コード例 #1
0
ファイル: lu.c プロジェクト: bluescarni/arb
int
arb_mat_lu(long * P, arb_mat_t LU, const arb_mat_t A, long prec)
{
    arb_t d, e;
    arb_ptr * a;
    long i, j, m, n, r, row, col;
    int result;

    m = arb_mat_nrows(A);
    n = arb_mat_ncols(A);

    result = 1;

    if (m == 0 || n == 0)
        return result;

    arb_mat_set(LU, A);

    a = LU->rows;

    row = col = 0;
    for (i = 0; i < m; i++)
        P[i] = i;

    arb_init(d);
    arb_init(e);

    while (row < m && col < n)
    {
        r = arb_mat_find_pivot_partial(LU, row, m, col);

        if (r == -1)
        {
            result = 0;
            break;
        }
        else if (r != row)
            arb_mat_swap_rows(LU, P, row, r);

        arb_set(d, a[row] + col);

        for (j = row + 1; j < m; j++)
        {
            arb_div(e, a[j] + col, d, prec);
            arb_neg(e, e);
            _arb_vec_scalar_addmul(a[j] + col,
                a[row] + col, n - col, e, prec);
            arb_zero(a[j] + col);
            arb_neg(a[j] + row, e);
        }

        row++;
        col++;
    }

    arb_clear(d);
    arb_clear(e);

    return result;
}
コード例 #2
0
ファイル: product_roots.c プロジェクト: argriffing/arb
void
_arb_poly_product_roots(arb_ptr poly, arb_srcptr xs, slong n, slong prec)
{
    if (n == 0)
    {
        arb_one(poly);
    }
    else if (n == 1)
    {
        arb_neg(poly, xs);
        arb_one(poly + 1);
    }
    else if (n == 2)
    {
        arb_mul(poly, xs + 0, xs + 1, prec);
        arb_add(poly + 1, xs + 0, xs + 1, prec);
        arb_neg(poly + 1, poly + 1);
        arb_one(poly + 2);
    }
    else
    {
        const slong m = (n + 1) / 2;
        arb_ptr tmp;

        tmp = _arb_vec_init(n + 2);

        _arb_poly_product_roots(tmp, xs, m, prec);
        _arb_poly_product_roots(tmp + m + 1, xs + m, n - m, prec);
        _arb_poly_mul_monic(poly, tmp, m + 1, tmp + m + 1, n - m + 1, prec);

        _arb_vec_clear(tmp, n + 2);
    }
}
コード例 #3
0
ファイル: sin_cos_pi.c プロジェクト: bluescarni/arb
void
arb_sin_cos_pi(arb_t s, arb_t c, const arb_t x, long prec)
{
    arb_t t;
    arb_t u;
    fmpz_t v;

    if (arf_cmpabs_2exp_si(arb_midref(x), FLINT_MAX(65536, (4*prec))) > 0)
    {
        arf_zero(arb_midref(s));
        mag_one(arb_radref(s));
        arf_zero(arb_midref(c));
        mag_one(arb_radref(c));
        return;
    }

    arb_init(t);
    arb_init(u);
    fmpz_init(v);

    arb_mul_2exp_si(t, x, 1);
    arf_get_fmpz(v, arb_midref(t), ARF_RND_NEAR);
    arb_sub_fmpz(t, t, v, prec);

    arb_const_pi(u, prec);
    arb_mul(t, t, u, prec);
    arb_mul_2exp_si(t, t, -1);

    switch (fmpz_fdiv_ui(v, 4))
    {
        case 0:
            arb_sin_cos(s, c, t, prec);
            break;
        case 1:
            arb_sin_cos(c, s, t, prec);
            arb_neg(c, c);
            break;
        case 2:
            arb_sin_cos(s, c, t, prec);
            arb_neg(s, s);
            arb_neg(c, c);
            break;
        default:
            arb_sin_cos(c, s, t, prec);
            arb_neg(s, s);
            break;
    }

    fmpz_clear(v);
    arb_clear(t);
    arb_clear(u);
}
コード例 #4
0
ファイル: hilbert_class_poly.c プロジェクト: isuruf/arb
static void
bsplit(arb_poly_t pol, const arb_t sqrtD,
            const slong * qbf, slong a, slong b, slong prec)
{
    if (b - a == 0)
    {
        arb_poly_one(pol);
    }
    else if (b - a == 1)
    {
        acb_t z;
        acb_init(z);

        /* j((-b+sqrt(-D))/(2a)) */
        arb_set_si(acb_realref(z), -FLINT_ABS(qbf[3 * a + 1]));
        arb_set(acb_imagref(z), sqrtD);
        acb_div_si(z, z, 2 * qbf[3 * a], prec);
        acb_modular_j(z, z, prec);

        if (qbf[3 * a + 1] < 0)
        {
            /* (x^2 - 2re(j) x + |j|^2) */
            arb_poly_fit_length(pol, 3);
            arb_mul(pol->coeffs, acb_realref(z), acb_realref(z), prec);
            arb_addmul(pol->coeffs, acb_imagref(z), acb_imagref(z), prec);
            arb_mul_2exp_si(pol->coeffs + 1, acb_realref(z), 1);
            arb_neg(pol->coeffs + 1, pol->coeffs + 1);
            arb_one(pol->coeffs + 2);
            _arb_poly_set_length(pol, 3);
        }
        else
        {
            /* (x-j) */
            arb_poly_fit_length(pol, 2);
            arb_neg(pol->coeffs, acb_realref(z));
            arb_one(pol->coeffs + 1);
            _arb_poly_set_length(pol, 2);
        }

