コード例 #1
0
void InspectorHighlight::appendNodeHighlight(Node* node, const InspectorHighlightConfig& highlightConfig)
{
    LayoutObject* layoutObject = node->layoutObject();
    if (!layoutObject)
        return;

    // LayoutSVGRoot should be highlighted through the isBox() code path, all other SVG elements should just dump their absoluteQuads().
    if (layoutObject->node() && layoutObject->node()->isSVGElement() && !layoutObject->isSVGRoot()) {
        Vector<FloatQuad> quads;
        layoutObject->absoluteQuads(quads);
        FrameView* containingView = layoutObject->frameView();
        for (size_t i = 0; i < quads.size(); ++i) {
            if (containingView)
                contentsQuadToViewport(containingView, quads[i]);
            appendQuad(quads[i], highlightConfig.content, highlightConfig.contentOutline);
        }
        return;
    }

    FloatQuad content, padding, border, margin;
    if (!buildNodeQuads(node, &content, &padding, &border, &margin))
        return;
    appendQuad(content, highlightConfig.content, highlightConfig.contentOutline, "content");
    appendQuad(padding, highlightConfig.padding, Color::transparent, "padding");
    appendQuad(border, highlightConfig.border, Color::transparent, "border");
    appendQuad(margin, highlightConfig.margin, Color::transparent, "margin");
}
コード例 #2
0
void InspectorHighlight::appendEventTargetQuads(Node* eventTargetNode, const InspectorHighlightConfig& highlightConfig)
{
    if (eventTargetNode->layoutObject()) {
        FloatQuad border, unused;
        if (buildNodeQuads(eventTargetNode, &unused, &unused, &border, &unused))
            appendQuad(border, highlightConfig.eventTarget);
    }
}
コード例 #3
0
void InspectorHighlight::appendPathsForShapeOutside(Node* node, const InspectorHighlightConfig& config)
{
    Shape::DisplayPaths paths;
    FloatQuad boundsQuad;

    const ShapeOutsideInfo* shapeOutsideInfo = shapeOutsideInfoForNode(node, &paths, &boundsQuad);
    if (!shapeOutsideInfo)
        return;

    if (!paths.shape.length()) {
        appendQuad(boundsQuad, config.shape);
        return;
    }

    appendPath(ShapePathBuilder::buildPath(*node->document().view(), *node->layoutObject(), *shapeOutsideInfo, paths.shape), config.shape, Color::transparent);
    if (paths.marginShape.length())
        appendPath(ShapePathBuilder::buildPath(*node->document().view(), *node->layoutObject(), *shapeOutsideInfo, paths.marginShape), config.shapeMargin, Color::transparent);
}
コード例 #4
0
void QSGDefaultImageNode::updateGeometry()
{
    Q_ASSERT(!m_targetRect.isEmpty());
    const QSGTexture *t = m_material.texture();
    if (!t) {
        QSGGeometry *g = geometry();
        g->allocate(4);
        g->setDrawingMode(GL_TRIANGLE_STRIP);
        memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
    } else {
        QRectF sourceRect = t->normalizedTextureSubRect();

        QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
                               sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
                               m_innerSourceRect.width() * sourceRect.width(),
                               m_innerSourceRect.height() * sourceRect.height());

        bool hasMargins = m_targetRect != m_innerTargetRect;

        int floorLeft = qFloor(m_subSourceRect.left());
        int ceilRight = qCeil(m_subSourceRect.right());
        int floorTop = qFloor(m_subSourceRect.top());
        int ceilBottom = qCeil(m_subSourceRect.bottom());
        int hTiles = ceilRight - floorLeft;
        int vTiles = ceilBottom - floorTop;

        bool hasTiles = hTiles != 1 || vTiles != 1;
        bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);

#ifdef QT_OPENGL_ES_2
        QOpenGLContext *ctx = QOpenGLContext::currentContext();
        bool npotSupported = ctx->functions()->hasOpenGLFeature(QOpenGLFunctions::NPOTTextureRepeat);
        QSize size = t->textureSize();
        bool isNpot = !isPowerOfTwo(size.width()) || !isPowerOfTwo(size.height());
        bool wrapSupported = npotSupported || !isNpot;
#else
        bool wrapSupported = true;
#endif

