static float bm_edge_calc_rotate_beauty__angle( const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { /* not a loop (only to be able to break out) */ do { float no_a[3], no_b[3]; float angle_24, angle_13; /* edge (2-4), current state */ normal_tri_v3(no_a, v2, v3, v4); normal_tri_v3(no_b, v2, v4, v1); angle_24 = angle_normalized_v3v3(no_a, no_b); /* edge (1-3), new state */ /* only check new state for degenerate outcome */ if ((normal_tri_v3(no_a, v1, v2, v3) == 0.0f) || (normal_tri_v3(no_b, v1, v3, v4) == 0.0f)) { break; } angle_13 = angle_normalized_v3v3(no_a, no_b); return angle_13 - angle_24; } while (false); return FLT_MAX; }
void angle_tri_v3(float angles[3], const float v1[3], const float v2[3], const float v3[3]) { float ed1[3], ed2[3], ed3[3]; sub_v3_v3v3(ed1, v3, v1); sub_v3_v3v3(ed2, v1, v2); sub_v3_v3v3(ed3, v2, v3); normalize_v3(ed1); normalize_v3(ed2); normalize_v3(ed3); angles[0] = (float)M_PI - angle_normalized_v3v3(ed1, ed2); angles[1] = (float)M_PI - angle_normalized_v3v3(ed2, ed3); // face_angles[2] = M_PI - angle_normalized_v3v3(ed3, ed1); angles[2] = (float)M_PI - (angles[0] + angles[1]); }
/* Return the shortest angle in radians between the 2 vectors */ float angle_v3v3(const float v1[3], const float v2[3]) { float vec1[3], vec2[3]; normalize_v3_v3(vec1, v1); normalize_v3_v3(vec2, v2); return angle_normalized_v3v3(vec1, vec2); }
void angle_quad_v3(float angles[4], const float v1[3], const float v2[3], const float v3[3], const float v4[3]) { float ed1[3], ed2[3], ed3[3], ed4[3]; sub_v3_v3v3(ed1, v4, v1); sub_v3_v3v3(ed2, v1, v2); sub_v3_v3v3(ed3, v2, v3); sub_v3_v3v3(ed4, v3, v4); normalize_v3(ed1); normalize_v3(ed2); normalize_v3(ed3); normalize_v3(ed4); angles[0] = (float)M_PI - angle_normalized_v3v3(ed1, ed2); angles[1] = (float)M_PI - angle_normalized_v3v3(ed2, ed3); angles[2] = (float)M_PI - angle_normalized_v3v3(ed3, ed4); angles[3] = (float)M_PI - angle_normalized_v3v3(ed4, ed1); }
static bool mball_select_similar_rotation(MetaBall *mb, const float thresh) { const float thresh_rad = thresh * (float)M_PI_2; MetaElem *ml; bool changed = false; for (ml = mb->editelems->first; ml; ml = ml->next) { if (ml->flag & SELECT) { MetaElem *ml_iter; float ml_mat[3][3]; unit_m3(ml_mat); mul_qt_v3(ml->quat, ml_mat[0]); mul_qt_v3(ml->quat, ml_mat[1]); mul_qt_v3(ml->quat, ml_mat[2]); normalize_m3(ml_mat); for (ml_iter = mb->editelems->first; ml_iter; ml_iter = ml_iter->next) { if ((ml_iter->flag & SELECT) == 0) { float ml_iter_mat[3][3]; unit_m3(ml_iter_mat); mul_qt_v3(ml_iter->quat, ml_iter_mat[0]); mul_qt_v3(ml_iter->quat, ml_iter_mat[1]); mul_qt_v3(ml_iter->quat, ml_iter_mat[2]); normalize_m3(ml_iter_mat); if ((angle_normalized_v3v3(ml_mat[0], ml_iter_mat[0]) + angle_normalized_v3v3(ml_mat[1], ml_iter_mat[1]) + angle_normalized_v3v3(ml_mat[2], ml_iter_mat[2])) < thresh_rad) { ml_iter->flag |= SELECT; changed = true; } } } } } return changed; }
void angle_poly_v3(float *angles, const float *verts[3], int len) { int i; float vec[3][3]; sub_v3_v3v3(vec[2], verts[len - 1], verts[0]); normalize_v3(vec[2]); for (i = 0; i < len; i++) { sub_v3_v3v3(vec[i % 3], verts[i % len], verts[(i + 1) % len]); normalize_v3(vec[i % 3]); angles[i] = (float)M_PI - angle_normalized_v3v3(vec[(i + 2) % 3], vec[i % 3]); } }
static void ruler_info_draw_pixel(const struct bContext *C, ARegion *ar, void *arg) { Scene *scene = CTX_data_scene(C); UnitSettings *unit = &scene->unit; RulerItem *ruler_item; RulerInfo *ruler_info = arg; RegionView3D *rv3d = ruler_info->ar->regiondata; // ARegion *ar = ruler_info->ar; const float cap_size = 4.0f; const float bg_margin = 4.0f * U.pixelsize; const float bg_radius = 4.0f * U.pixelsize; const float arc_size = 64.0f * U.pixelsize; #define ARC_STEPS 24 const int arc_steps = ARC_STEPS; int i; //unsigned int color_act = 0x666600; unsigned int color_act = 0xffffff; unsigned int color_base = 0x0; unsigned char color_back[4] = {0xff, 0xff, 0xff, 0x80}; unsigned char color_text[3]; unsigned char