        acb_clear(z);
    }
    else
    {
        arb_poly_t tmp;
        arb_poly_init(tmp);
        bsplit(pol, sqrtD, qbf, a, a + (b - a) / 2, prec);
        bsplit(tmp, sqrtD, qbf, a + (b - a) / 2, b, prec);
        arb_poly_mul(pol, pol, tmp, prec);
        arb_poly_clear(tmp);
    }
}
コード例 #5
0
ファイル: sech.c プロジェクト: fredrik-johansson/arb
void
arb_sech(arb_t res, const arb_t x, slong prec)
{
    if (arf_cmpabs_2exp_si(arb_midref(x), 0) > 0)
    {
        arb_t t;
        arb_init(t);

        if (arf_sgn(arb_midref(x)) > 0)
        {
            arb_neg(t, x);
            arb_exp(t, t, prec + 4);
        }
        else
        {
            arb_exp(t, x, prec + 4);
        }

        arb_mul(res, t, t, prec + 4);
        arb_add_ui(res, res, 1, prec + 4);
        arb_div(res, t, res, prec);
        arb_mul_2exp_si(res, res, 1);
        arb_clear(t);
    }
    else
    {
        arb_cosh(res, x, prec + 4);
        arb_inv(res, res, prec);
    }
}
コード例 #6
0
ファイル: theta_arb.c プロジェクト: fredrik-johansson/arb
void
acb_dirichlet_theta_arb(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, const arb_t t, slong prec)
{
    slong len;
    ulong order;
    arb_t xt;
    mag_t e;

    len = acb_dirichlet_theta_length(G->q, t, prec);

    arb_init(xt);
    _acb_dirichlet_theta_argument_at_arb(xt, G->q, t, prec);

    mag_init(e);
    mag_tail_kexpk2_arb(e, xt, len);

    arb_neg(xt, xt);
    arb_exp(xt, xt, prec);

    /* TODO: tune this limit */
    order = dirichlet_order_char(G, chi);
    if (order < 30)
        _acb_dirichlet_theta_arb_smallorder(res, G, chi, xt, len, prec);
    else
        _acb_dirichlet_theta_arb_naive(res, G, chi, xt, len, prec);

    arb_add_error_mag(acb_realref(res), e);
    arb_add_error_mag(acb_imagref(res), e);

    mag_clear(e);

    acb_mul_2exp_si(res, res, 1);
    arb_clear(xt);
}
コード例 #7
0
void
_arb_poly_sin_cos_pi_series(arb_ptr s, arb_ptr c, arb_srcptr h, slong hlen, slong n, slong prec)
{
    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        arb_sin_cos_pi(s, c, h, prec);
        _arb_vec_zero(s + 1, n - 1);
        _arb_vec_zero(c + 1, n - 1);
    }
    else if (n == 2)
    {
        arb_t t;
        arb_init(t);
        arb_const_pi(t, prec);
        arb_mul(t, t, h + 1, prec);
        arb_sin_cos_pi(s, c, h, prec);
        arb_mul(s + 1, c, t, prec);
        arb_neg(t, t);
        arb_mul(c + 1, s, t, prec);
        arb_clear(t);
    }
    else if (hlen < TANGENT_CUTOFF)
        _arb_poly_sin_cos_series_basecase(s, c, h, hlen, n, prec, 1);
    else
        _arb_poly_sin_cos_series_tangent(s, c, h, hlen, n, prec, 1);
}
コード例 #8
0
ファイル: pow.c プロジェクト: isuruf/arb
void
arb_pow(arb_t z, const arb_t x, const arb_t y, slong prec)
{
    if (arb_is_zero(y))
    {
        arb_one(z);
        return;
    }

    if (arb_is_zero(x))
    {
        if (arb_is_positive(y))
            arb_zero(z);
        else
            arb_indeterminate(z);
        return;
    }

    if (arb_is_exact(y) && !arf_is_special(arb_midref(x)))
    {
        const arf_struct * ymid = arb_midref(y);

        /* small half-integer or integer */
        if (arf_cmpabs_2exp_si(ymid, BINEXP_LIMIT) < 0 &&
            arf_is_int_2exp_si(ymid, -1))
        {
            fmpz_t e;
            fmpz_init(e);            

            if (arf_is_int(ymid))
            {
                arf_get_fmpz_fixed_si(e, ymid, 0);
                arb_pow_fmpz_binexp(z, x, e, prec);
            }
            else
            {
                arf_get_fmpz_fixed_si(e, ymid, -1);
                arb_sqrt(z, x, prec + fmpz_bits(e));
                arb_pow_fmpz_binexp(z, z, e, prec);
            }

            fmpz_clear(e);
            return;
        }
        else if (arf_is_int(ymid) && arf_sgn(arb_midref(x)) < 0)
        {
            /* use (-x)^n = (-1)^n * x^n to avoid NaNs
               at least at high enough precision */
            int odd = !arf_is_int_2exp_si(ymid, 1);
            _arb_pow_exp(z, x, 1, y, prec);
            if (odd)
                arb_neg(z, z);
            return;
        }
    }

    _arb_pow_exp(z, x, 0, y, prec);
}
コード例 #9
0
ファイル: sum.c プロジェクト: bluescarni/arb
void
arb_hypgeom_infsum(arb_t P, arb_t Q, hypgeom_t hyp, long target_prec, long prec)
{
    mag_t err, z;
    long n;

    mag_init(err);
    mag_init(z);

    mag_set_fmpz(z, hyp->P->coeffs + hyp->P->length - 1);
    mag_div_fmpz(z, z, hyp->Q->coeffs + hyp->Q->length - 1);

    if (!hyp->have_precomputed)
    {
        hypgeom_precompute(hyp);
        hyp->have_precomputed = 1;
    }

    n = hypgeom_bound(err, hyp->r, hyp->boundC, hyp->boundD,
        hyp->boundK, hyp->MK, z, target_prec);

    arb_hypgeom_sum(P, Q, hyp, n, prec);

    if (arf_sgn(arb_midref(Q)) < 0)
    {
        arb_neg(P, P);
        arb_neg(Q, Q);
    }

