コード例 #1
0
ファイル: keys.cpp プロジェクト: Belial2010/bundler_sfm
ANNkd_tree *CreateSearchTree(const std::vector<KeypointWithDesc> &k, 
                             bool spatial, double alpha) 
{
    /* Create a new array of points */
    int num_pts = (int) k.size();

    int dim = 128;
    if (spatial) dim = 130;

    ANNpointArray pts = annAllocPts(num_pts, dim);

    int offset = 0;
    if (spatial) offset = 2;
     
    for (int i = 0; i < num_pts; i++) {
        int j;

        assert(k[i].m_d != NULL);
        
        if (spatial) {
            pts[i][0] = alpha * k[i].m_x;
            pts[i][1] = alpha * k[i].m_y;
        }
        
        for (j = 0; j < 128; j++)
            pts[i][j+offset] = k[i].m_d[j];
    }
    
    /* Create a search tree for k2 */
    ANNkd_tree *tree = new ANNkd_tree(pts, num_pts, dim, 4);

    // annDeallocPts(pts);

    return tree;
}
コード例 #2
0
ファイル: CANNObject.cpp プロジェクト: strikles/poker
CANNObject::CANNObject(int m_k, int m_maxPts, enumStreets m_br, int m_timesActed, double m_eps)
: k(m_k), maxPts(m_maxPts), br(m_br), timesActed(m_timesActed), eps(m_eps)
{
	if (br == ePreflop)
		dim	= 6 + timesActed;
	else
		dim = 8 + timesActed;

	dataPts = annAllocPts(maxPts, dim);		// allocate data points
	nnIdx = new ANNidx[k];					// allocate near neigh indices
	dists = new ANNdist[k];					// allocate near neighbor dists

	nPts = gDB.FillAnnArray(dataPts, br, timesActed);

	/*
	if (DEBUG_ANN)
	{
		for (int i = 0; i < nPts; i++)
		{
			printf("Data Point: ");
			PrintPt(std::cout, dataPts[i]);
		}
	}
	*/

	// build search structure
	kdTree = new ANNkd_tree(dataPts,		// the data points
							nPts,			// number of points
							dim);			// dimension of space
}
コード例 #3
0
void ANNWrapper::SetPoints(const std::vector <Point3D> &P)
{
    Free();       // Free, if theres anything to free
    m_nnidx = new ANNidx[m_k];						// allocate near neigh indices
	m_dists = new ANNdist[m_k];						// allocate near neighbor m_dists
	m_query_pt = annAllocPt(dim);					// allocate query point

	m_npts = P.size();

	m_data_pts = annAllocPts(P.size(), dim);		// allocate data points

	for(unsigned int i=0; i < P.size(); i++)
	{
		m_data_pts[i][0] = P[i].x;
		m_data_pts[i][1] = P[i].y;
		m_data_pts[i][2] = P[i].z;
	}

	m_kdtree = new ANNkd_tree(				// build search structure
				m_data_pts,					// the data points
				m_npts,						// number of points
				dim);						// dimension of space

	m_anything_to_free = true;
}
コード例 #4
0
ファイル: KNNClassifier.cpp プロジェクト: eaglesky/ARLK
	ANNpointArray KNNClassifier::KNNFeatureExtraction(SkeData* inputData, int* pFrameNum, int* pFeatureNum, double wt)
	{
		*pFeatureNum = FEATURENUM;
		*pFrameNum = inputData->GetFrameSaved();

	
		ANNpointArray ret = annAllocPts(*pFrameNum, FEATURENUM);

		for (int i = 0; i < *pFrameNum; i++)
		{
			for (int j = 0; j < FEATURENUM / 3; j++)
			{
				FEATURE_VEC* pVec = new FEATURE_VEC;
				if (!CalFeatureVector(inputData, i+1, j+1, pVec, wt))
					return NULL;

				ret[i][j*3] = pVec->x;
				ret[i][j*3 + 1] = pVec->y;
				ret[i][j*3 + 2] = pVec->z;

				delete pVec;
			}
		}
		return ret;
	}
コード例 #5
0
void mitk::PointLocator::SetPoints(vtkPointSet *pointSet)
{
  if (pointSet == nullptr)
  {
    itkWarningMacro("Points are NULL!");
    return;
  }
  vtkPoints *points = pointSet->GetPoints();

  if (m_VtkPoints)
  {
    if ((m_VtkPoints == points) && (m_VtkPoints->GetMTime() == points->GetMTime()))
    {
      return; // no need to recalculate search tree
    }
  }
  m_VtkPoints = points;

  size_t size = points->GetNumberOfPoints();
  if (m_ANNDataPoints != nullptr)
    delete[] m_ANNDataPoints;
  m_ANNDataPoints = annAllocPts(size, m_ANNDimension);
  m_IndexToPointIdContainer.clear();
  m_IndexToPointIdContainer.resize(size);
  for (vtkIdType i = 0; (unsigned)i < size; ++i)
  {
    double *currentPoint = points->GetPoint(i);
    (m_ANNDataPoints[i])[0] = currentPoint[0];
    (m_ANNDataPoints[i])[1] = currentPoint[1];
    (m_ANNDataPoints[i])[2] = currentPoint[2];
    m_IndexToPointIdContainer[i] = i;
  }
  InitANN();
}
コード例 #6
0
ファイル: InfoTheory.C プロジェクト: EricDoug/queso
//*****************************************************
// Function: computeMI_ANN
//*****************************************************
double computeMI_ANN( ANNpointArray dataXY,
		      unsigned int dimX, unsigned int dimY,
		      unsigned int k, unsigned int N, double eps )
{

  ANNpointArray dataX, dataY;
  double* distsXY;
  double MI_est;
  ANNkd_tree* kdTreeX;
  ANNkd_tree* kdTreeY;

  unsigned int dimXY = dimX + dimY;

  // Allocate memory
  dataX = annAllocPts(N,dimX);
  dataY = annAllocPts(N,dimY);
  distsXY = new double[N];

  // Normalize data and populate the marginals dataX, dataY
  normalizeANN_XY( dataXY, dimXY, dataX, dimX, dataY, dimY, N);