        // An image can be rendered as a single quad if:
        // - There are no margins, and either:
        //   - the image isn't repeated
        //   - the source rectangle fills the entire texture so that texture wrapping can be used,
        //     and NPOT is supported
        if (!hasMargins && (!hasTiles || (fullTexture && wrapSupported))) {
            QRectF sr;
            if (!fullTexture) {
                sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
                            innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
                            m_subSourceRect.width() * innerSourceRect.width(),
                            m_subSourceRect.height() * innerSourceRect.height());
            } else {
                sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
                            m_subSourceRect.width(), m_subSourceRect.height());
            }
            if (m_mirror) {
                qreal oldLeft = sr.left();
                sr.setLeft(sr.right());
                sr.setRight(oldLeft);
            }

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);
                g->allocate(8, 14);
                g->setDrawingMode(GL_TRIANGLE_STRIP);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                        ? m_targetRect.width() : m_targetRect.height()) * 0.5f;
                float sx = float(sr.width() / m_targetRect.width());
                float sy = float(sr.height() / m_targetRect.height());
                for (int d = -1; d <= 1; d += 2) {
                    for (int j = 0; j < 2; ++j) {
                        for (int i = 0; i < 2; ++i, ++vertices) {
                            vertices->x = m_targetRect.x() + i * m_targetRect.width();
                            vertices->y = m_targetRect.y() + j * m_targetRect.height();
                            vertices->u = sr.x() + i * sr.width();
                            vertices->v = sr.y() + j * sr.height();
                            vertices->dx = (i == 0 ? delta : -delta) * d;
                            vertices->dy = (j == 0 ? delta : -delta) * d;
                            vertices->du = (d < 0 ? 0 : vertices->dx * sx);
                            vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
                        }
                    }
                }
                Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
                static const quint16 indices[] = {
                    0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
                    4, 6, 5, 7
                };
                Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
                memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
            } else {
                m_geometry.allocate(4);
                m_geometry.setDrawingMode(GL_TRIANGLE_STRIP);
                QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
            }
        } else {
            int hCells = hTiles;
            int vCells = vTiles;
            if (m_innerTargetRect.width() == 0)
                hCells = 0;
            if (m_innerTargetRect.left() != m_targetRect.left())
                ++hCells;
            if (m_innerTargetRect.right() != m_targetRect.right())
                ++hCells;
            if (m_innerTargetRect.height() == 0)
                vCells = 0;
            if (m_innerTargetRect.top() != m_targetRect.top())
                ++vCells;
            if (m_innerTargetRect.bottom() != m_targetRect.bottom())
                ++vCells;
            QVarLengthArray<X, 32> xData(2 * hCells);
            QVarLengthArray<Y, 32> yData(2 * vCells);
            X *xs = xData.data();
            Y *ys = yData.data();

            if (m_innerTargetRect.left() != m_targetRect.left()) {
                xs[0].x = m_targetRect.left();
                xs[0].tx = sourceRect.left();
                xs[1].x = m_innerTargetRect.left();
                xs[1].tx = innerSourceRect.left();
                xs += 2;
            }
            if (m_innerTargetRect.width() != 0) {
                xs[0].x = m_innerTargetRect.left();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width();
                ++xs;
                float b = m_innerTargetRect.width() / m_subSourceRect.width();
                float a = m_innerTargetRect.x() - m_subSourceRect.x() * b;
                for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
                    xs[0].x = xs[1].x = a + b * i;
                    xs[0].tx = innerSourceRect.right();
                    xs[1].tx = innerSourceRect.left();
                    xs += 2;
                }
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
                ++xs;
            }
            if (m_innerTargetRect.right() != m_targetRect.right()) {
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.right();
                xs[1].x = m_targetRect.right();
                xs[1].tx = sourceRect.right();
                xs += 2;
            }
            Q_ASSERT(xs == xData.data() + xData.size());
            if (m_mirror) {
                float leftPlusRight = m_targetRect.left() + m_targetRect.right();
                int count = xData.size();
                xs = xData.data();
                for (int i = 0; i < count >> 1; ++i)
                    qSwap(xs[i], xs[count - 1 - i]);
                for (int i = 0; i < count; ++i)
                    xs[i].x = leftPlusRight - xs[i].x;
            }