    /* We have p/q = s + err i.e. (p + q*err)/q = s */
    {
        mag_t u;
        mag_init(u);
        arb_get_mag(u, Q);
        mag_mul(u, u, err);
        mag_add(arb_radref(P), arb_radref(P), u);
        mag_clear(u);
    }

    mag_clear(z);
    mag_clear(err);
}
コード例 #10
0
ファイル: cot.c プロジェクト: isuruf/arb
void
acb_cot(acb_t r, const acb_t z, slong prec)
{
    if (arb_is_zero(acb_imagref(z)))
    {
        arb_cot(acb_realref(r), acb_realref(z), prec);
        arb_zero(acb_imagref(r));
    }
    else if (arb_is_zero(acb_realref(z)))
    {
        arb_coth(acb_imagref(r), acb_imagref(z), prec);
        arb_neg(acb_imagref(r), acb_imagref(r));
        arb_zero(acb_realref(r));
    }
    else
    {
        acb_t t;
        acb_init(t);

        if (arf_cmpabs_2exp_si(arb_midref(acb_imagref(z)), 0) < 0)
        {
            acb_sin_cos(r, t, z, prec + 4);
            acb_div(r, t, r, prec);
        }
        else
        {
            acb_mul_2exp_si(t, z, 1);

            if (arf_sgn(arb_midref(acb_imagref(z))) > 0)
            {
                acb_mul_onei(t, t);
                acb_exp(t, t, prec + 4);
                acb_sub_ui(r, t, 1, prec + 4);
                acb_div(r, t, r, prec + 4);
                acb_mul_2exp_si(r, r, 1);
                acb_sub_ui(r, r, 1, prec);
                acb_mul_onei(r, r);
            }
            else
            {
                acb_div_onei(t, t);
                acb_exp(t, t, prec + 4);
                acb_sub_ui(r, t, 1, prec + 4);
                acb_div(r, t, r, prec + 4);
                acb_mul_2exp_si(r, r, 1);
                acb_sub_ui(r, r, 1, prec);
                acb_div_onei(r, r);
            }
        }

        acb_clear(t);
    }
}
コード例 #11
0
ファイル: sin_cos_pi.c プロジェクト: fredrik-johansson/arb
void
acb_sin_cos_pi(acb_t s, acb_t c, const acb_t z, slong prec)
{
#define a acb_realref(z)
#define b acb_imagref(z)
    if (arb_is_zero(b))
    {
        arb_sin_cos_pi(acb_realref(s), acb_realref(c), a, prec);
        arb_zero(acb_imagref(s));
        arb_zero(acb_imagref(c));
    }
    else if (arb_is_zero(a))
    {
        arb_t t;
        arb_init(t);
        arb_const_pi(t, prec);
        arb_mul(t, t, b, prec);
        arb_sinh_cosh(acb_imagref(s), acb_realref(c), t, prec);
        arb_zero(acb_realref(s));
        arb_zero(acb_imagref(c));
        arb_clear(t);
    }
    else
    {
        arb_t sa, ca, sb, cb;

        arb_init(sa);
        arb_init(ca);
        arb_init(sb);
        arb_init(cb);

        arb_const_pi(sb, prec);
        arb_mul(sb, sb, b, prec);

        arb_sin_cos_pi(sa, ca, a, prec);
        arb_sinh_cosh(sb, cb, sb, prec);

        arb_mul(acb_realref(s), sa, cb, prec);
        arb_mul(acb_imagref(s), sb, ca, prec);

        arb_mul(acb_realref(c), ca, cb, prec);
        arb_mul(acb_imagref(c), sa, sb, prec);
        arb_neg(acb_imagref(c), acb_imagref(c));

        arb_clear(sa);
        arb_clear(ca);
        arb_clear(sb);
        arb_clear(cb);
    }
#undef a
#undef b
}
コード例 #12
0
ファイル: compose.c プロジェクト: isuruf/arb
/* compose by poly2 = a*x^n + c, no aliasing; n >= 1 */
void
_arb_poly_compose_axnc(arb_ptr res, arb_srcptr poly1, slong len1,
    const arb_t c, const arb_t a, slong n, slong prec)
{
    slong i;

    _arb_vec_set_round(res, poly1, len1, prec);
    /* shift by c (c = 0 case will be fast) */
    _arb_poly_taylor_shift(res, c, len1, prec);

    /* multiply by powers of a */
    if (!arb_is_one(a))
    {
        if (arb_equal_si(a, -1))
        {
            for (i = 1; i < len1; i += 2)
                arb_neg(res + i, res + i);
        }
        else if (len1 == 2)
        {
            arb_mul(res + 1, res + 1, a, prec);
        }
        else
        {
            arb_t t;
            arb_init(t);
            arb_set(t, a);

            for (i = 1; i < len1; i++)
            {
                arb_mul(res + i, res + i, t, prec);
                if (i + 1 < len1)
                    arb_mul(t, t, a, prec);
            }

            arb_clear(t);
        }
    }

    /* stretch */
    for (i = len1 - 1; i >= 1 && n > 1; i--)
    {
        arb_swap(res + i * n, res + i);
        _arb_vec_zero(res + (i - 1) * n + 1, n - 1);
    }
}
コード例 #13
0
void
acb_zeta_si(acb_t z, slong s, slong prec)
{
    if (s >= 0)
    {
        arb_zeta_ui(acb_realref(z), s, prec);
    }
    else
    {
        arb_bernoulli_ui(acb_realref(z), 1-s, prec);
        arb_div_ui(acb_realref(z), acb_realref(z), 1-s, prec);
        arb_neg(acb_realref(z), acb_realref(z));
    }

    arb_zero(acb_imagref(z));
    return;
}
コード例 #14
0
void
arb_bernoulli_fmpz(arb_t res, const fmpz_t n, slong prec)
{
    if (fmpz_cmp_ui(n, UWORD_MAX) <= 0)
    {
        if (fmpz_sgn(n) >= 0)
            arb_bernoulli_ui(res, fmpz_get_ui(n), prec);
        else
            arb_zero(res);
    }
    else if (fmpz_is_odd(n))
    {
        arb_zero(res);
    }
    else
    {
        arb_t t;
        slong wp;

        arb_init(t);
        wp = prec + 2 * fmpz_bits(n);