  // Get distance to knn for each point
  kdTreeX = new ANNkd_tree( dataX, N, dimX );
  kdTreeY = new ANNkd_tree( dataY, N, dimY );
  distANN_XY( dataXY, dataXY, distsXY, dimXY, dimXY, N, N, k, eps );

  // Compute mutual information
  double marginal_contrib = 0.0;
  for( unsigned int i = 0; i < N; i++ ) {
    // get the number of points within a specified radius
    int no_pts_X = kdTreeX->annkFRSearch( dataX[ i ], distsXY[ i ], 0, NULL, NULL, eps);
    int no_pts_Y = kdTreeY->annkFRSearch( dataY[ i ], distsXY[ i ], 0, NULL, NULL, eps);
    // digamma evaluations
    marginal_contrib += gsl_sf_psi_int( no_pts_X+1 ) + gsl_sf_psi_int( no_pts_Y+1 );
  }
  MI_est = gsl_sf_psi_int( k ) + gsl_sf_psi_int( N ) - marginal_contrib / (double)N;

  // Deallocate memory
  delete kdTreeX;
  delete kdTreeY;
  delete [] distsXY;
  annDeallocPts( dataX );
  annDeallocPts( dataY );

  return MI_est;

}
コード例 #7
0
	ANNpointArray CMDPointVector::GetANNpointArray(const vector<int>& in)const
	{
		const CMDPointVector& me = *this;


		ANNpointArray ptsArray = annAllocPts((int)size(), (int)in.size());
		for (size_t i = 0; i < size(); i++)
		{
			ASSERT(i == 0 || at(i - 1).GetNbDimension() == at(i).GetNbDimension());

			for (size_t j = 0; j < in.size(); j++)
			{
				ASSERT(in[j] < (int)at(i).GetNbDimension());
				if (m_bStandardized)
				{
					double e = m_dimStats[in[j]][STD_DEV];
					if (e>0)
						ptsArray[i][j] = (me[i][in[j]] - m_dimStats[in[j]][MEAN]) / e;
					else ptsArray[i][j] = 0;
				}
				else
				{

					ptsArray[i][j] = me[i][in[j]];
				}
			}
		}

		//ANNpointArray ptsArray = annAllocPts((int)size(), (int)198);
		//for(size_t i=0; i<size(); i++)
		//{
		//	ASSERT( i==0 || at(i-1).GetNbDimension() == at(i).GetNbDimension());
		//
		//	for(size_t j=0; j<in.size(); j++)
		//		ptsArray[i][GetK(in[j])]=0;
		//	
		//	
		//	for(size_t j=0; j<in.size(); j++)
		//	{
		//		ASSERT( in[j] < (int)at(i).GetNbDimension() );
		//		int k = in[j];

		//		if( m_bStandardized )
		//		{
		//			double e = m_dimStats[k][STD_DEV];
		//			if( e>0)
		//				ptsArray[i][GetK(in[j])] += (me[i][k]-m_dimStats[k][MEAN])/e;
		//			
		//		}
		//		else
		//		{
		//			ptsArray[i][GetK(in[j])] += me[i][k];
		//		}
		//	}
		//}

		return ptsArray;
	}
コード例 #8
0
ファイル: NearestNeighbor.cpp プロジェクト: iyer-arvind/gmsh
PView *GMSH_NearestNeighborPlugin::execute(PView *v)
{
  int iView = (int)NearestNeighborOptions_Number[0].def;

  PView *v1 = getView(iView, v);
  if(!v1) return v;
  PViewData *data1 = v1->getData();

  int totpoints = data1->getNumPoints();
  if(!totpoints){
    Msg::Error("View[%d] contains no points", iView);
    return 0;
  }

#if defined(HAVE_ANN)
  ANNpointArray zeronodes = annAllocPts(totpoints, 3);
  int k = 0, step = 0;
  for(int ent = 0; ent < data1->getNumEntities(step); ent++){
    for(int ele = 0; ele < data1->getNumElements(step, ent); ele++){
      if(data1->skipElement(step, ent, ele)) continue;
      int numNodes = data1->getNumNodes(step, ent, ele);
      if(numNodes != 1) continue;
      data1->getNode(step, ent, ele, 0, zeronodes[k][0], zeronodes[k][1],
                     zeronodes[k][2]);
      k++;
    }
  }
  ANNkd_tree *kdtree = new ANNkd_tree(zeronodes, totpoints, 3);
  ANNidxArray index = new ANNidx[2];
  ANNdistArray dist = new ANNdist[2];

  v1->setChanged(true);
  for(int ent = 0; ent < data1->getNumEntities(step); ent++){
    for(int ele = 0; ele < data1->getNumElements(step, ent); ele++){
      if(data1->skipElement(step, ent, ele)) continue;
      int numNodes = data1->getNumNodes(step, ent, ele);
      if(numNodes != 1) continue;
      double xyz[3];
      data1->getNode(step, ent, ele, 0, xyz[0], xyz[1], xyz[2]);
      kdtree->annkSearch(xyz, 2, index, dist);
      data1->setValue(step, ent, ele, 0, 0, sqrt(dist[1]));
    }
  }

  delete kdtree;
  annDeallocPts(zeronodes);
  delete [] index;
  delete [] dist;
#else
  Msg::Error("Nearest neighbor computation requires ANN");
#endif

  data1->setName(v1->getData()->getName() + "_NearestNeighbor");
  data1->finalize();

  return v1;
}
コード例 #9
0
// allocate an ANN point array and copy points from mxArray to ANN point array
ANNpointArray CreateANNPointArray(int d, int n, const mxArray* arr)
{
    // allocate the ANN array
    ANNpointArray pts = annAllocPts(n, d);
    