            if (m_innerTargetRect.top() != m_targetRect.top()) {
                ys[0].y = m_targetRect.top();
                ys[0].ty = sourceRect.top();
                ys[1].y = m_innerTargetRect.top();
                ys[1].ty = innerSourceRect.top();
                ys += 2;
            }
            if (m_innerTargetRect.height() != 0) {
                ys[0].y = m_innerTargetRect.top();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height();
                ++ys;
                float b = m_innerTargetRect.height() / m_subSourceRect.height();
                float a = m_innerTargetRect.y() - m_subSourceRect.y() * b;
                for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
                    ys[0].y = ys[1].y = a + b * i;
                    ys[0].ty = innerSourceRect.bottom();
                    ys[1].ty = innerSourceRect.top();
                    ys += 2;
                }
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
                ++ys;
            }
            if (m_innerTargetRect.bottom() != m_targetRect.bottom()) {
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.bottom();
                ys[1].y = m_targetRect.bottom();
                ys[1].ty = sourceRect.bottom();
                ys += 2;
            }
            Q_ASSERT(ys == yData.data() + yData.size());

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);

                g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                            hCells * vCells * 6 + (hCells + vCells) * 12);
                g->setDrawingMode(GL_TRIANGLES);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
                quint16 *indices = g->indexDataAsUShort();

                // The deltas are how much the fuzziness can reach into the image.
                // Only the border vertices are moved by the vertex shader, so the fuzziness
                // can't reach further into the image than the closest interior vertices.
                float leftDx = xData.at(1).x - xData.at(0).x;
                float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
                float topDy = yData.at(1).y - yData.at(0).y;
                float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

                float leftDu = xData.at(1).tx - xData.at(0).tx;
                float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
                float topDv = yData.at(1).ty - yData.at(0).ty;
                float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

                if (hCells == 1) {
                    leftDx = rightDx *= 0.5f;
                    leftDu = rightDu *= 0.5f;
                }
                if (vCells == 1) {
                    topDy = bottomDy *= 0.5f;
                    topDv = bottomDv *= 0.5f;
                }

                // This delta is how much the fuzziness can reach out from the image.
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                                    ? m_targetRect.width() : m_targetRect.height()) * 0.5f;

                quint16 index = 0;
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    bool isTop = j == 0;
                    bool isBottom = j == vCells - 1;
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        bool isLeft = i == 0;
                        bool isRight = i == hCells - 1;

                        SmoothVertex *v = vertices + index;

                        quint16 topLeft = index;
                        for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 topRight = index;
                        for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 bottomLeft = index;
                        for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        quint16 bottomRight = index;
                        for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                        if (isTop) {
                            vertices[topLeft].dy = vertices[topRight].dy = topDy;
                            vertices[topLeft].dv = vertices[topRight].dv = topDv;
                            vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                            appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                        }

                        if (isBottom) {
                            vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                            vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                            vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                            appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                        }

                        if (isLeft) {
                            vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                            vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                            vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                            appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                        }

                        if (isRight) {
                            vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                            vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                            vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                            appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                        }
                    }
                }

                Q_ASSERT(index == g->vertexCount());
                Q_ASSERT(indices - g->indexCount() == g->indexData());
            } else {
                m_geometry.allocate(hCells * vCells * 4, hCells * vCells * 6);
                m_geometry.setDrawingMode(GL_TRIANGLES);
                QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        vertices[0].x = vertices[2].x = xs[0].x;
                        vertices[0].tx = vertices[2].tx = xs[0].tx;
                        vertices[1].x = vertices[3].x = xs[1].x;
                        vertices[1].tx = vertices[3].tx = xs[1].tx;

                        vertices[0].y = vertices[1].y = ys[0].y;
                        vertices[0].ty = vertices[1].ty = ys[0].ty;
                        vertices[2].y = vertices[3].y = ys[1].y;
                        vertices[2].ty = vertices[3].ty = ys[1].ty;