        /* zeta(n) ~= 1 */
        arf_one(arb_midref(res));
        mag_one(arb_radref(res));
        mag_mul_2exp_si(arb_radref(res), arb_radref(res), WORD_MIN);

        /* |B_n| = 2 * n! / (2*pi)^n * zeta(n) */
        arb_gamma_fmpz(t, n, wp);
        arb_mul_fmpz(t, t, n, wp);
        arb_mul(res, res, t, wp);

        arb_const_pi(t, wp);
        arb_mul_2exp_si(t, t, 1);
        arb_pow_fmpz(t, t, n, wp);

        arb_div(res, res, t, prec);
        arb_mul_2exp_si(res, res, 1);

        if (fmpz_fdiv_ui(n, 4) == 0)
            arb_neg(res, res);

        arb_clear(t);
    }
}
コード例 #15
0
ファイル: pow.c プロジェクト: akobel/arb
void
_arb_pow_exp(arb_t z, const arb_t x, int negx, const arb_t y, long prec)
{
    arb_t t;
    arb_init(t);

    if (negx)
    {
        arb_neg(t, x);
        arb_log(t, t, prec);
    }
    else
        arb_log(t, x, prec);

    arb_mul(t, t, y, prec);
    arb_exp(z, t, prec);
    arb_clear(t);
}
コード例 #16
0
ファイル: arb_extras.c プロジェクト: jwbober/ntlib
void arb_twobytwo_diag(arb_t u1, arb_t u2, const arb_t a, const arb_t b, const arb_t d, slong prec) {
    // Compute the orthogonal matrix that diagonalizes
    //
    //    A = [a b]
    //        [b d]
    //
    // This matrix will have the form
    //
    //    U = [cos x , -sin x]
    //        [sin x, cos x]
    //
    // where the diagonal matrix is U^t A U.
    // We set u1 = cos x, u2 = -sin x.

    if(arb_contains_zero(b)) {
        // this is not quite right (doesn't set error intervals)
        arb_set_ui(u1, 1);
        arb_set_ui(u2, 0);
        return;
    }
    arb_t x; arb_init(x);

    arb_mul(u1, b, b, prec);            // u1 = b^2
    arb_sub(u2, a, d, prec);            // u2 = a - d
    arb_mul_2exp_si(u2, u2, -1);        // u2 = (a - d)/2
    arb_mul(u2, u2, u2, prec);          // u2 = ( (a - d)/2 )^2
    arb_add(u1, u1, u2, prec);          // u1 = b^2 + ( (a-d)/2 )^2
    arb_sqrt(u1, u1, prec);             // u1 = sqrt(above)

    arb_mul_2exp_si(u1, u1, 1);         // u1 = 2 (sqrt (above) )
    arb_add(u1, u1, d, prec);           // u1 += d
    arb_sub(u1, u1, a, prec);           // u1 -= a
    arb_mul_2exp_si(u1, u1, -1);        // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2)

    arb_mul(x, u1, u1, prec);
    arb_addmul(x, b, b, prec);          // x = u1^2 + b^2
    arb_sqrt(x, x, prec);               // x = sqrt(u1^2 + b^2)
    arb_div(u2, u1, x, prec);
    arb_div(u1, b, x, prec);
    arb_neg(u1, u1);

    arb_clear(x);
}
コード例 #17
0
ファイル: legendre_q.c プロジェクト: argriffing/arb
/* invalid in (-1,0) */
int
_acb_hypgeom_legendre_q_single_valid(const acb_t z)
{
    arb_t t;
    int ok;

    if (!arb_contains_zero(acb_imagref(z)))
        return 1;

    if (arb_is_positive(acb_imagref(z)))
        return 1;

    arb_init(t);
    arb_one(t);
    arb_neg(t, t);
    ok = arb_lt(acb_realref(z), t);
    arb_clear(t);
    return ok;
}
コード例 #18
0
void
acb_dirichlet_vec_mellin_arb(acb_ptr res, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, const arb_t t, slong n, slong prec)
{
    slong k;
    arb_t tk, xt, stk, st;
    acb_ptr a;
    mag_t e;
    a = _acb_vec_init(len);
    acb_dirichlet_chi_vec(a, G, chi, len, prec);
    if (dirichlet_parity_char(G, chi))
    {
        for (k = 2; k < len; k++)
            acb_mul_si(a + k, a + k, k, prec);
    }
    arb_init(tk);
    arb_init(xt);
    arb_init(st);
    arb_init(stk);
    mag_init(e);

    arb_sqrt(st, t, prec);
    arb_one(tk);
    arb_one(stk);
    for (k = 0; k < n; k++)
    {
        _acb_dirichlet_theta_argument_at_arb(xt, G->q, tk, prec);
        mag_tail_kexpk2_arb(e, xt, len);
        arb_neg(xt, xt);
        arb_exp(xt, xt, prec);
        /* TODO: reduce len */
        acb_dirichlet_qseries_arb(res + k, a, xt, len, prec);
        acb_add_error_mag(res + k, e);
        acb_mul_arb(res + k, res + k, stk, prec);
        arb_mul(tk, tk, t, prec);
        arb_mul(stk, stk, st, prec);
    }
    mag_clear(e);
    arb_clear(xt);
    arb_clear(tk);
    arb_clear(stk);
    arb_clear(st);
    _acb_vec_clear(a, len);
}
コード例 #19
0
void
_arb_poly_sin_cos_series(arb_ptr s, arb_ptr c, arb_srcptr h, slong hlen, slong n, slong prec)
{
    hlen = FLINT_MIN(hlen, n);