    // copy the point coordinates
    ::memcpy(pts[0], mxGetPr(arr), sizeof(double) * d * n);    
    
    return pts;
}
コード例 #10
0
ファイル: nearestneighbor.cpp プロジェクト: abrown435/pandana
		NearestNeighbor::NearestNeighbor(int nPts)
		{
			this->nPts = nPts;
			try {
				dataPts = annAllocPts(nPts, dim);	// allocate data points
			}
			catch (const std::bad_alloc& e) {
				FILE_LOG(logINFO)
				       << "Bad Allocation in Nearest Neighbor - annAllocPts("
					   << nPts << ")";
			}
		}
コード例 #11
0
ファイル: icp.cpp プロジェクト: hayborl/ctok
void ICP::createKDTree()
{
	m_modPts = annAllocPts(m_modSet.rows, ICP_DIMS);
#pragma omp parallel for
	for (int r = 0; r < m_modSet.rows; r++)
	{
		Vec3d p = m_modSet.at<Vec3d>(r, 0);
		m_modPts[r][0] = p[0];
		m_modPts[r][1] = p[1]; 
		m_modPts[r][2] = p[2];	
	}
	m_kdTree = new ANNkd_tree(m_modPts, m_modSet.rows, ICP_DIMS);
}
コード例 #12
0
ファイル: knn.cpp プロジェクト: dminor/kdtree
ANNpointArray read_points(const char *filename, int &count, int &dim)
{
    int res; 
    FILE *f = fopen(filename, "r");
    if (!f) {
        fprintf(stderr, "error: could not open file: %s", filename);
        exit(1); 
    }

    res = fscanf(f, "%d %d\n", &count, &dim);
    if (res != 2) {
        fprintf(stderr, "error: invalid header: %s\n", filename);
        exit(1); 
    }

    if (count < 0) {
        fprintf(stderr, "error: invalid point count: %s: %d\n", filename, count);
        exit(1);
    }

    if (dim < 2) {
        fprintf(stderr, "error: invalid dimension: %s: %d\n", filename, dim);
        exit(1);
    }

    ANNpointArray pts = annAllocPts(count, dim); 
    char buffer[256];
    for (int i = 0; i < count; ++i) { 
        double value;

        if (fgets(buffer, 255, f) == 0) {
            fprintf(stderr, "error: short file: %s\n", filename);
            exit(1); 
        }

        char *start = buffer;
        char *end = start;
        for (int d = 0; d < dim; ++d) {
            while (*end != ',' && *end != ' ' && *end != 0) ++end;
            *end = 0;
            value = atof(start); 
            start = end + 1; 
            pts[i][d] = value;
        }
    }

    fclose(f);

    return pts; 
}
コード例 #13
0
ファイル: annUse.cpp プロジェクト: RemiFusade2/ImageAnalogies
//construit une instance de la classe a partir des images sources A et Ap
//à un level l, on cherchera une correspondance en utilisant un vosinage mgk
//au niveau l et mpk au niveau inferrieur
annUse::annUse(Image* A,Image* Ap,int l, int mpk,int mgk, FeatureType Type)
{
  pk=mpk;
  gk=mgk;
  int m,M;

  uint32 largeurA = A->getLargeur(l);
  if (largeurA/2 != (largeurA-1)/2) {
    largeurA--;
  }
  uint32 hauteurA = A->getHauteur(l);
  if (hauteurA/2 != (hauteurA-1)/2) {
    hauteurA--;
  }

  if(gk>=2*pk) {
    m=gk;
    M=gk+1;
  } else {
    m=pk*2;
    M=pk*2+1;
  }
  int gK=gk*2+1;
  int pK=pk*2+1;
  Features f;
  //calcul de la taille d'un point en fonction de la taille du voisinnage
  dim=(gK*gK+pK*pK*2+(gK*gK)/2)*f.getNBChamps(Type);
  eps=0;
  
  //calcul du nombre de points
  nPts= (largeurA-m-M)*(hauteurA-m-M);

  //allocation des ressources
  dataPts = annAllocPts(nPts, dim);
  nnIdx = new ANNidx[1];
  dists = new ANNdist[1];

  //remplissage du tableau dataPts
  int i=0;
  for(uint32 y=m; y<hauteurA-M  ; y++)
    for(uint32 x=m; x<largeurA-M; x++)
      {
	makeANNPoint(A,Ap,l,x,y,Type,dataPts[i]);
	i++;
      }
	  
  //construction de l'arbre de recherche
  kdTree = new ANNkd_tree( dataPts, nPts, dim);    
}
コード例 #14
0
ファイル: Mesh.cpp プロジェクト: corentindesfarges/fw4spl
bool arlCore::Mesh::simplify( void )
{
#ifndef ANN
    return false;
#else // ANN
    unsigned int i, j;
    const unsigned int Size = m_pointList->visibleSize();
    const unsigned int Dimension = m_pointList->getDimension();
    ANNpointArray ANNPoints = annAllocPts( Size, Dimension );
    for( i=0 ; i<m_pointList->size() ; ++i )
        for( j=0 ; j<Dimension ; ++j )
            ANNPoints[i][j]=(*m_pointList)[i]->get(j);
    const int BucketSize = 1;
    ANNkd_tree* ANNtree = new ANNkd_tree( ANNPoints, Size, Dimension, BucketSize, ANN_KD_SL_MIDPT );
    const double Epsilon = 1e-8;// Error bound
    const double SquaredEpsilon = Epsilon*Epsilon;
    ANNpoint ANNPt = annAllocPt(Dimension); // Query point
    const unsigned int NbNeighbors = 20;
    ANNidxArray Nn_idx = new ANNidx[NbNeighbors]; // near neighbor indices
    ANNdistArray SquaredDists = new ANNdist[NbNeighbors]; // near neighbor distances
    for( i=0 ; i<m_pointList->size() ; ++i )
        if((*m_pointList)[i]->isVisible())
        {
            std::vector<unsigned int> oldIndex;
            for( j=0 ; j<Dimension; ++j )
                ANNPt[j] = (*m_pointList)[i]->get(j);
            ANNtree->annkSearch( ANNPt, NbNeighbors, Nn_idx, SquaredDists, Epsilon );
            // Cherche points les plus proches
            for( j=0 ; j<NbNeighbors ; ++j )
                if(SquaredDists[j]<=SquaredEpsilon)
                {
                     releasePoint(Nn_idx[j]);
                     oldIndex.push_back(Nn_idx[j]);
                }
            replacePointIndex(oldIndex, i);
        }
    delete ANNtree;
    annDeallocPt( ANNPt );
    annDeallocPts( ANNPoints );
    delete[] Nn_idx;
    delete[] SquaredDists;
    annClose();
    return true;
#endif // ANN
}
コード例 #15
0
ファイル: ann_mex.cpp プロジェクト: akturtle/3Dmatching
/**
 * Creates an ANN Point array from a memory block (d x n doubles)
 */
ANNpointArray createAnnPointArray(const double *data, int d, int n)
{
    // allocate the ANN point array
    ANNpointArray pts = annAllocPts(n, d);
    