                        vertices += 4;
                    }
                }

                quint16 *indices = m_geometry.indexDataAsUShort();
                for (int i = 0; i < 4 * vCells * hCells; i += 4)
                    appendQuad(&indices, i, i + 1, i + 2, i + 3);
            }
        }
    }
    markDirty(DirtyGeometry);
    m_dirtyGeometry = false;
}
コード例 #5
0
QSGGeometry *QSGBasicInternalImageNode::updateGeometry(const QRectF &targetRect,
                                               const QRectF &innerTargetRect,
                                               const QRectF &sourceRect,
                                               const QRectF &innerSourceRect,
                                               const QRectF &subSourceRect,
                                               QSGGeometry *geometry,
                                               bool mirror,
                                               bool antialiasing)
{
    int floorLeft = qFloor(subSourceRect.left());
    int ceilRight = qCeil(subSourceRect.right());
    int floorTop = qFloor(subSourceRect.top());
    int ceilBottom = qCeil(subSourceRect.bottom());
    int hTiles = ceilRight - floorLeft;
    int vTiles = ceilBottom - floorTop;

    int hCells = hTiles;
    int vCells = vTiles;
    if (innerTargetRect.width() == 0)
        hCells = 0;
    if (innerTargetRect.left() != targetRect.left())
        ++hCells;
    if (innerTargetRect.right() != targetRect.right())
        ++hCells;
    if (innerTargetRect.height() == 0)
        vCells = 0;
    if (innerTargetRect.top() != targetRect.top())
        ++vCells;
    if (innerTargetRect.bottom() != targetRect.bottom())
        ++vCells;
    QVarLengthArray<X, 32> xData(2 * hCells);
    QVarLengthArray<Y, 32> yData(2 * vCells);
    X *xs = xData.data();
    Y *ys = yData.data();

    if (innerTargetRect.left() != targetRect.left()) {
        xs[0].x = targetRect.left();
        xs[0].tx = sourceRect.left();
        xs[1].x = innerTargetRect.left();
        xs[1].tx = innerSourceRect.left();
        xs += 2;
    }
    if (innerTargetRect.width() != 0) {
        xs[0].x = innerTargetRect.left();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.left() - floorLeft) * innerSourceRect.width();
        ++xs;
        float b = innerTargetRect.width() / subSourceRect.width();
        float a = innerTargetRect.x() - subSourceRect.x() * b;
        for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
            xs[0].x = xs[1].x = a + b * i;
            xs[0].tx = innerSourceRect.right();
            xs[1].tx = innerSourceRect.left();
            xs += 2;
        }
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.x() + (subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
        ++xs;
    }
    if (innerTargetRect.right() != targetRect.right()) {
        xs[0].x = innerTargetRect.right();
        xs[0].tx = innerSourceRect.right();
        xs[1].x = targetRect.right();
        xs[1].tx = sourceRect.right();
        xs += 2;
    }
    Q_ASSERT(xs == xData.data() + xData.size());
    if (mirror) {
        float leftPlusRight = targetRect.left() + targetRect.right();
        int count = xData.size();
        xs = xData.data();
        for (int i = 0; i < count >> 1; ++i)
            qSwap(xs[i], xs[count - 1 - i]);
        for (int i = 0; i < count; ++i)
            xs[i].x = leftPlusRight - xs[i].x;
    }

    if (innerTargetRect.top() != targetRect.top()) {
        ys[0].y = targetRect.top();
        ys[0].ty = sourceRect.top();
        ys[1].y = innerTargetRect.top();
        ys[1].ty = innerSourceRect.top();
        ys += 2;
    }
    if (innerTargetRect.height() != 0) {
        ys[0].y = innerTargetRect.top();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.top() - floorTop) * innerSourceRect.height();
        ++ys;
        float b = innerTargetRect.height() / subSourceRect.height();
        float a = innerTargetRect.y() - subSourceRect.y() * b;
        for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
            ys[0].y = ys[1].y = a + b * i;
            ys[0].ty = innerSourceRect.bottom();
            ys[1].ty = innerSourceRect.top();
            ys += 2;
        }
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.y() + (subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
        ++ys;
    }
    if (innerTargetRect.bottom() != targetRect.bottom()) {
        ys[0].y = innerTargetRect.bottom();
        ys[0].ty = innerSourceRect.bottom();
        ys[1].y = targetRect.bottom();
        ys[1].ty = sourceRect.bottom();
        ys += 2;
    }
    Q_ASSERT(ys == yData.data() + yData.size());

    if (antialiasing) {
        QSGGeometry *g = geometry;
        Q_ASSERT(g);

        g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                    hCells * vCells * 6 + (hCells + vCells) * 12);
        g->setDrawingMode(QSGGeometry::DrawTriangles);
        SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
        memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
        quint16 *indices = g->indexDataAsUShort();