    if (hlen == 1)
    {
        arb_sin_cos(s, c, h, prec);
        _arb_vec_zero(s + 1, n - 1);
        _arb_vec_zero(c + 1, n - 1);
    }
    else if (n == 2)
    {
        arb_t t;
        arb_init(t);
        arb_set(t, h + 1);
        arb_sin_cos(s, c, h, prec);
        arb_mul(s + 1, c, t, prec);
        arb_neg(t, t);
        arb_mul(c + 1, s, t, prec);
        arb_clear(t);
    }
    else
    {
        slong cutoff;

        if (prec <= 128)
        {
            cutoff = 1400;
        }
        else
        {
            cutoff = 100000 / pow(log(prec), 3);
            cutoff = FLINT_MIN(cutoff, 700);
        }

        if (hlen < cutoff)
            _arb_poly_sin_cos_series_basecase(s, c, h, hlen, n, prec, 0);
        else
            _arb_poly_sin_cos_series_tangent(s, c, h, hlen, n, prec, 0);
    }
}
コード例 #20
0
ファイル: inv_series.c プロジェクト: isuruf/arb
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_div(Qinv + 1, Qinv, Q, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong Qnlen, Wlen, W2len;
        arb_ptr W;

        W = _arb_vec_init(len);

        NEWTON_INIT(1, len)
        NEWTON_LOOP(m, n)

        Qnlen = FLINT_MIN(Qlen, n);
        Wlen = FLINT_MIN(Qnlen + m - 1, n);
        W2len = Wlen - m;
        MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
        MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
        _arb_vec_neg(Qinv + m, Qinv + m, n - m);

        NEWTON_END_LOOP
        NEWTON_END

        _arb_vec_clear(W, len);
    }
}
コード例 #21
0
ファイル: atanh.c プロジェクト: isuruf/arb
void
arb_atanh(arb_t z, const arb_t x, slong prec)
{
    if (arb_is_zero(x))
    {
        arb_zero(z);
    }
    else
    {
        arb_t t;
        arb_init(t);

        arb_sub_ui(t, x, 1, prec + 4);
        arb_div(t, x, t, prec + 4);
        arb_mul_2exp_si(t, t, 1);
        arb_neg(t, t);
        arb_log1p(z, t, prec);
        arb_mul_2exp_si(z, z, -1);

        arb_clear(t);
    }
}
コード例 #22
0
void 
_arb_poly_div_series(arb_ptr Q, arb_srcptr A, long Alen,
    arb_srcptr B, long Blen, long n, long prec)
{
    Alen = FLINT_MIN(Alen, n);
    Blen = FLINT_MIN(Blen, n);

    if (Blen == 1)
    {
        _arb_vec_scalar_div(Q, A, Alen, B, prec);
        _arb_vec_zero(Q + Alen, n - Alen);
    }
    else if (n == 2)
    {
        if (Alen == 1)
        {
            arb_div(Q, A, B, prec);
            arb_div(Q + 1, Q, B, prec);
            arb_mul(Q + 1, Q + 1, B + 1, prec);
            arb_neg(Q + 1, Q + 1);
        }
        else
        {
            arb_div(Q, A, B, prec);
            arb_mul(Q + 1, Q, B + 1, prec);
            arb_sub(Q + 1, A + 1, Q + 1, prec);
            arb_div(Q + 1, Q + 1, B, prec);
        }
    }
    else
    {
        arb_ptr Binv;
        Binv = _arb_vec_init(n);
        _arb_poly_inv_series(Binv, B, Blen, n, prec);
        _arb_poly_mullow(Q, Binv, n, A, Alen, n, prec);
        _arb_vec_clear(Binv, n);
    }
}
コード例 #23
0
static void
_acb_print(const acb_t z, slong n)
{
    arb_printn(acb_realref(z), n, ARB_STR_NO_RADIUS);

    if (!arb_is_zero(acb_imagref(z)))
    {
        if (arb_is_negative(acb_imagref(z)))
        {
            arb_t t;
            arb_init(t);
            arb_neg(t, acb_imagref(z));
            printf(" - ");
            arb_printn(t, n, ARB_STR_NO_RADIUS);
        }
        else
        {
            printf(" + ");
            arb_printn(acb_imagref(z), n, ARB_STR_NO_RADIUS);
        }
        printf("i");
    }
}
コード例 #24
0
ファイル: atan.c プロジェクト: argriffing/arb
/* atan(x) = pi/2 - eps, eps < 1/x <= 2^(1-mag) */
void
arb_atan_inf_eps(arb_t z, const arf_t x, slong prec)
{
    fmpz_t mag;
    fmpz_init(mag);

    fmpz_neg(mag, ARF_EXPREF(x));
    fmpz_add_ui(mag, mag, 1);

    if (arf_sgn(x) > 0)
    {
        arb_const_pi(z, prec);
    }
    else
    {
        arb_const_pi(z, prec);
        arb_neg(z, z);
    }

    arb_mul_2exp_si(z, z, -1);
    arb_add_error_2exp_fmpz(z, mag);

    fmpz_clear(mag);
}
コード例 #25
0
ファイル: zeta_rs.c プロジェクト: fredrik-johansson/arb
void
acb_dirichlet_zeta_rs_mid(acb_t res, const acb_t s, slong K, slong prec)
{
    acb_t R1, R2, X, t;
    slong wp;

    if (arf_sgn(arb_midref(acb_imagref(s))) < 0)
    {
        acb_init(t);
        acb_conj(t, s);
        acb_dirichlet_zeta_rs(res, t, K, prec);
        acb_conj(res, res);
        acb_clear(t);
        return;
    }

    acb_init(R1);
    acb_init(R2);
    acb_init(X);
    acb_init(t);