    // copy the points
    //
    // In the annAllocPts implementation all point coordinates are
    // continuous in the memory,
    // so all points can be copied in a batch
    //
    if (n > 0)
    {
        memcpy(pts[0], data, sizeof(double) * d * n);
    }    
    
    return pts;   
}
コード例 #16
0
ファイル: kmeans.cpp プロジェクト: amueller/textonboost
void KMeans::initAnn() const {
	// This is threadsafe now
	mutex_.lock();
	{
		if (kd_tree_)
			delete kd_tree_;
		if (ann_points_)
			annDeallocPts( ann_points_ );
		
		ann_points_ = annAllocPts( n_center_, feature_size_ );
		
		for( int i=0, k=0; i<n_center_; i++ )
			for( int j=0; j<feature_size_; j++, k++ )
				ann_points_[i][j] = center_[k];
		kd_tree_ = new ANNkd_tree( ann_points_, n_center_, feature_size_ );
	}
	mutex_.unlock();
}
コード例 #17
0
void Centerline::buildKdTree()
{
  FILE * f = Fopen("myPOINTS.pos","w");
  fprintf(f, "View \"\"{\n");

  int nbPL = 3;  //10 points per line
  //int nbNodes  = (lines.size()+1) + (nbPL*lines.size());
  int nbNodes  = (colorp.size()) + (nbPL*lines.size());

  ANNpointArray nodes = annAllocPts(nbNodes, 3);
  int ind = 0;
  std::map<MVertex*, int>::iterator itp = colorp.begin();
  while (itp != colorp.end()){
     MVertex *v = itp->first;
     nodes[ind][0] = v->x();
     nodes[ind][1] = v->y();
     nodes[ind][2] = v->z();
     itp++; ind++;
  }
  for(unsigned int k = 0; k < lines.size(); ++k){
   MVertex *v0 = lines[k]->getVertex(0);
   MVertex *v1 = lines[k]->getVertex(1);
   SVector3 P0(v0->x(),v0->y(), v0->z());
   SVector3 P1(v1->x(),v1->y(), v1->z());
   for (int j= 1; j < nbPL+1; j++){
     double inc = (double)j/(double)(nbPL+1);
     SVector3 Pj = P0+inc*(P1-P0);
     nodes[ind][0] = Pj.x();
     nodes[ind][1] = Pj.y();
     nodes[ind][2] = Pj.z();
     ind++;
   }
 }

 kdtree = new ANNkd_tree(nodes, nbNodes, 3);

 for(int i = 0; i < nbNodes; ++i){
   fprintf(f, "SP(%g,%g,%g){%g};\n",
	   nodes[i][0], nodes[i][1],nodes[i][2],1.0);
 }
 fprintf(f,"};\n");
 fclose(f);
}
コード例 #18
0
ファイル: InfoTheory.C プロジェクト: EricDoug/queso
double estimateMI_ANN( const RV_1<P_V,P_M>& xRV,
           const RV_2<P_V,P_M>& yRV,
           const unsigned int xDimSel[], unsigned int dimX,
           const unsigned int yDimSel[], unsigned int dimY,
           unsigned int k, unsigned int N, double eps )
{
  ANNpointArray dataXY;
  double MI_est;

  unsigned int dimXY = dimX + dimY;

  // Allocate memory
  dataXY = annAllocPts(N,dimXY);

  // Copy samples in ANN data structure
  P_V smpRV_x( xRV.imageSet().vectorSpace().zeroVector() );
  P_V smpRV_y( yRV.imageSet().vectorSpace().zeroVector() );

  for( unsigned int i = 0; i < N; i++ ) {
    // get a sample from the distribution
    xRV.realizer().realization( smpRV_x );
    yRV.realizer().realization( smpRV_y );

    // copy the vector values in the ANN data structure
    for( unsigned int j = 0; j < dimX; j++ ) {
      dataXY[ i ][ j ] = smpRV_x[ xDimSel[j] ];
    }
    for( unsigned int j = 0; j < dimY; j++ ) {
      dataXY[ i ][ dimX + j ] = smpRV_y[ yDimSel[j] ];
    }
    // annPrintPt( dataXY[i], dimXY, std::cout ); std::cout << std::endl;
  }

  MI_est = computeMI_ANN( dataXY,
        dimX, dimY,
        k, N, eps );

  // Deallocate memory
  annDeallocPts( dataXY );

  return MI_est;
}
コード例 #19
0
ファイル: representatives.cpp プロジェクト: akonskarm/avdpp
void Slave::operator()() {
  ANNpointArray child_centers = annAllocPts(Globals::pow2dim, Globals::dim);
  int it;
  for (int i=0; i<Globals::pow2dim; i++) {
    it = 1;
    for (int j=0; j<Globals::dim; j++) {
      if ((i&it) != 0) {
        child_centers[i][j] = 0.75;
      } else {
        child_centers[i][j] = 0.25;
      }
      it = it << 1;
    }
    if (i%Globals::threads_num == id) {
      //TODO make this dynamically allocate pieces to threads
      std::cout << "Thread " << id << " gets branch " << i << std::endl;
      fil_in_reprs(Globals::qb->children[0]+i,&child_centers[i],0.5);
    }
  }
  annDeallocPts(child_centers);
}
コード例 #20
0
void mitk::PointLocator::SetPoints(mitk::PointSet *points)
{
  if (points == nullptr)
  {
    itkWarningMacro("Points are NULL!");
    return;
  }