color_wire[3]; /* anti-aliased lines for more consistent appearance */ glEnable(GL_LINE_SMOOTH); BLF_enable(blf_mono_font, BLF_ROTATION); BLF_size(blf_mono_font, 14 * U.pixelsize, U.dpi); BLF_rotation(blf_mono_font, 0.0f); UI_GetThemeColor3ubv(TH_TEXT, color_text); UI_GetThemeColor3ubv(TH_WIRE, color_wire); for (ruler_item = ruler_info->items.first, i = 0; ruler_item; ruler_item = ruler_item->next, i++) { const bool is_act = (i == ruler_info->item_active); float dir_ruler[2]; float co_ss[3][2]; int j; /* should these be checked? - ok for now not to */ for (j = 0; j < 3; j++) { ED_view3d_project_float_global(ar, ruler_item->co[j], co_ss[j], V3D_PROJ_TEST_NOP); } glEnable(GL_BLEND); cpack(is_act ? color_act : color_base); if (ruler_item->flag & RULERITEM_USE_ANGLE) { glBegin(GL_LINE_STRIP); for (j = 0; j < 3; j++) { glVertex2fv(co_ss[j]); } glEnd(); cpack(0xaaaaaa); setlinestyle(3); glBegin(GL_LINE_STRIP); for (j = 0; j < 3; j++) { glVertex2fv(co_ss[j]); } glEnd(); setlinestyle(0); /* arc */ { float dir_tmp[3]; float co_tmp[3]; float arc_ss_coords[ARC_STEPS + 1][2]; float dir_a[3]; float dir_b[3]; float quat[4]; float axis[3]; float angle; const float px_scale = (ED_view3d_pixel_size(rv3d, ruler_item->co[1]) * min_fff(arc_size, len_v2v2(co_ss[0], co_ss[1]) / 2.0f, len_v2v2(co_ss[2], co_ss[1]) / 2.0f)); sub_v3_v3v3(dir_a, ruler_item->co[0], ruler_item->co[1]); sub_v3_v3v3(dir_b, ruler_item->co[2], ruler_item->co[1]); normalize_v3(dir_a); normalize_v3(dir_b); cross_v3_v3v3(axis, dir_a, dir_b); angle = angle_normalized_v3v3(dir_a, dir_b); axis_angle_to_quat(quat, axis, angle / arc_steps); copy_v3_v3(dir_tmp, dir_a); glColor3ubv(color_wire); for (j = 0; j <= arc_steps; j++) { madd_v3_v3v3fl(co_tmp, ruler_item->co[1], dir_tmp, px_scale); ED_view3d_project_float_global(ar, co_tmp, arc_ss_coords[j], V3D_PROJ_TEST_NOP); mul_qt_v3(quat, dir_tmp); } glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(2, GL_FLOAT, 0, arc_ss_coords); glDrawArrays(GL_LINE_STRIP, 0, arc_steps + 1); glDisableClientState(GL_VERTEX_ARRAY); } /* text */ { char numstr[256]; float numstr_size[2]; float pos[2]; const int prec = 2; /* XXX, todo, make optional */ ruler_item_as_string(ruler_item, unit, numstr, sizeof(numstr), prec); BLF_width_and_height(blf_mono_font, numstr, sizeof(numstr), &numstr_size[0], &numstr_size[1]); pos[0] = co_ss[1][0] + (cap_size * 2.0f); pos[1] = co_ss[1][1] - (numstr_size[1] / 2.0f); /* draw text (bg) */ glColor4ubv(color_back); uiSetRoundBox(UI_CNR_ALL); uiRoundBox(pos[0] - bg_margin, pos[1] - bg_margin, pos[0] + bg_margin + numstr_size[0], pos[1] + bg_margin + numstr_size[1], bg_radius); /* draw text */ glColor3ubv(color_text); BLF_position(blf_mono_font, pos[0], pos[1], 0.0f); BLF_rotation(blf_mono_font, 0.0f); BLF_draw(blf_mono_font, numstr, sizeof(numstr)); } /* capping */ { float rot_90_vec_a[2]; float rot_90_vec_b[2]; float cap[2]; sub_v2_v2v2(dir_ruler, co_ss[0], co_ss[1]); rot_90_vec_a[0] = -dir_ruler[1]; rot_90_vec_a[1] = dir_ruler[0]; normalize_v2(rot_90_vec_a); sub_v2_v2v2(dir_ruler, co_ss[1], co_ss[2]); rot_90_vec_b[0] = -dir_ruler[1]; rot_90_vec_b[1] = dir_ruler[0]; normalize_v2(rot_90_vec_b); glEnable(GL_BLEND); glColor3ubv(color_wire); glBegin(GL_LINES); madd_v2_v2v2fl(cap, co_ss[0], rot_90_vec_a, cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[0], rot_90_vec_a, -cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[2], rot_90_vec_b, cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[2], rot_90_vec_b, -cap_size); glVertex2fv(cap); /* angle vertex */ glVertex2f(co_ss[1][0] - cap_size, co_ss[1][1] - cap_size); glVertex2f(co_ss[1][0] + cap_size, co_ss[1][1] + cap_size); glVertex2f(co_ss[1][0] - cap_size, co_ss[1][1] + cap_size); glVertex2f(co_ss[1][0] + cap_size, co_ss[1][1] - cap_size); glEnd(); glDisable(GL_BLEND); } } else { glBegin(GL_LINE_STRIP); for (j = 0; j < 3; j += 2) { glVertex2fv(co_ss[j]); } glEnd(); cpack(0xaaaaaa); setlinestyle(3); glBegin(GL_LINE_STRIP); for (j = 0; j < 3; j += 