    /* rs_r increases the precision internally */
    wp = prec;

    acb_dirichlet_zeta_rs_r(R1, s, K, wp);

    if (arb_is_exact(acb_realref(s)) &&
        (arf_cmp_2exp_si(arb_midref(acb_realref(s)), -1) == 0))
    {
        acb_conj(R2, R1);
    }
    else
    {
        /* conj(R(conj(1-s))) */
        arb_sub_ui(acb_realref(t), acb_realref(s), 1, 10 * wp);
        arb_neg(acb_realref(t), acb_realref(t));
        arb_set(acb_imagref(t), acb_imagref(s));
        acb_dirichlet_zeta_rs_r(R2, t, K, wp);
        acb_conj(R2, R2);
    }

    if (acb_is_finite(R1) && acb_is_finite(R2))
    {
        wp += 10 + arf_abs_bound_lt_2exp_si(arb_midref(acb_imagref(s)));
        wp = FLINT_MAX(wp, 10);

        /* X = pi^(s-1/2) gamma((1-s)/2) rgamma(s/2)
             = (2 pi)^s rgamma(s) / (2 cos(pi s / 2)) */
        acb_rgamma(X, s, wp);
        acb_const_pi(t, wp);
        acb_mul_2exp_si(t, t, 1);
        acb_pow(t, t, s, wp);
        acb_mul(X, X, t, wp);
        acb_mul_2exp_si(t, s, -1);
        acb_cos_pi(t, t, wp);
        acb_mul_2exp_si(t, t, 1);
        acb_div(X, X, t, wp);

        acb_mul(R2, R2, X, wp);
    }

    /* R1 + X * R2 */
    acb_add(res, R1, R2, prec);

    acb_clear(R1);
    acb_clear(R2);
    acb_clear(X);
    acb_clear(t);
}
コード例 #26
0
ファイル: ci.c プロジェクト: isuruf/arb
void
acb_hypgeom_ci_asymp(acb_t res, const acb_t z, slong prec)
{
    acb_t t, u, w, v, one;

    acb_init(t);
    acb_init(u);
    acb_init(w);
    acb_init(v);
    acb_init(one);

    acb_one(one);
    acb_mul_onei(w, z);

    /* u = U(1,1,iz) */
    acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
    /* v = e^(-iz) */
    acb_neg(v, w);
    acb_exp(v, v, prec);
    acb_mul(t, u, v, prec);

    if (acb_is_real(z))
    {
        arb_div(acb_realref(t), acb_imagref(t), acb_realref(z), prec);
        arb_zero(acb_imagref(t));
        acb_neg(t, t);
    }
    else
    {
        /* u = U(1,1,-iz) */
        acb_neg(w, w);
        acb_hypgeom_u_asymp(u, one, one, w, -1, prec);
        acb_inv(v, v, prec);
        acb_submul(t, u, v, prec);

        acb_div(t, t, w, prec);
        acb_mul_2exp_si(t, t, -1);
    }

    if (arb_is_zero(acb_realref(z)))
    {
        if (arb_is_positive(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
        }
        else if (arb_is_negative(acb_imagref(z)))
        {
            arb_const_pi(acb_imagref(t), prec);
            arb_mul_2exp_si(acb_imagref(t), acb_imagref(t), -1);
            arb_neg(acb_imagref(t), acb_imagref(t));
        }
        else
        {
            acb_const_pi(u, prec);
            acb_mul_2exp_si(u, u, -1);
            arb_zero(acb_imagref(t));
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }
    else
    {
        /* 0 if positive or positive imaginary
           pi if upper left quadrant (including negative real axis)
           -pi if lower left quadrant (including negative imaginary axis) */
        if (arb_is_positive(acb_realref(z)))
        {
            /* do nothing */
        }
        else if (arb_is_negative(acb_realref(z)) && arb_is_nonnegative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_add(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else if (arb_is_nonpositive(acb_realref(z)) && arb_is_negative(acb_imagref(z)))
        {
            acb_const_pi(u, prec);
            arb_sub(acb_imagref(t), acb_imagref(t), acb_realref(u), prec);
        }
        else
        {
            /* add [-pi,pi] */
            acb_const_pi(u, prec);
            arb_add_error(acb_imagref(t), acb_realref(u));
        }
    }

    acb_swap(res, t);

    acb_clear(t);
    acb_clear(u);
    acb_clear(w);
    acb_clear(v);
    acb_clear(one);
}
コード例 #27
0
ファイル: rgamma_series.c プロジェクト: bluescarni/arb
void
_arb_poly_rgamma_series(arb_ptr res, arb_srcptr h, long hlen, long len, long prec)
{
    int reflect;
    long i, rflen, r, n, wp;
    arb_ptr t, u, v;
    arb_struct f[2];

    hlen = FLINT_MIN(hlen, len);
    wp = prec + FLINT_BIT_COUNT(prec);

    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    v = _arb_vec_init(len);
    arb_init(f);
    arb_init(f + 1);

    /* use zeta values at small integers */
    if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0))
    {
        r = arf_get_si(arb_midref(h), ARF_RND_DOWN);

        _arb_poly_lgamma_series_at_one(u, len, wp);