  if (m_MitkPoints)
  {
    if ((m_MitkPoints == points) && (m_MitkPoints->GetMTime() == points->GetMTime()))
    {
      return; // no need to recalculate search tree
    }
  }
  m_MitkPoints = points;

  size_t size = points->GetSize();
  if (m_ANNDataPoints != nullptr)
    delete[] m_ANNDataPoints;
  m_ANNDataPoints = annAllocPts(size, m_ANNDimension);
  m_IndexToPointIdContainer.clear();
  m_IndexToPointIdContainer.resize(size);
  size_t counter = 0;
  mitk::PointSet::PointsContainer *pointsContainer = points->GetPointSet()->GetPoints();
  mitk::PointSet::PointsContainer::Iterator it;
  mitk::PointSet::PointType currentPoint;
  mitk::PointSet::PointsContainer::ElementIdentifier currentId;
  for (it = pointsContainer->Begin(); it != pointsContainer->End(); ++it, ++counter)
  {
    currentPoint = it->Value();
    currentId = it->Index();
    (m_ANNDataPoints[counter])[0] = currentPoint[0];
    (m_ANNDataPoints[counter])[1] = currentPoint[1];
    (m_ANNDataPoints[counter])[2] = currentPoint[2];
    m_IndexToPointIdContainer[counter] = currentId;
  }
  InitANN();
}
コード例 #21
0
ファイル: MATCH_ANN_CPU.hpp プロジェクト: apoorvcn47/moped
		void Update() {
			
			skipCalculation = true;

			unsigned int modelsNFeats = 0;
			foreach( model, *models )
				modelsNFeats += model->IPs[DescriptorType].size();
			
			correspModel.resize( modelsNFeats );
			correspFeat.resize( modelsNFeats );

			ANNpointArray refPts = annAllocPts( modelsNFeats , DescriptorSize );

			int x=0;
			for( int nModel = 0; nModel < (int)models->size(); nModel++ ) {
				
				vector<Model::IP> &IPs = (*models)[nModel]->IPs[DescriptorType];
				
				for( int nFeat = 0; nFeat < (int)IPs.size(); nFeat++ ) {

					correspModel[x] = nModel;
					correspFeat[x]  = &IPs[nFeat].coord3D;
					norm( IPs[nFeat].descriptor );
					for( int i=0; i<DescriptorSize; i++ )
						refPts[x][i] = IPs[nFeat].descriptor[i];
					
					x++;
				}
			}
			
			if( modelsNFeats > 1 ) { 
				
				skipCalculation = false;
				if( kdtree ) delete kdtree;
				kdtree = new ANNkd_tree(refPts, modelsNFeats, DescriptorSize );
			}
			configUpdated = false;
		}
コード例 #22
0
ファイル: KDTree3.cpp プロジェクト: ghsoftco/basecode14
void KDTree3::BuildTree(const Vector<Vec3f> &Points)
{
    FreeMemory();
    UINT PointCount = Points.Length();
    Console::WriteString(String("Building KD tree, ") + String(PointCount) + String(" points..."));
    queryPt = annAllocPt(3); // allocate query point
    dataPts = annAllocPts(PointCount, 3); // allocate data points
    nnIdx = new ANNidx[KDTree3MaxK];  // allocate near neigh indices
    dists = new ANNdist[KDTree3MaxK]; // allocate near neighbor dists
    for(UINT i = 0; i < PointCount; i++)
    {
        for(UINT ElementIndex = 0; ElementIndex < 3; ElementIndex++)
        {
            dataPts[i][ElementIndex] = Points[i][ElementIndex];
        }
    }

    kdTree = new ANNkd_tree( // build search structure
        dataPts,    // the data points
        PointCount, // number of points
        3);         // dimension of space
    Console::WriteString(String("done.\n"));
}
コード例 #23
0
ファイル: nn.C プロジェクト: joseparnau/rosjac
ANN::ANN(ANNpointArray points, int n1, int n2, int size, int dim, int *topology, ANNpoint scaling, int NumNeighbors) {
  int n = 0, i = 0, j = 0;

  anncount++;
  if (anncount == 1)
    std::cout << "MPNN library" << std::endl;

  numPoints = size;
  dimension = dim;

  query_pt = annAllocPt(dimension);		// allocate query point
  data_pts = annAllocPts(numPoints, dimension); // allocate data points
  nn_idx = new ANNidx[NumNeighbors];   		// allocate near neighbor indices
  dists = new ANNdist[NumNeighbors];   		// allocate near neighbor dists
  epsilon = 0.0;

  node_indices = new int[numPoints];   		// allocate indices of the points

  // Copy nodes to data_pts
  i = 0;
  for (n = n1; n!= n2; n++) {
    node_indices[i] = n;
    for (j = 0; j < dimension; j++) {
      data_pts[i][j] = scaling[j]*points[n][j];
    }
    i++;
  }

  // Initialize ANN
  the_tree = new ANNkd_tree(data_pts,		// the data points
			    numPoints,		// number of points
			    dimension, 		// dimension of space
			    scaling, 		// scaling of the coordinates
			    topology);		// topology of the space

