int arf_add(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn; mp_srcptr xptr, yptr; slong shift; if (arf_is_special(x) || arf_is_special(y)) { return arf_add_special(z, x, y, prec, rnd); } shift = _fmpz_sub_small(ARF_EXPREF(x), ARF_EXPREF(y)); if (shift < 0) { arf_srcptr __t; __t = x; x = y; y = __t; shift = -shift; } ARF_GET_MPN_READONLY(xptr, xn, x); ARF_GET_MPN_READONLY(yptr, yn, y); return _arf_add_mpn(z, xptr, xn, ARF_SGNBIT(x), ARF_EXPREF(x), yptr, yn, ARF_SGNBIT(y), shift, prec, rnd); }
void arf_ceil(arf_t z, const arf_t x) { if (arf_is_special(x) || arf_is_int(x)) { arf_set(z, x); } else { slong exp = ARF_EXP(x); /* now exp cannot be too large, as we would have caught this in arf_is_int() */ if (COEFF_IS_MPZ(exp) || exp <= 0) { if (ARF_SGNBIT(x)) arf_zero(z); else arf_one(z); } else if (exp == 1) { arf_set_si(z, ARF_SGNBIT(x) ? -1 : 2); } else { arf_set_round(z, x, exp, ARF_RND_CEIL); } } }
int arf_sub_special(arf_t z, const arf_t x, const arf_t y, slong prec, arf_rnd_t rnd) { if (arf_is_zero(x)) { if (arf_is_zero(y)) { arf_zero(z); return 0; } else return arf_neg_round(z, y, prec, rnd); } else if (arf_is_zero(y)) { return arf_set_round(z, x, prec, rnd); } else if (arf_is_nan(x) || arf_is_nan(y) || (arf_is_pos_inf(x) && arf_is_pos_inf(y)) || (arf_is_neg_inf(x) && arf_is_neg_inf(y))) { arf_nan(z); return 0; } else if (arf_is_special(x)) { arf_set(z, x); return 0; } else { arf_neg(z, y); return 0; } }
void arb_pow(arb_t z, const arb_t x, const arb_t y, slong prec) { if (arb_is_zero(y)) { arb_one(z); return; } if (arb_is_zero(x)) { if (arb_is_positive(y)) arb_zero(z); else arb_indeterminate(z); return; } if (arb_is_exact(y) && !arf_is_special(arb_midref(x))) { const arf_struct * ymid = arb_midref(y); /* small half-integer or integer */ if (arf_cmpabs_2exp_si(ymid, BINEXP_LIMIT) < 0 && arf_is_int_2exp_si(ymid, -1)) { fmpz_t e; fmpz_init(e); if (arf_is_int(ymid)) { arf_get_fmpz_fixed_si(e, ymid, 0); arb_pow_fmpz_binexp(z, x, e, prec); } else { arf_get_fmpz_fixed_si(e, ymid, -1); arb_sqrt(z, x, prec + fmpz_bits(e)); arb_pow_fmpz_binexp(z, z, e, prec); } fmpz_clear(e); return; } else if (arf_is_int(ymid) && arf_sgn(arb_midref(x)) < 0) { /* use (-x)^n = (-1)^n * x^n to avoid NaNs at least at high enough precision */ int odd = !arf_is_int_2exp_si(ymid, 1); _arb_pow_exp(z, x, 1, y, prec); if (odd) arb_neg(z, z); return; } } _arb_pow_exp(z, x, 0, y, prec); }
static void _arb_arf_div_rounded_den_add_err(arb_t res, const arf_t x, const arf_t y, int yinexact, slong prec) { int inexact = arf_div(arb_midref(res), x, y, prec, ARB_RND); if (yinexact && !arf_is_special(arb_midref(res))) arf_mag_add_ulp(arb_radref(res), arb_radref(res), arb_midref(res), prec - 1); else if (inexact) arf_mag_add_ulp(arb_radref(res), arb_radref(res), arb_midref(res), prec); }