        _arb_vec_neg(u, u, len);
        _arb_poly_exp_series(t, u, len, len, wp);

        if (r == 1)
        {
            _arb_vec_swap(v, t, len);
        }
        else if (r <= 0)
        {
            arb_set(f, h);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, 2 - r);
            _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), 1 - r, rflen, wp);
            _arb_poly_mullow(v, t, len, u, rflen, len, wp);
        }
        else
        {
            arb_one(f);
            arb_one(f + 1);
            rflen = FLINT_MIN(len, r);
            _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r - 1, rflen, wp);

            /* TODO: use div_series? */
            _arb_poly_inv_series(u, v, rflen, len, wp);
            _arb_poly_mullow(v, t, len, u, len, len, wp);
        }
    }
    else
    {
        /* otherwise use Stirling series */
        arb_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp);

        /* rgamma(h) = (gamma(1-h+r) sin(pi h)) / (rf(1-h, r) * pi), h = h0 + t*/
        if (reflect)
        {
            /* u = gamma(r+1-h) */
            arb_sub_ui(f, h, r + 1, wp);
            arb_neg(f, f);
            _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
            _arb_poly_exp_series(u, t, len, len, wp);
            for (i = 1; i < len; i += 2)
                arb_neg(u + i, u + i);

            /* v = sin(pi x) */
            arb_const_pi(f + 1, wp);
            arb_mul(f, h, f + 1, wp);
            _arb_poly_sin_series(v, f, 2, len, wp);

            _arb_poly_mullow(t, u, len, v, len, len, wp);

            /* rf(1-h,r) * pi */
            if (r == 0)
            {
                arb_const_pi(u, wp);
                _arb_vec_scalar_div(v, t, len, u, wp);
            }
            else
            {
                arb_sub_ui(f, h, 1, wp);
                arb_neg(f, f);
                arb_set_si(f + 1, -1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(v, f, FLINT_MIN(2, len), r, rflen, wp);
                arb_const_pi(u, wp);
                _arb_vec_scalar_mul(v, v, rflen, u, wp);

                /* divide by rising factorial */
                /* TODO: might better to use div_series, when it has a good basecase */
                _arb_poly_inv_series(u, v, rflen, len, wp);
                _arb_poly_mullow(v, t, len, u, len, len, wp);
            }
        }
        else
        {
            /* rgamma(h) = rgamma(h+r) rf(h,r) */
            if (r == 0)
            {
                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(t, f, n, len, wp);
                _arb_vec_neg(t, t, len);
                _arb_poly_exp_series(v, t, len, len, wp);
            }
            else
            {
                arb_set(f, h);
                arb_one(f + 1);
                rflen = FLINT_MIN(len, r + 1);
                _arb_poly_rising_ui_series(t, f, FLINT_MIN(2, len), r, rflen, wp);

                arb_add_ui(f, h, r, wp);
                _arb_poly_gamma_stirling_eval(v, f, n, len, wp);
                _arb_vec_neg(v, v, len);
                _arb_poly_exp_series(u, v, len, len, wp);

                _arb_poly_mullow(v, u, len, t, rflen, len, wp);
            }
        }
    }

    /* compose with nonconstant part */
    arb_zero(t);
    _arb_vec_set(t + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, v, len, t, hlen, len, prec);

    arb_clear(f);
    arb_clear(f + 1);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    _arb_vec_clear(v, len);
}
コード例 #28
0
void
gc_integrals_precomp(acb_ptr res, acb_srcptr u, slong d1, slong d, slong g, const gc_int_t gc, int flag, slong prec)
{
    slong l;
    arb_t w, x;
    acb_t y, yxi;
    void (*sqrt_pol) (acb_t y, acb_srcptr u, slong d1, slong d,
            const arb_t x, slong prec);

    arb_init(w);
    arb_init(x);
    acb_init(y);
    acb_init(yxi);
#if DEBUG
    flint_printf("\ngc integral : d1 = %ld, d = %ld, g = %ld, n = %ld, prec = %ld",
            d1, d, g, gc->n, prec);
#endif

    sqrt_pol = &sqrt_pol_turn;
    if (flag & AJ_ROOT_DEF)
        sqrt_pol = &sqrt_pol_def;
    else if (flag & AJ_ROOT_TURN)
        sqrt_pol = &sqrt_pol_turn;

    /* compute integral */
    _acb_vec_zero(res, g);

    for (l = 0; l < gc->len; l++)
    {

        /* compute 1/y(x) */
        sqrt_pol(y, u, d1, d, gc->x + l, prec);
        acb_inv(y, y, prec);

        /* differentials */
        acb_vec_add_geom_arb(res, g, y, gc->x + l, prec);

        /* now on -x */
        arb_neg(x, gc->x + l);

        sqrt_pol(y, u, d1, d, x, prec);
        acb_inv(y, y, prec);
        acb_vec_add_geom_arb(res, g, y, x, prec);
    }

    if (gc->n % 2)
    {
        arb_zero(x);
        /* FIXME: pb with turn */
        sqrt_pol_def(y, u, d1, d, x, prec);
#if DEBUG > 1
        flint_printf("\nend integration sum");
        _acb_vec_printd(res, g, 30, "\n");
        flint_printf("\nroots (d1=%ld, d=%ld)\n",d1,d);
        _acb_vec_printd(u, d, 30, "\n");
        flint_printf("\n -> y = ");
        acb_printd(y, 30);
#endif
        acb_inv(y, y, prec);
        acb_add(res + 0, res + 0, y, prec);
    }