        // The deltas are how much the fuzziness can reach into the image.
        // Only the border vertices are moved by the vertex shader, so the fuzziness
        // can't reach further into the image than the closest interior vertices.
        float leftDx = xData.at(1).x - xData.at(0).x;
        float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
        float topDy = yData.at(1).y - yData.at(0).y;
        float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

        float leftDu = xData.at(1).tx - xData.at(0).tx;
        float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
        float topDv = yData.at(1).ty - yData.at(0).ty;
        float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

        if (hCells == 1) {
            leftDx = rightDx *= 0.5f;
            leftDu = rightDu *= 0.5f;
        }
        if (vCells == 1) {
            topDy = bottomDy *= 0.5f;
            topDv = bottomDv *= 0.5f;
        }

        // This delta is how much the fuzziness can reach out from the image.
        float delta = float(qAbs(targetRect.width()) < qAbs(targetRect.height())
                            ? targetRect.width() : targetRect.height()) * 0.5f;

        quint16 index = 0;
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            bool isTop = j == 0;
            bool isBottom = j == vCells - 1;
            for (int i = 0; i < hCells; ++i, xs += 2) {
                bool isLeft = i == 0;
                bool isRight = i == hCells - 1;

                SmoothVertex *v = vertices + index;

                quint16 topLeft = index;
                for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 topRight = index;
                for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[0].y;
                    v->v = ys[0].ty;
                }

                quint16 bottomLeft = index;
                for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[0].x;
                    v->u = xs[0].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                quint16 bottomRight = index;
                for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                    v->x = xs[1].x;
                    v->u = xs[1].tx;
                    v->y = ys[1].y;
                    v->v = ys[1].ty;
                }

                appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                if (isTop) {
                    vertices[topLeft].dy = vertices[topRight].dy = topDy;
                    vertices[topLeft].dv = vertices[topRight].dv = topDv;
                    vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                    appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                }

                if (isBottom) {
                    vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                    vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                    vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                    appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                }

                if (isLeft) {
                    vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                    vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                    vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                    appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                }

                if (isRight) {
                    vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                    vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                    vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                    appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                }
            }
        }

        Q_ASSERT(index == g->vertexCount());
        Q_ASSERT(indices - g->indexCount() == g->indexData());
    } else {
        if (!geometry) {
            geometry = new QSGGeometry(QSGGeometry::defaultAttributes_TexturedPoint2D(),
                                       hCells * vCells * 4, hCells * vCells * 6,
                                       QSGGeometry::UnsignedShortType);
        } else {
            geometry->allocate(hCells * vCells * 4, hCells * vCells * 6);
        }
        geometry->setDrawingMode(QSGGeometry::DrawTriangles);
        QSGGeometry::TexturedPoint2D *vertices = geometry->vertexDataAsTexturedPoint2D();
        ys = yData.data();
        for (int j = 0; j < vCells; ++j, ys += 2) {
            xs = xData.data();
            for (int i = 0; i < hCells; ++i, xs += 2) {
                vertices[0].x = vertices[2].x = xs[0].x;
                vertices[0].tx = vertices[2].tx = xs[0].tx;
                vertices[1].x = vertices[3].x = xs[1].x;
                vertices[1].tx = vertices[3].tx = xs[1].tx;

                vertices[0].y = vertices[1].y = ys[0].y;
                vertices[0].ty = vertices[1].ty = ys[0].ty;
                vertices[2].y = vertices[3].y = ys[1].y;
                vertices[2].ty = vertices[3].ty = ys[1].ty;

                vertices += 4;
            }
        }

        quint16 *indices = geometry->indexDataAsUShort();
        for (int i = 0; i < 4 * vCells * hCells; i += 4)
            appendQuad(&indices, i, i + 1, i + 2, i + 3);
    }
    return geometry;
}