2) { glVertex2fv(co_ss[j]); } glEnd(); setlinestyle(0); sub_v2_v2v2(dir_ruler, co_ss[0], co_ss[2]); /* text */ { char numstr[256]; float numstr_size[2]; const int prec = 6; /* XXX, todo, make optional */ float pos[2]; ruler_item_as_string(ruler_item, unit, numstr, sizeof(numstr), prec); BLF_width_and_height(blf_mono_font, numstr, sizeof(numstr), &numstr_size[0], &numstr_size[1]); mid_v2_v2v2(pos, co_ss[0], co_ss[2]); /* center text */ pos[0] -= numstr_size[0] / 2.0f; pos[1] -= numstr_size[1] / 2.0f; /* draw text (bg) */ glColor4ubv(color_back); uiSetRoundBox(UI_CNR_ALL); uiRoundBox(pos[0] - bg_margin, pos[1] - bg_margin, pos[0] + bg_margin + numstr_size[0], pos[1] + bg_margin + numstr_size[1], bg_radius); /* draw text */ glColor3ubv(color_text); BLF_position(blf_mono_font, pos[0], pos[1], 0.0f); BLF_draw(blf_mono_font, numstr, sizeof(numstr)); } /* capping */ { float rot_90_vec[2] = {-dir_ruler[1], dir_ruler[0]}; float cap[2]; normalize_v2(rot_90_vec); glEnable(GL_BLEND); glColor3ubv(color_wire); glBegin(GL_LINES); madd_v2_v2v2fl(cap, co_ss[0], rot_90_vec, cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[0], rot_90_vec, -cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[2], rot_90_vec, cap_size); glVertex2fv(cap); madd_v2_v2v2fl(cap, co_ss[2], rot_90_vec, -cap_size); glVertex2fv(cap); glEnd(); glDisable(GL_BLEND); } } } glDisable(GL_LINE_SMOOTH); BLF_disable(blf_mono_font, BLF_ROTATION); #undef ARC_STEPS /* draw snap */ if ((ruler_info->snap_flag & RULER_SNAP_OK) && (ruler_info->state == RULER_STATE_DRAG)) { ruler_item = ruler_item_active_get(ruler_info); if (ruler_item) { /* size from drawSnapping */ const float size = 2.5f * UI_GetThemeValuef(TH_VERTEX_SIZE); float co_ss[3]; ED_view3d_project_float_global(ar, ruler_item->co[ruler_item->co_index], co_ss, V3D_PROJ_TEST_NOP); cpack(color_act); circ(co_ss[0], co_ss[1], size * U.pixelsize); } } }
/** * \param dm Mesh to calculate normals for. * \param face_nors Precalculated face normals. * \param r_vert_nors Return vert normals. */ static void dm_calc_normal(DerivedMesh *dm, float (*face_nors)[3], float (*r_vert_nors)[3]) { int i, numVerts, numEdges, numFaces; MPoly *mpoly, *mp; MLoop *mloop, *ml; MEdge *medge, *ed; MVert *mvert, *mv; numVerts = dm->getNumVerts(dm); numEdges = dm->getNumEdges(dm); numFaces = dm->getNumPolys(dm); mpoly = dm->getPolyArray(dm); medge = dm->getEdgeArray(dm); mvert = dm->getVertArray(dm); mloop = dm->getLoopArray(dm); /* we don't want to overwrite any referenced layers */ /* Doesn't work here! */ #if 0 mv = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, numVerts); cddm->mvert = mv; #endif mv = mvert; mp = mpoly; { EdgeFaceRef *edge_ref_array = MEM_callocN(sizeof(EdgeFaceRef) * (size_t)numEdges, "Edge Connectivity"); EdgeFaceRef *edge_ref; float edge_normal[3]; /* This loop adds an edge hash if its not there, and adds the face index */ for (i = 0; i < numFaces; i++, mp++) { int j; ml = mloop + mp->loopstart; for (j = 0; j < mp->totloop; j++, ml++) { /* --- add edge ref to face --- */ edge_ref = &edge_ref_array[ml->e]; if (!edgeref_is_init(edge_ref)) { edge_ref->f1 = i; edge_ref->f2 = -1; } else if ((edge_ref->f1 != -1) && (edge_ref->f2 == -1)) { edge_ref->f2 = i; } else { /* 3+ faces using an edge, we can't handle this usefully */ edge_ref->f1 = edge_ref->f2 = -1; #ifdef USE_NONMANIFOLD_WORKAROUND medge[ml->e].flag |= ME_EDGE_TMP_TAG; #endif } /* --- done --- */ } } for (i = 0, ed = medge, edge_ref = edge_ref_array; i < numEdges; i++, ed++, edge_ref++) { /* Get the edge vert indices, and edge value (the face indices that use it) */ if (edgeref_is_init(edge_ref) && (edge_ref->f1 != -1)) { if (edge_ref->f2 != -1) { /* We have 2 faces using this edge, calculate the edges normal * using the angle between the 2 faces as a weighting */ #if 0 add_v3_v3v3(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]); normalize_v3(edge_normal); mul_v3_fl(edge_normal, angle_normalized_v3v3(face_nors[edge_ref->f1], face_nors[edge_ref->f2])); #else mid_v3_v3v3_angle_weighted(edge_normal, face_nors[edge_ref->f1], face_nors[edge_ref->f2]); #endif } else { /* only one face attached to that edge */ /* an edge without another attached- the weight on this is undefined */ copy_v3_v3(edge_normal, face_nors[edge_ref->f1]); } add_v3_v3(r_vert_nors[ed->v1], edge_normal); add_v3_v3(r_vert_nors[ed->v2], edge_normal); } } MEM_freeN(edge_ref_array); } /* normalize vertex normals and assign */ for (i = 0; i < numVerts; i++, mv++) { if (normalize_v3(r_vert_nors[i]) == 0.0f) { normal_short_to_float_v3(r_vert_nors[i], mv->no); } } }