int arf_cmpabs(const arf_t x, const arf_t y) { int ec, mc; mp_size_t xn, yn; mp_srcptr xp, yp; if (arf_is_special(x) || arf_is_special(y)) { if (arf_equal(x, y)) return 0; if (arf_is_nan(x) || arf_is_nan(y)) return 0; if (arf_is_zero(x)) return -1; if (arf_is_zero(y)) return 1; if (arf_is_inf(x)) return arf_is_inf(y) ? 0 : 1; if (arf_is_inf(y)) return -1; return -1; } ec = fmpz_cmp(ARF_EXPREF(x), ARF_EXPREF(y)); if (ec != 0) return (ec < 0) ? -1 : 1; ARF_GET_MPN_READONLY(xp, xn, x); ARF_GET_MPN_READONLY(yp, yn, y); if (xn >= yn) mc = mpn_cmp(xp + xn - yn, yp, yn); else mc = mpn_cmp(xp, yp + yn - xn, xn); if (mc != 0) return (mc < 0) ? -1 : 1; if (xn != yn) return (xn < yn) ? -1 : 1; return 0; }
int arf_set_round(arf_t y, const arf_t x, slong prec, arf_rnd_t rnd) { if (arf_is_special(x)) { arf_set(y, x); return 0; } else { int inexact; slong fix; mp_size_t xn; mp_srcptr xptr; if (y == x) { mp_ptr xtmp; TMP_INIT; ARF_GET_MPN_READONLY(xptr, xn, x); /* exact */ if (xn * FLINT_BITS <= prec) return 0; if ((xn - 1) * FLINT_BITS < prec) { /* exact */ if ((xptr[0] << (prec - (xn-1) * FLINT_BITS)) == 0) return 0; } /* inexact */ TMP_START; xtmp = TMP_ALLOC(xn * sizeof(mp_limb_t)); flint_mpn_copyi(xtmp, xptr, xn); inexact = _arf_set_round_mpn(y, &fix, xtmp, xn, ARF_SGNBIT(x), prec, rnd); _fmpz_add_fast(ARF_EXPREF(y), ARF_EXPREF(x), fix); TMP_END; return inexact; } else { ARF_GET_MPN_READONLY(xptr, xn, x); inexact = _arf_set_round_mpn(y, &fix, xptr, xn, ARF_SGNBIT(x), prec, rnd); _fmpz_add_fast(ARF_EXPREF(y), ARF_EXPREF(x), fix); return inexact; } } }
int arf_sub_si(arf_ptr z, arf_srcptr x, slong y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn; mp_srcptr xptr, yptr; mp_limb_t ytmp; int xsgnbit, ysgnbit; fmpz yexp; slong shift; if (y == 0) { return arf_set_round(z, x, prec, rnd); } else if (arf_is_special(x)) { if (arf_is_zero(x)) { arf_set_si(z, y); return arf_neg_round(z, z, prec, rnd); } else { arf_set(z, x); return 0; } } ysgnbit = (y < 0); if (ysgnbit) ytmp = -y; else ytmp = y; yptr = &ytmp; yn = 1; yexp = FLINT_BITS; ysgnbit ^= 1; shift = _fmpz_sub_small(ARF_EXPREF(x), &yexp); xsgnbit = ARF_SGNBIT(x); ARF_GET_MPN_READONLY(xptr, xn, x); if (shift >= 0) return _arf_add_mpn(z, xptr, xn, xsgnbit, ARF_EXPREF(x), yptr, yn, ysgnbit, shift, prec, rnd); else return _arf_add_mpn(z, yptr, yn, ysgnbit, &yexp, xptr, xn, xsgnbit, -shift, prec, rnd); }
int arf_sub(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn; mp_srcptr xptr, yptr; slong shift; if (arf_is_special(x) || arf_is_special(y)) { return arf_sub_special(z, x, y, prec, rnd); } shift = _fmpz_sub_small(ARF_EXPREF(x), ARF_EXPREF(y)); ARF_GET_MPN_READONLY(xptr, xn, x); ARF_GET_MPN_READONLY(yptr, yn, y); if (shift >= 0) return _arf_add_mpn(z, xptr, xn, ARF_SGNBIT(x), ARF_EXPREF(x), yptr, yn, ARF_SGNBIT(y) ^ 1, shift, prec, rnd); else return _arf_add_mpn(z, yptr, yn, ARF_SGNBIT(y) ^ 1, ARF_EXPREF(y), xptr, xn, ARF_SGNBIT(x), -shift, prec, rnd); }