}
コード例 #24
0
ファイル: representatives.cpp プロジェクト: akonskarm/avdpp
//process all that shit in vectors.... very gay
void fill_vectors(QNode* qb, ANNpoint* center, double side) {
  if (qb->children == 0) {
    Globals::qt_nodes.push_back(qb);
    Globals::qt_centers.push_back(center);
    Globals::qt_sides.push_back(side);
    //std::cout << side << std::endl;
  } else {
    int it;
    ANNpointArray child_centers = annAllocPts(Globals::pow2dim, Globals::dim);
    for (int i=0; i<Globals::pow2dim; i++) {
      it = 1;
      for (int j=0; j<Globals::dim; j++) {
        if ((i&it) != 0) {
          child_centers[i][j] = (*center)[j]+(side/4.0);
        } else {
          child_centers[i][j] = (*center)[j]-(side/4.0);
        }
        it = it << 1;
      }
      fill_vectors(qb->children[0]+i,&child_centers[i],side/2.0);
    }
    annDeallocPts(child_centers);
  }
}
コード例 #25
0
ファイル: overlap.cpp プロジェクト: akonskarm/avdpp
  Worker::Worker(int id) : id(id) {
    //TODO:delete
    asdf = new ANNmin_k(1);
    //nnIdx = new ANNidx[1];
    //dists = new ANNdist[1];
    leaf_centers=annAllocPts(pow(2,Globals::dimm2),Globals::dim);
    leaf_reprs=new int[Globals::pow2dimm2];
    qb_center = annAllocPt(Globals::dim);
    std::vector<int> indices;
    //leaf_center=annAllocPt(Globals::dim);
    for (int i=0; i<Globals::dimm2; i++) {
      indices.push_back(0);
      result.push_back(0.0);
      pos_neg_result.push_back(0.0);
      Vc pos_neg_dim;
      pos_neg_dim.push_back(0.0);
      pos_neg_dim.push_back(0.0);
      pos_neg.push_back(pos_neg_dim);
    }
    for (int i=0; i<pow(2,Globals::dimm2); i++) {
      Vc pos_neg_dim_final;
      for (int j=0; j<Globals::dim; j++)
        pos_neg_dim_final.push_back(0.0);
      pos_neg_final.push_back(pos_neg_dim_final);
    }
    for (int i=0; i<Globals::dimm2; i++) {
      Digits d;
      vd2.push_back(d);
    }
    for (int i=0; i<Globals::dimm2; i++) {
      Digits d;
      vd1.push_back(d);
    }

    kdtree = new ANNkd_tree(Globals::ann_points, Globals::len, Globals::dim);
  }
コード例 #26
0
void Centerline::distanceToSurface()
{
  Msg::Info("Centerline: computing distance to surface mesh ");

  //COMPUTE WITH REVERSE ANN TREE (SURFACE POINTS IN TREE)
  std::set<MVertex*> allVS;
  for(unsigned int j = 0; j < triangles.size(); j++)
    for(int k = 0; k<3; k++) allVS.insert(triangles[j]->getVertex(k));
  int nbSNodes = allVS.size();
  ANNpointArray nodesR = annAllocPts(nbSNodes, 3);
  vertices.resize(nbSNodes);
  int ind = 0;
  std::set<MVertex*>::iterator itp = allVS.begin();
  while (itp != allVS.end()){
    MVertex *v = *itp;
    nodesR[ind][0] = v->x();
    nodesR[ind][1] = v->y();
    nodesR[ind][2] = v->z();
    vertices[ind] = v;
    itp++; ind++;
  }
  kdtreeR = new ANNkd_tree(nodesR, nbSNodes, 3);

  for(unsigned int i = 0; i < lines.size(); i++){
    MLine *l = lines[i];
    MVertex *v1 = l->getVertex(0);
    MVertex *v2 = l->getVertex(1);
    double midp[3] = {0.5*(v1->x()+v2->x()), 0.5*(v1->y()+v1->y()),0.5*(v1->z()+v2->z())};
    ANNidx index[1];
    ANNdist dist[1];
    kdtreeR->annkSearch(midp, 1, index, dist);
    double minRad = sqrt(dist[0]);
    radiusl.insert(std::make_pair(lines[i], minRad));
  }

}
コード例 #27
0
void NormalEstimator::fitNormal(){
	//
	//compute surface normal
	int ptCnt = m_pt.size();
	if (ptCnt <= 0)
	{
		std::cout << "no point set provided" << std::endl;
		return;
	}
	ANNpointArray ptArray = annAllocPts(ptCnt, 3);
	//assign point values
	for (int i=0; i<ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		ANNpoint ptPtr = ptArray[i];
		ptPtr[0] = pt[0];
		ptPtr[1] = pt[1];
		ptPtr[2] = pt[2];
	}

	///
	ANNkd_tree kdt(ptArray, ptCnt, 3);
	
	ANNpoint queryPt = annAllocPt(3);
	int nnCnt = 100;

	ANNidxArray nnIdx = new ANNidx[nnCnt];
	ANNdistArray nnDist = new ANNdist[nnCnt];

	float sigma = -1;
	float evalRatio = 0.05;
	//estimate sigma
	for (int i=0; i < ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		queryPt[0] = pt[0];
		queryPt[1] = pt[1];
		queryPt[2] = pt[2];

		//kdt.annkSearch(queryPt,nnCnt, nnIdx, nnDist);
		kdt.annkSearch(queryPt,50, nnIdx, nnDist);
		if (nnDist[49] < sigma ||sigma == -1 )
		{
			sigma = nnDist[49];
		}
	}
	sigma = 0.001;
	std::cout << "search radius:" << sigma << std::endl;
	std::cout << "estimating normals for point set by PCA, be patient..." << std::endl;
	for (int i=0; i < ptCnt; i++) {
		cv::Vec3f pt = m_pt[i];
		queryPt[0] = pt[0];
		queryPt[1] = pt[1];
		queryPt[2] = pt[2];

		//kdt.annkSearch(queryPt,nnCnt, nnIdx, nnDist);
		kdt.annkFRSearch(queryPt, sigma, nnCnt, nnIdx, nnDist);
		int validCnt = 0;
		for (int j = 0; j < nnCnt; j++)
		{
			if (nnIdx[j] == ANN_NULL_IDX)
			{
				break;
			}
			validCnt++;
		}
		//std::cout << validCnt << std::endl;
		if (validCnt < 3)
		{
			continue;
		}
		
		cv::Mat pcaVec(validCnt,3,CV_64FC1);
		cv::Mat pcaMean(1,3,CV_64FC1);
		for (int j = 0; j < validCnt; j++)
		{
			pcaVec.at<double>(j,0) = m_pt[nnIdx[j]][0];
			pcaVec.at<double>(j,1) = m_pt[nnIdx[j]][1];
			pcaVec.at<double>(j,2) = m_pt[nnIdx[j]][2];
		}
		cv::PCA pca(pcaVec,cv::Mat(),CV_PCA_DATA_AS_ROW);

		if (pca.eigenvalues.at<double>(2,0) / pca.eigenvalues.at<double>(1,0) > evalRatio)
		{
			continue;
		}

		m_ptNorm[i] = cv::Vec3f(pca.eigenvectors.at<double>(2,0),pca.eigenvectors.at<double>(2,1),pca.eigenvectors.at<double>(2,2));
		float nr = cv::norm(m_ptNorm[i]);
		m_ptNorm[i][0] /= nr;
		m_ptNorm[i][1] /= nr;
		m_ptNorm[i][2] /= nr;
		//std::cout << m_ptNorm[i][0] << " " << m_ptNorm[i][1] << " " << m_ptNorm[i][2] << std::endl;
		m_ptNormFlag[i] = true;