static DerivedMesh *applyModifier( ModifierData *md, Object *ob, DerivedMesh *dm, ModifierApplyFlag UNUSED(flag)) { DerivedMesh *result; const SolidifyModifierData *smd = (SolidifyModifierData *) md; MVert *mv, *mvert, *orig_mvert; MEdge *ed, *medge, *orig_medge; MLoop *ml, *mloop, *orig_mloop; MPoly *mp, *mpoly, *orig_mpoly; const unsigned int numVerts = (unsigned int)dm->getNumVerts(dm); const unsigned int numEdges = (unsigned int)dm->getNumEdges(dm); const unsigned int numFaces = (unsigned int)dm->getNumPolys(dm); const unsigned int numLoops = (unsigned int)dm->getNumLoops(dm); unsigned int newLoops = 0, newFaces = 0, newEdges = 0, newVerts = 0, rimVerts = 0; /* only use material offsets if we have 2 or more materials */ const short mat_nr_max = ob->totcol > 1 ? ob->totcol - 1 : 0; const short mat_ofs = mat_nr_max ? smd->mat_ofs : 0; const short mat_ofs_rim = mat_nr_max ? smd->mat_ofs_rim : 0; /* use for edges */ /* over-alloc new_vert_arr, old_vert_arr */ unsigned int *new_vert_arr = NULL; STACK_DECLARE(new_vert_arr); unsigned int *new_edge_arr = NULL; STACK_DECLARE(new_edge_arr); unsigned int *old_vert_arr = MEM_callocN(sizeof(*old_vert_arr) * (size_t)numVerts, "old_vert_arr in solidify"); unsigned int *edge_users = NULL; char *edge_order = NULL; float (*vert_nors)[3] = NULL; float (*face_nors)[3] = NULL; const bool need_face_normals = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) || (smd->flag & MOD_SOLIDIFY_EVEN); const float ofs_orig = -(((-smd->offset_fac + 1.0f) * 0.5f) * smd->offset); const float ofs_new = smd->offset + ofs_orig; const float offset_fac_vg = smd->offset_fac_vg; const float offset_fac_vg_inv = 1.0f - smd->offset_fac_vg; const bool do_flip = (smd->flag & MOD_SOLIDIFY_FLIP) != 0; const bool do_clamp = (smd->offset_clamp != 0.0f); const bool do_shell = ((smd->flag & MOD_SOLIDIFY_RIM) && (smd->flag & MOD_SOLIDIFY_NOSHELL)) == 0; /* weights */ MDeformVert *dvert; const bool defgrp_invert = (smd->flag & MOD_SOLIDIFY_VGROUP_INV) != 0; int defgrp_index; /* array size is doubled in case of using a shell */ const unsigned int stride = do_shell ? 2 : 1; modifier_get_vgroup(ob, dm, smd->defgrp_name, &dvert, &defgrp_index); orig_mvert = dm->getVertArray(dm); orig_medge = dm->getEdgeArray(dm); orig_mloop = dm->getLoopArray(dm); orig_mpoly = dm->getPolyArray(dm); if (need_face_normals) { /* calculate only face normals */ face_nors = MEM_mallocN(sizeof(*face_nors) * (size_t)numFaces, __func__); BKE_mesh_calc_normals_poly( orig_mvert, NULL, (int)numVerts, orig_mloop, orig_mpoly, (int)numLoops, (int)numFaces, face_nors, true); } STACK_INIT(new_vert_arr, numVerts * 2); STACK_INIT(new_edge_arr, numEdges * 2); if (smd->flag & MOD_SOLIDIFY_RIM) { BLI_bitmap *orig_mvert_tag = BLI_BITMAP_NEW(numVerts, __func__); unsigned int eidx; unsigned int i; #define INVALID_UNUSED ((unsigned int)-1) #define INVALID_PAIR ((unsigned int)-2) new_vert_arr = MEM_mallocN(sizeof(*new_vert_arr) * (size_t)(numVerts * 2), __func__); new_edge_arr = MEM_mallocN(sizeof(*new_edge_arr) * (size_t)((numEdges * 2) + numVerts), __func__); edge_users = MEM_mallocN(sizeof(*edge_users) * (size_t)numEdges, "solid_mod edges"); edge_order = MEM_mallocN(sizeof(*edge_order) * (size_t)numEdges, "solid_mod eorder"); /* save doing 2 loops here... */ #if 0 copy_vn_i(edge_users, numEdges, INVALID_UNUSED); #endif for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) { edge_users[eidx] = INVALID_UNUSED; } for (i = 0, mp = orig_mpoly; i < numFaces; i++, mp++) { MLoop *ml_prev; int j; ml = orig_mloop + mp->loopstart; ml_prev = ml + (mp->totloop - 1); for (j = 0; j < mp->totloop; j++, ml++) { /* add edge user */ eidx = ml_prev->e; if (edge_users[eidx] == INVALID_UNUSED) { ed = orig_medge + eidx; BLI_assert(ELEM(ml_prev->v, ed->v1, ed->v2) && ELEM(ml->v, ed->v1, ed->v2)); edge_users[eidx] = (ml_prev->v > ml->v) == (ed->v1 < ed->v2) ? i : (i + numFaces); edge_order[eidx] = j; } else { edge_users[eidx] = INVALID_PAIR; } ml_prev = ml; } } for (eidx = 0, ed = orig_medge; eidx < numEdges; eidx++, ed++) { if (!ELEM(edge_users[eidx], INVALID_UNUSED, INVALID_PAIR)) { BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v1); BLI_BITMAP_ENABLE(orig_mvert_tag, ed->v2); STACK_PUSH(new_edge_arr, eidx); newFaces++; newLoops += 4; } } for (i = 0; i < numVerts; i++) { if (BLI_BITMAP_TEST(orig_mvert_tag, i)) { old_vert_arr[i] = STACK_SIZE(new_vert_arr); STACK_PUSH(new_vert_arr, i); rimVerts++; } else { old_vert_arr[i] = INVALID_UNUSED; } } MEM_freeN(orig_mvert_tag); } if (do_shell == false) { /* only add rim vertices */ newVerts = rimVerts; /* each extruded face needs an opposite edge */ newEdges = newFaces; } else { /* (stride == 2) in this case, so no need to add newVerts/newEdges */ BLI_assert(newVerts == 0); BLI_assert(newEdges == 0); } if (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) { vert_nors = MEM_callocN(sizeof(float) * (size_t)numVerts * 3, "mod_solid_vno_hq"); dm_calc_normal(dm, face_nors, vert_nors); } result = CDDM_from_template(dm, (int)((numVerts * stride) + newVerts), (int)((numEdges * stride) + newEdges + rimVerts), 0, (int)((numLoops * stride) + newLoops), (int)((numFaces * stride) + newFaces)); mpoly = CDDM_get_polys(result); mloop = CDDM_get_loops(result); medge = CDDM_get_edges(result); mvert = CDDM_get_verts(result); if (do_shell) { DM_copy_vert_data(dm, result, 0, 0, (int)numVerts); DM_copy_vert_data(dm, result, 0, (int)numVerts, (int)numVerts); DM_copy_edge_data(dm, result, 0, 0, (int)numEdges); DM_copy_edge_data(dm, result, 0, (int)numEdges, (int)numEdges); DM_copy_loop_data(dm, result, 0, 0, (int)numLoops); DM_copy_loop_data(dm, result, 0, (int)numLoops, (int)numLoops); DM_copy_poly_data(dm, result, 0, 0, (int)numFaces); DM_copy_poly_data(dm, result, 0, (int)numFaces, (int)numFaces); } else { int i, j; DM_copy_vert_data(dm, result, 0, 0, (int)numVerts); for (i = 0, j = (int)numVerts; i < numVerts; i++) { if (old_vert_arr[i] != INVALID_UNUSED) { DM_copy_vert_data(dm, result, i, j, 1); j++; } } DM_copy_edge_data(dm, result, 0, 0, (int)numEdges); for (i = 0, j = (int)numEdges; i < numEdges; i++) { if (!ELEM(edge_users[i], INVALID_UNUSED, INVALID_PAIR)) { MEdge *ed_src, *ed_dst; DM_copy_edge_data(dm, result, i, j, 1); ed_src = &medge[i]; ed_dst = &medge[j]; ed_dst->v1 = old_vert_arr[ed_src->v1] + numVerts; ed_dst->v2 = old_vert_arr[ed_src->v2] + numVerts; j++; } } /* will be created later */ DM_copy_loop_data(dm, result, 0, 0, (int)numLoops); DM_copy_poly_data(dm, result, 0, 0, (int)numFaces); } #undef INVALID_UNUSED #undef INVALID_PAIR /* initializes: (i_end, do_shell_align, mv) */ #define INIT_VERT_ARRAY_OFFSETS(test) \ if (((ofs_new >= ofs_orig) == do_flip) == test) { \ i_end = numVerts; \ do_shell_align = true; \ mv = mvert; \ } \ else { \ if (do_shell) { \ i_end = numVerts; \ do_shell_align = true; \ } \ else { \ i_end = newVerts ; \ do_shell_align = false; \ } \ mv = &mvert[numVerts]; \ } (void)0 /* flip normals */ if (do_shell) { unsigned int i; mp = mpoly + numFaces; for (i = 0; i < dm->numPolyData; i++, mp++) { MLoop *ml2; unsigned int e; int j; /* reverses the loop direction (MLoop.v as well as custom-data) * MLoop.e also needs to be corrected too, done in a separate loop below. */ ml2 = mloop + mp->loopstart + dm->numLoopData; for (j = 0; j < mp->totloop; j++) { CustomData_copy_data(&dm->loopData, &result->loopData, mp->loopstart + j, mp->loopstart + (mp->totloop - j - 1) + dm->numLoopData, 1); } if (mat_ofs) { mp->mat_nr += mat_ofs; CLAMP(mp->mat_nr, 0, mat_nr_max); } e = ml2[0].e; for (j = 0; j < mp->totloop - 1; j++) { ml2[j].e = ml2[j + 1].e; } ml2[mp->totloop - 1].e = e; mp->loopstart += dm->numLoopData; for (j = 0; j < mp->totloop; j++) { ml2[j].e += numEdges; ml2[j].v += numVerts; } } for (i = 0, ed = medge + numEdges; i < numEdges; i++, ed++) { ed->v1 += numVerts; ed->v2 += numVerts; } } /* note, copied vertex layers don't have flipped normals yet. do this after applying offset */ if ((smd->flag & MOD_SOLIDIFY_EVEN) == 0) { /* no even thickness, very simple */ float scalar_short; float scalar_short_vgroup; /* for clamping */ float *vert_lens = NULL; const float offset = fabsf(smd->offset) * smd->offset_clamp; const float offset_sq = offset * offset; if (do_clamp) { unsigned int i; vert_lens = MEM_mallocN(sizeof(float) * numVerts, "vert_lens"); copy_vn_fl(vert_lens, (int)numVerts, FLT_MAX); for (i = 0; i < numEdges; i++) { const float ed_len_sq = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co); vert_lens[medge[i].v1] = min_ff(vert_lens[medge[i].v1], ed_len_sq); vert_lens[medge[i].v2] = min_ff(vert_lens[medge[i].v2], ed_len_sq); } } if (ofs_new != 0.0f) { unsigned int i_orig, i_end; bool do_shell_align; scalar_short = scalar_short_vgroup = ofs_new / 32767.0f; INIT_VERT_ARRAY_OFFSETS(false); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (dvert) { MDeformVert *dv = &dvert[i]; if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index); else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index); scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short; } if (do_clamp) { /* always reset becaise we may have set before */ if (dvert == NULL) { scalar_short_vgroup = scalar_short; } if (vert_lens[i] < offset_sq) { float scalar = sqrtf(vert_lens[i]) / offset; scalar_short_vgroup *= scalar; } } madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup); } } if (ofs_orig != 0.0f) { unsigned int i_orig, i_end; bool do_shell_align; scalar_short = scalar_short_vgroup = ofs_orig / 32767.0f; /* as above but swapped */ INIT_VERT_ARRAY_OFFSETS(true); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const unsigned int i = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (dvert) { MDeformVert *dv = &dvert[i]; if (defgrp_invert) scalar_short_vgroup = 1.0f - defvert_find_weight(dv, defgrp_index); else scalar_short_vgroup = defvert_find_weight(dv, defgrp_index); scalar_short_vgroup = (offset_fac_vg + (scalar_short_vgroup * offset_fac_vg_inv)) * scalar_short; } if (do_clamp) { /* always reset becaise we may have set before */ if (dvert == NULL) { scalar_short_vgroup = scalar_short; } if (vert_lens[i] < offset_sq) { float scalar = sqrtf(vert_lens[i]) / offset; scalar_short_vgroup *= scalar; } } madd_v3v3short_fl(mv->co, mv->no, scalar_short_vgroup); } } if (do_clamp) { MEM_freeN(vert_lens); } } else { #ifdef USE_NONMANIFOLD_WORKAROUND const bool check_non_manifold = (smd->flag & MOD_SOLIDIFY_NORMAL_CALC) != 0; #endif /* same as EM_solidify() in editmesh_lib.c */ float *vert_angles = MEM_callocN(sizeof(float) * numVerts * 2, "mod_solid_pair"); /* 2 in 1 */ float *vert_accum = vert_angles + numVerts; unsigned int vidx; unsigned int i; if (vert_nors == NULL) { vert_nors = MEM_mallocN(sizeof(float) * numVerts * 3, "mod_solid_vno"); for (i = 0, mv = mvert; i < numVerts; i++, mv++) { normal_short_to_float_v3(vert_nors[i], mv->no); } } for (i = 0, mp = mpoly; i < numFaces; i++, mp++) { /* #BKE_mesh_calc_poly_angles logic is inlined here */ float nor_prev[3]; float nor_next[3]; int i_curr = mp->totloop - 1; int i_next = 0; ml = &mloop[mp->loopstart]; sub_v3_v3v3(nor_prev, mvert[ml[i_curr - 1].v].co, mvert[ml[i_curr].v].co); normalize_v3(nor_prev); while (i_next < mp->totloop) { float angle; sub_v3_v3v3(nor_next, mvert[ml[i_curr].v].co, mvert[ml[i_next].v].co); normalize_v3(nor_next); angle = angle_normalized_v3v3(nor_prev, nor_next); /* --- not related to angle calc --- */ if (angle < FLT_EPSILON) { angle = FLT_EPSILON; } vidx = ml[i_curr].v; vert_accum[vidx] += angle; #ifdef