    /* multiply by weight = Pi / n */
    arb_const_pi(w, prec);
    arb_div_ui(w, w, gc->n, prec);
    _acb_vec_scalar_mul_arb(res, res, g, w, prec);
#if DEBUG > 1
        flint_printf("\nend integration ");
        _acb_vec_printd(res, g, 30, "\n");
#endif

    arb_clear(x);
    arb_clear(w);
    acb_clear(y);
    acb_clear(yxi);
}
コード例 #29
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("legendre_p_ui_root....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100 * arb_test_multiplier(); iter++)
    {
        ulong n, k;
        slong prec;
        arb_ptr roots, weights;
        arb_poly_t pol;
        arb_t s;
        fmpq_poly_t pol2;

        n = 1 + n_randint(state, 100);
        prec = 20 + n_randint(state, 500);

        roots = _arb_vec_init(n);
        weights = _arb_vec_init(n);
        arb_poly_init(pol);
        fmpq_poly_init(pol2);
        arb_init(s);

        for (k = 0; k < n; k++)
        {
            if (k > n / 2 && n_randint(state, 2))
            {
                arb_neg(roots + k, roots + n - k - 1);
                arb_set(weights + k, weights + n - k - 1);
            }
            else
            {
                arb_hypgeom_legendre_p_ui_root(roots + k, weights + k, n, k, prec);
            }
        }

        arb_poly_product_roots(pol, roots, n, prec);
        /* fmpq_poly_legendre_p(pol2, n); */
        arith_legendre_polynomial(pol2, n);
        arb_set_fmpz(s, pol2->coeffs + n);
        arb_div_fmpz(s, s, pol2->den, prec);
        arb_poly_scalar_mul(pol, pol, s, prec);

        if (!arb_poly_contains_fmpq_poly(pol, pol2))
        {
            flint_printf("FAIL: polynomial containment\n\n");
            flint_printf("n = %wu, prec = %wd\n\n", n, prec);
            flint_printf("pol = "); arb_poly_printd(pol, 30); flint_printf("\n\n");
            flint_printf("pol2 = "); fmpq_poly_print(pol2); flint_printf("\n\n");
            flint_abort();
        }

        arb_zero(s);
        for (k = 0; k < n; k++)
        {
            arb_add(s, s, weights + k, prec);
        }

        if (!arb_contains_si(s, 2))
        {
            flint_printf("FAIL: sum of weights\n\n");
            flint_printf("n = %wu, prec = %wd\n\n", n, prec);
            flint_printf("s = "); arb_printn(s, 30, 0); flint_printf("\n\n");
            flint_abort();
        }

        _arb_vec_clear(roots, n);
        _arb_vec_clear(weights, n);
        arb_poly_clear(pol);
        fmpq_poly_clear(pol2);
        arb_clear(s);
    }

    for (iter = 0; iter < 500 * arb_test_multiplier(); iter++)
    {
        arb_t x1, x2, w1, w2;
        ulong n, k;
        slong prec1, prec2;

        arb_init(x1);
        arb_init(x2);
        arb_init(w1);
        arb_init(w2);

        n = 1 + n_randtest(state) % 100000;
        if (n_randint(state, 2) || n == 1)
            k = n_randtest(state) % n;
        else
            k = n / 2 - (n_randtest(state) % (n / 2));

        prec1 = 2 + n_randtest(state) % 2000;
        prec2 = 2 + n_randtest(state) % 2000;

        arb_hypgeom_legendre_p_ui_root(x1, w1, n, k, prec1);
        if (n_randint(state, 10) == 0)
            arb_hypgeom_legendre_p_ui_root(x1, NULL, n, k, prec1);

        arb_hypgeom_legendre_p_ui_root(x2, w2, n, k, prec2);

        if (!arb_overlaps(x1, x2) || !arb_overlaps(w1, w2))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("n = %wu, k = %wu, prec1 = %wd, prec2 = %wd\n\n", n, k, prec1, prec2);
            flint_printf("x1 = "); arb_printn(x1, 100, 0); flint_printf("\n\n");
            flint_printf("x2 = "); arb_printn(x2, 100, 0); flint_printf("\n\n");
            flint_printf("w1 = "); arb_printn(w1, 100, 0); flint_printf("\n\n");
            flint_printf("w2 = "); arb_printn(w2, 100, 0); flint_printf("\n\n");
            flint_abort();
        }

        if (arb_rel_accuracy_bits(x1) < prec1 - 3 || arb_rel_accuracy_bits(w1) < prec1 - 3)
        {
            flint_printf("FAIL: accuracy\n\n");
            flint_printf("n = %wu, k = %wu, prec1 = %wd\n\n", n, k, prec1);
            flint_printf("acc(x1) = %wd, acc(w1) = %wd\n\n", arb_rel_accuracy_bits(x1), arb_rel_accuracy_bits(w1));
            flint_printf("x1 = "); arb_printn(x1, prec1, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_printf("w1 = "); arb_printn(w1, prec1, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_abort();
        }

        if (arb_rel_accuracy_bits(x2) < prec2 - 3 || arb_rel_accuracy_bits(w2) < prec2 - 3)
        {
            flint_printf("FAIL: accuracy 2\n\n");
            flint_printf("n = %wu, k = %wu, prec2 = %wd\n\n", n, k, prec2);
            flint_printf("acc(x2) = %wd, acc(w2) = %wd\n\n", arb_rel_accuracy_bits(x2), arb_rel_accuracy_bits(w2));
            flint_printf("x2 = "); arb_printn(x2, prec2, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_printf("w2 = "); arb_printn(w2, prec2, ARB_STR_CONDENSE * 30); flint_printf("\n\n");
            flint_abort();
        }

        arb_clear(x1);
        arb_clear(x2);
        arb_clear(w1);
        arb_clear(w2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
コード例 #30
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_mul(Qinv + 1, Qinv, Qinv, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, j, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec);

            for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++)
                arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec);

            if (!arb_is_one(Qinv))
                arb_mul(Qinv + i, Qinv + i, Qinv, prec);

            arb_neg(Qinv + i, Qinv + i);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            arb_ptr W;

            W = _arb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _arb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _arb_vec_clear(W, len);
        }
    }
}