORMAT " avg_old_live: " SIZE_FORMAT, (size_t)_avg_base_footprint->average(), (size_t)avg_young_live()->average(), (size_t)avg_old_live()->average()); log_debug(gc, ergo)("Old promo_size: " SIZE_FORMAT " desired_promo_size: " SIZE_FORMAT, _promo_size, desired_promo_size); set_promo_size(desired_promo_size); }