USE_NONMANIFOLD_WORKAROUND /* skip 3+ face user edges */ if ((check_non_manifold == false) || LIKELY(((orig_medge[ml[i_curr].e].flag & ME_EDGE_TMP_TAG) == 0) && ((orig_medge[ml[i_next].e].flag & ME_EDGE_TMP_TAG) == 0))) { vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle; } else { vert_angles[vidx] += angle; } #else vert_angles[vidx] += shell_v3v3_normalized_to_dist(vert_nors[vidx], face_nors[i]) * angle; #endif /* --- end non-angle-calc section --- */ /* step */ copy_v3_v3(nor_prev, nor_next); i_curr = i_next; i_next++; } } /* vertex group support */ if (dvert) { MDeformVert *dv = dvert; float scalar; if (defgrp_invert) { for (i = 0; i < numVerts; i++, dv++) { scalar = 1.0f - defvert_find_weight(dv, defgrp_index); scalar = offset_fac_vg + (scalar * offset_fac_vg_inv); vert_angles[i] *= scalar; } } else { for (i = 0; i < numVerts; i++, dv++) { scalar = defvert_find_weight(dv, defgrp_index); scalar = offset_fac_vg + (scalar * offset_fac_vg_inv); vert_angles[i] *= scalar; } } } if (do_clamp) { float *vert_lens_sq = MEM_mallocN(sizeof(float) * numVerts, "vert_lens"); const float offset = fabsf(smd->offset) * smd->offset_clamp; const float offset_sq = offset * offset; copy_vn_fl(vert_lens_sq, (int)numVerts, FLT_MAX); for (i = 0; i < numEdges; i++) { const float ed_len = len_squared_v3v3(mvert[medge[i].v1].co, mvert[medge[i].v2].co); vert_lens_sq[medge[i].v1] = min_ff(vert_lens_sq[medge[i].v1], ed_len); vert_lens_sq[medge[i].v2] = min_ff(vert_lens_sq[medge[i].v2], ed_len); } for (i = 0; i < numVerts; i++) { if (vert_lens_sq[i] < offset_sq) { float scalar = sqrtf(vert_lens_sq[i]) / offset; vert_angles[i] *= scalar; } } MEM_freeN(vert_lens_sq); } if (ofs_new != 0.0f) { unsigned int i_orig, i_end; bool do_shell_align; INIT_VERT_ARRAY_OFFSETS(false); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (vert_accum[i_other]) { /* zero if unselected */ madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_new * (vert_angles[i_other] / vert_accum[i_other])); } } } if (ofs_orig != 0.0f) { unsigned int i_orig, i_end; bool do_shell_align; /* same as above but swapped, intentional use of 'ofs_new' */ INIT_VERT_ARRAY_OFFSETS(true); for (i_orig = 0; i_orig < i_end; i_orig++, mv++) { const unsigned int i_other = do_shell_align ? i_orig : new_vert_arr[i_orig]; if (vert_accum[i_other]) { /* zero if unselected */ madd_v3_v3fl(mv->co, vert_nors[i_other], ofs_orig * (vert_angles[i_other] / vert_accum[i_other])); } } } MEM_freeN(vert_angles); } if (vert_nors) MEM_freeN(vert_nors); /* must recalculate normals with vgroups since they can displace unevenly [#26888] */ if ((dm->dirty & DM_DIRTY_NORMALS) || (smd->flag & MOD_SOLIDIFY_RIM) || dvert) { result->dirty |= DM_DIRTY_NORMALS; } else if (do_shell) { unsigned int i; /* flip vertex normals for copied verts */ mv = mvert + numVerts; for (i = 0; i < numVerts; i++, mv++) { negate_v3_short(mv->no); } } if (smd->flag & MOD_SOLIDIFY_RIM) { unsigned int i; /* bugger, need to re-calculate the normals for the new edge faces. * This could be done in many ways, but probably the quickest way * is to calculate the average normals for side faces only. * Then blend them with the normals of the edge verts. * * at the moment its easiest to allocate an entire array for every vertex, * even though we only need edge verts - campbell */ #define SOLIDIFY_SIDE_NORMALS #ifdef SOLIDIFY_SIDE_NORMALS const bool do_side_normals = !