	}

	//
	std::cout << "done..." << std::endl;
//////////////////////////////////////////////////////////////////////////

	//std::cout << "correct normal direction..." << std::endl;
	//sigma *= 1; //
	//nnCnt *= 1; //
	////reallocate the space for nn idx and nn dist array
	//delete [] nnDist;
	//delete [] nnIdx;
	//nnIdx = new ANNidx[nnCnt];
	//nnDist = new ANNdist[nnCnt];

	//int invertCnt = 0;
	//for (int i = 0; i < ptCnt; i++)
	//{
	//	if (!m_ptNormFlag[i])
	//	{
	//		continue;
	//	}
	//	
	//	cv::Vec3f pt = m_pt[i];
	//	queryPt[0] = pt[0];
	//	queryPt[1] = pt[1];
	//	queryPt[2] = pt[2];

	//	kdt.annkFRSearch(queryPt, sigma, nnCnt, nnIdx, nnDist);
	//	int validCnt = 0, normConsCnt = 0, distConsCnt = 0;
	//	for (int j = 0; j < nnCnt; j++)
	//	{
	//		if (nnIdx[j] == ANN_NULL_IDX)
	//		{
	//			break;
	//		}
	//		else{
	//			//check the direction
	//			cv::Vec3f v1 = m_ptNorm[i];
	//			cv::Vec3f v2 = m_ptNorm[nnIdx[j]];
	//			
	//			if (!m_ptNormFlag[nnIdx[j]])
	//			{
	//				continue;
	//			}else{
	//				//
	//				validCnt++;
	//				if( v2.ddot(v1) > 0 )
	//					normConsCnt++;
	//			}
	//		}
	//	}
	//	//inconsistency detected, invert the direction
	//	if (normConsCnt / validCnt < 0.9)
	//	{
	//		//std::cout << "invert" << std::endl;
	//		invertCnt++;
	//		m_ptNorm[i] = cv::Vec3f(0,0,0) - m_ptNorm[i];
	//	}
	//}
	//std::cout << "# of inverted vertex:" << invertCnt << std::endl;
	////////////////////////////////////////////////////////////////////////////
	
	annDeallocPt(queryPt);
	annDeallocPts(ptArray);
	delete [] nnDist;
	delete [] nnIdx;

}
コード例 #28
0
ファイル: FeatureSearch.cpp プロジェクト: KDE/krita-analogies
void FeatureSearch::initSearch()
{
    m_countFeatures = 0;
    for(std::vector<SearchPairInfo>::iterator itSPI = m_infos.begin(); itSPI != m_infos.end(); itSPI++)
    {
        m_countFeatures += itSPI->area.width() * itSPI->area.height();
    }
    // Allocate the array of points
    m_pointArray = annAllocPts( m_countFeatures, m_spaceDimension );
    
    for(std::vector<SearchPairInfo>::iterator itSPI = m_infos.begin(); itSPI != m_infos.end(); itSPI++)
    {
        // Initialize the descriptors
        int cacheLineCount = (itSPI->area.width() + diameter());
        size_t cacheLineSize = cacheLineCount * sizeof(Feature);
        // pixels will hold a cache of the luminosity to feed the descriptors
        Feature** pixels = new Feature*[diameter()];
        for(int i = 0; i < diameter(); i++)
        {
            pixels[i] = new Feature[ cacheLineCount ];
        }
    //     KisColorSpace* cs = dev->colorSpace();
        // Read the first 'radius' line to initialize the cache
        KisHLineIterator itDevA = itSPI->devA->createHLineIterator(itSPI->area.x(), itSPI->area.y(), itSPI->area.width(), false);
        KisHLineIterator itDevAPrime = itSPI->devAPrime->createHLineIterator(itSPI->area.x(), itSPI->area.y(), itSPI->area.width(), false);
        // Intialize the first row of the cache, as the cache needs to be full before it is possible to start creating descriptors for the key points
        for(int indexInPixels = radius(); indexInPixels < diameter() - 1; ++indexInPixels)
        {
            deviceToCache(itDevA, pixels[indexInPixels], radius());
            itDevA.nextRow();
        }
        // Copy the first line, as the first 'radius' columns are initialized with the same pixel value
        for(int i = 0; i < radius(); ++i)
        {
            memcpy(pixels[i], pixels[radius()], cacheLineSize);
        }
        // Main loop
        int posInAP = 0;
        for(int y = 0; y < itSPI->area.height(); y++)
        {
            // Fill the last line of the cache
            if( itDevA.y() <= itSPI->area.bottom())
            {
                deviceToCache(itDevA, pixels[diameter() - 1], radius());
            } else { // No more line in the device, so copy the last line
                memcpy(pixels[diameter() - 1], pixels[diameter() - 2], cacheLineSize);
            }
            itDevA.nextRow();
            // Use the cache to fill the array of points
            for(int x = 0; x < itSPI->area.width(); x++)
            {
                int subPos = 0;
    //             kdDebug() << " Feature : " << posInAP << endl;
                for(int i = 0; i < diameter(); i++)
                {
                    for(int j = 0; j < diameter(); j++)
                    {
                        pixels[i][j + x].convertToArray((m_pointArray[ posInAP ]) + subPos );
    //                     kdDebug() << subPos << " "<< pixels[i][j + x] << endl;
                        subPos++;
                    }
                }
                m_values.push_back(*reinterpret_cast<float*>(itDevAPrime.rawData()));
                ++itDevAPrime;
                ++posInAP;
            }
            itDevAPrime.nextRow();
            swapCache(pixels, diameter());
        }
        // delete the luminosity cache
        for(int i = 0; i < diameter(); i++)
        {
            delete[] pixels[i];
        }
        delete[] pixels;
    }

    // Initialize the search tree
    m_tree = new ANNkd_tree( m_pointArray, m_countFeatures, m_spaceDimension);
}
コード例 #29
0
ファイル: nns.cpp プロジェクト: MikhailJacques/NNP
// Driver program
int main(int argc, char **argv)
{
	int					num_points = 0;			// Actual number of data points
	ANNpointArray		data_points;			// Data points
	ANNpoint			query_point;			// Query point
	ANNidxArray			near_neighbor_idx;		// Near neighbor indices
	ANNdistArray		near_neighbor_distances;// Near neighbor distances
	ANNkd_tree *		kd_tree_adt;			// ADT search structure

	UserInterface UI;

	// Read command-line arguments
	UI.getArgs(argc, argv);						

	// Allocate query point
	query_point = annAllocPt(UI.dimension);

	// Allocate data points
	data_points = annAllocPts(UI.max_points, UI.dimension);

	// Allocate near neighbor indices
	near_neighbor_idx = new ANNidx[UI.k];

	// Allocate near neighbor distances
	near_neighbor_distances = new ANNdist[UI.k];														

	// Echo data points
	cout << "Data Points: \n";

	if (UI.results_out != NULL)
		*(UI.results_out) << "Data points: \n";

	while (num_points < UI.max_points && UI.readPoint(*(UI.data_in), data_points[num_points])) 
	{
		UI.printPoint(cout, data_points[num_points], num_points);

		if (UI.results_out != NULL)
		{
			UI.printPoint(*(UI.results_out), data_points[num_points], num_points);
		}

		num_points++;
	}

	// Construct k-d tree abstract data type search structure
	// Params: data points, number of points, dimension of space
	kd_tree_adt = new ANNkd_tree(data_points, num_points, UI.dimension);						

	// Echo query point(s)
	cout << "\n\nQuery points: \n";

	if (UI.results_out != NULL)
		*(UI.results_out) << "\n\nQuery points: \n";

	// Read query points
	while (UI.readPoint(*(UI.query_in), query_point)) 
	{		
		UI.printPoint(cout, query_point, UI.dimension);

		if (UI.results_out != NULL)
		{
			UI.printPoint(*(UI.results_out), query_point, UI.dimension);
		}

		// Perform the search
		// Params: query point, number of near neighbors, nearest neighbors (returned), distance (returned), error bound
		kd_tree_adt->annkSearch(query_point, UI.k, near_neighbor_idx, near_neighbor_distances, UI.eps);

		UI.printSummary(cout, &near_neighbor_idx, &near_neighbor_distances);

		if (UI.results_out != NULL)
			UI.printSummary(*(UI.results_out), &near_neighbor_idx, &near_neighbor_distances);
	}

	// Perform house cleaning tasks
	delete kd_tree_adt;
    delete [] near_neighbor_idx;							
    delete [] near_neighbor_distances;

	annClose();

	cin.get();

	return EXIT_SUCCESS;
}
コード例 #30
0
ファイル: ICP.cpp プロジェクト: corentindesfarges/fw4spl
arlCore::ICP::ICP( arlCore::PointList::csptr model, arlCore::PointList::csptr cloud, bool justVisible ):
m_point2PointMode(true),
m_modelMesh(),
m_cloud(),
m_initialization(false),
m_justVisible(justVisible),
m_modelSize(0),
m_cloudSize(0),
m_modelPoints(0),
m_cloudPoints(0),
m_Pk(0),
m_Yk(0),
m_Pi(0),
m_ANNtree(0),
m_nn_idx(0),
m_squaredDists(0),
m_maxIterations(50),
m_nbIterations(0),
m_startError(-1),
m_endError(-1)
{
    m_solution.setIdentity();
#ifdef ANN
    const unsigned int m_dimension = model->getDimension();
    assert(m_dimension==cloud->getDimension());
    m_modelGravity.set_size(m_dimension);
    m_cloudGravity.set_size(m_dimension);
    unsigned int i, j, n;
    if(justVisible) m_modelSize = model->visibleSize();
    else m_modelSize = model->size();
    if(m_modelSize<1) return;
    m_modelPoints = annAllocPts( m_modelSize, m_dimension );
    for( i=0, n=0 ; i<m_modelSize ; ++i )
        if((*model)[i])
            if(!justVisible || (justVisible && (*model)[i]->isVisible()))
            {
                for( j=0 ; j<m_dimension ; ++j )
                    m_modelPoints[n][j]=(*model)[i]->get(j);
                ++n;
            }
    m_modelSize = n;
    if(justVisible) m_cloudSize = cloud->visibleSize();
    else m_cloudSize = cloud->size();
    if(m_modelSize<1 || m_cloudSize<1)
    {
        annDeallocPts( m_modelPoints );
        m_modelPoints = 0;
        return;
    }
    m_cloudPoints = annAllocPts( m_cloudSize, m_dimension );
    for( i=0, n=0 ; i<m_cloudSize ; ++i )
        if((*cloud)[i])
            if(!justVisible || (justVisible && (*cloud)[i]->isVisible()))
            {
                for( j=0 ; j<m_dimension ; ++j )
                    m_cloudPoints[n][j]=(*cloud)[i]->get(j);
                ++n;
            }
    m_cloudSize = n;
    if(m_cloudSize<1)
    {
        annDeallocPts( m_modelPoints );
        annDeallocPts( m_cloudPoints );
        m_modelPoints = 0;
        m_cloudPoints = 0;
        return;
    }
    m_Pk = annAllocPts( m_cloudSize, m_dimension );
    m_Yk = annAllocPts( m_cloudSize, m_dimension );
    m_Pi = annAllocPts( m_cloudSize, m_dimension );
    const int BucketSize = 1;
    m_ANNtree = new ANNkd_tree( m_modelPoints, m_modelSize, m_dimension, BucketSize, ANN_KD_SL_MIDPT );
    m_nbNN = 1;
    m_nn_idx = new ANNidx[m_nbNN];
    m_squaredDists = new ANNdist[m_nbNN];
#endif // ANN
}