(result->dirty & DM_DIRTY_NORMALS); /* annoying to allocate these since we only need the edge verts, */ float (*edge_vert_nos)[3] = do_side_normals ? MEM_callocN(sizeof(float) * numVerts * 3, __func__) : NULL; float nor[3]; #endif const unsigned char crease_rim = smd->crease_rim * 255.0f; const unsigned char crease_outer = smd->crease_outer * 255.0f; const unsigned char crease_inner = smd->crease_inner * 255.0f; int *origindex_edge; int *orig_ed; unsigned int j; if (crease_rim || crease_outer || crease_inner) { result->cd_flag |= ME_CDFLAG_EDGE_CREASE; } /* add faces & edges */ origindex_edge = result->getEdgeDataArray(result, CD_ORIGINDEX); ed = &medge[(numEdges * stride) + newEdges]; /* start after copied edges */ orig_ed = &origindex_edge[(numEdges * stride) + newEdges]; for (i = 0; i < rimVerts; i++, ed++, orig_ed++) { ed->v1 = new_vert_arr[i]; ed->v2 = (do_shell ? new_vert_arr[i] : i) + numVerts; ed->flag |= ME_EDGEDRAW; *orig_ed = ORIGINDEX_NONE; if (crease_rim) { ed->crease = crease_rim; } } /* faces */ mp = mpoly + (numFaces * stride); ml = mloop + (numLoops * stride); j = 0; for (i = 0; i < newFaces; i++, mp++) { unsigned int eidx = new_edge_arr[i]; unsigned int fidx = edge_users[eidx]; int k1, k2; bool flip; if (fidx >= numFaces) { fidx -= numFaces; flip = true; } else { flip = false; } ed = medge + eidx; /* copy most of the face settings */ DM_copy_poly_data(dm, result, (int)fidx, (int)((numFaces * stride) + i), 1); mp->loopstart = (int)(j + (numLoops * stride)); mp->flag = mpoly[fidx].flag; /* notice we use 'mp->totloop' which is later overwritten, * we could lookup the original face but theres no point since this is a copy * and will have the same value, just take care when changing order of assignment */ k1 = mpoly[fidx].loopstart + (((edge_order[eidx] - 1) + mp->totloop) % mp->totloop); /* prev loop */ k2 = mpoly[fidx].loopstart + (edge_order[eidx]); mp->totloop = 4; CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 0), 1); CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 1), 1); CustomData_copy_data(&dm->loopData, &result->loopData, k1, (int)((numLoops * stride) + j + 2), 1); CustomData_copy_data(&dm->loopData, &result->loopData, k2, (int)((numLoops * stride) + j + 3), 1); if (flip == false) { ml[j].v = ed->v1; ml[j++].e = eidx; ml[j].v = ed->v2; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges; ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts; ml[j++].e = (do_shell ? eidx : i) + numEdges; ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges; } else { ml[j].v = ed->v2; ml[j++].e = eidx; ml[j].v = ed->v1; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v1] + newEdges; ml[j].v = (do_shell ? ed->v1 : old_vert_arr[ed->v1]) + numVerts; ml[j++].e = (do_shell ? eidx : i) + numEdges; ml[j].v = (do_shell ? ed->v2 : old_vert_arr[ed->v2]) + numVerts; ml[j++].e = (numEdges * stride) + old_vert_arr[ed->v2] + newEdges; } origindex_edge[ml[j - 3].e] = ORIGINDEX_NONE; origindex_edge[ml[j - 1].e] = ORIGINDEX_NONE; /* use the next material index if option enabled */ if (mat_ofs_rim) { mp->mat_nr += mat_ofs_rim; CLAMP(mp->mat_nr, 0, mat_nr_max); } if (crease_outer) { /* crease += crease_outer; without wrapping */ char *cr = &(ed->crease); int tcr = *cr + crease_outer; *cr = tcr > 255 ? 255 : tcr; } if (crease_inner) { /* crease += crease_inner; without wrapping */ char *cr = &(medge[numEdges + (do_shell ? eidx : i)].crease); int tcr = *cr + crease_inner; *cr = tcr > 255 ? 255 : tcr; } #ifdef SOLIDIFY_SIDE_NORMALS if (do_side_normals) { normal_quad_v3(nor, mvert[ml[j - 4].v].co, mvert[ml[j - 3].v].co, mvert[ml[j - 2].v].co, mvert[ml[j - 1].v].co); add_v3_v3(edge_vert_nos[ed->v1], nor); add_v3_v3(edge_vert_nos[ed->v2], nor); } #endif } #ifdef SOLIDIFY_SIDE_NORMALS if (do_side_normals) { ed = medge + (numEdges * stride); for (i = 0; i < rimVerts; i++, ed++) { float nor_cpy[3]; short *nor_short; int k; /* note, only the first vertex (lower half of the index) is calculated */ normalize_v3_v3(nor_cpy, edge_vert_nos[ed->v1]); for (k = 0; k < 2; k++) { /* loop over both verts of the edge */ nor_short = mvert[*(&ed->v1 + k)].no; normal_short_to_float_v3(nor, nor_short); add_v3_v3(nor, nor_cpy); normalize_v3(nor); normal_float_to_short_v3(nor_short, nor); } } MEM_freeN(edge_vert_nos); } #endif MEM_freeN(new_vert_arr); MEM_freeN(new_edge_arr); MEM_freeN(edge_users); MEM_freeN(edge_order); } if (old_vert_arr) MEM_freeN(old_vert_arr); if (face_nors) MEM_freeN(face_nors); if (numFaces == 0 && numEdges != 0) { modifier_setError(md, "Faces needed for useful output"); } return result; }