void _arb_poly_get_scale(fmpz_t scale, arb_srcptr x, slong xlen, arb_srcptr y, slong ylen) { slong xa, xb, ya, yb, den; fmpz_zero(scale); /* ignore zeros (and infs/nans!); find the first and last finite nonzero entries to determine the scale */ xa = 0; xb = xlen - 1; while (xa < xlen && arf_is_special(arb_midref(x + xa))) xa++; while (xb > xa && arf_is_special(arb_midref(x + xb))) xb--; ya = 0; yb = ylen - 1; while (ya < ylen && arf_is_special(arb_midref(y + ya))) ya++; while (yb > ya && arf_is_special(arb_midref(y + yb))) yb--; /* compute average of exponent differences, weighted by the lengths */ if (xa <= xb && ya <= yb && (xa < xb || ya < yb)) { fmpz_add(scale, scale, ARF_EXPREF(arb_midref(x + xb))); fmpz_sub(scale, scale, ARF_EXPREF(arb_midref(x + xa))); fmpz_add(scale, scale, ARF_EXPREF(arb_midref(y + yb))); fmpz_sub(scale, scale, ARF_EXPREF(arb_midref(y + ya))); den = (xb - xa) + (yb - ya); /* scale = floor(scale / den + 1/2) = floor((2 scale + den) / (2 den)) */ fmpz_mul_2exp(scale, scale, 1); fmpz_add_ui(scale, scale, den); fmpz_fdiv_q_ui(scale, scale, 2 * den); } }
int arf_add_fmpz_2exp(arf_ptr z, arf_srcptr x, const fmpz_t y, const fmpz_t exp, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn; mp_srcptr xptr, yptr; mp_limb_t ytmp; int xsgnbit, ysgnbit, inexact; fmpz_t yexp; slong shift; if (fmpz_is_zero(y)) { return arf_set_round(z, x, prec, rnd); } else if (arf_is_special(x)) { if (arf_is_zero(x)) { inexact = arf_set_round_fmpz(z, y, prec, rnd); arf_mul_2exp_fmpz(z, z, exp); return inexact; } else { arf_set(z, x); return 0; } } FMPZ_GET_MPN_READONLY(ysgnbit, yn, yptr, ytmp, *y) fmpz_init(yexp); fmpz_add_ui(yexp, exp, yn * FLINT_BITS); shift = _fmpz_sub_small(ARF_EXPREF(x), yexp); xsgnbit = ARF_SGNBIT(x); ARF_GET_MPN_READONLY(xptr, xn, x); if (shift >= 0) inexact = _arf_add_mpn(z, xptr, xn, xsgnbit, ARF_EXPREF(x), yptr, yn, ysgnbit, shift, prec, rnd); else inexact = _arf_add_mpn(z, yptr, yn, ysgnbit, yexp, xptr, xn, xsgnbit, -shift, prec, rnd); fmpz_clear(yexp); return inexact; }
void arf_get_fmpr(fmpr_t y, const arf_t x) { if (arf_is_special(x)) { if (arf_is_zero(x)) fmpr_zero(y); else if (arf_is_pos_inf(x)) fmpr_pos_inf(y); else if (arf_is_neg_inf(x)) fmpr_neg_inf(y); else fmpr_nan(y); } else { arf_get_fmpz_2exp(fmpr_manref(y), fmpr_expref(y), x); } }
int arf_sub_fmpz(arf_ptr z, arf_srcptr x, const fmpz_t y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn; mp_srcptr xptr, yptr; mp_limb_t ytmp; int xsgnbit, ysgnbit; fmpz yexp; slong shift; if (fmpz_is_zero(y)) { return arf_set_round(z, x, prec, rnd); } else if (arf_is_special(x)) { if (arf_is_zero(x)) { arf_set_fmpz(z, y); return arf_neg_round(z, z, prec, rnd); } else { arf_set(z, x); return 0; } } FMPZ_GET_MPN_READONLY(ysgnbit, yn, yptr, ytmp, *y) yexp = yn * FLINT_BITS; shift = _fmpz_sub_small(ARF_EXPREF(x), &yexp); ysgnbit ^= 1; xsgnbit = ARF_SGNBIT(x); ARF_GET_MPN_READONLY(xptr, xn, x); if (shift >= 0) return _arf_add_mpn(z, xptr, xn, xsgnbit, ARF_EXPREF(x), yptr, yn, ysgnbit, shift, prec, rnd); else return _arf_add_mpn(z, yptr, yn, ysgnbit, &yexp, xptr, xn, xsgnbit, -shift, prec, rnd); }
void arf_get_fmpq(fmpq_t y, const arf_t x) { if (arf_is_zero(x)) { fmpq_zero(y); } else if (arf_is_special(x) || !ARF_IS_LAGOM(x)) { flint_printf("exception: arf_get_fmpq: cannot convert to rational\n"); abort(); } else { fmpz_t man, exp; slong e; fmpz_init(man); fmpz_init(exp); arf_get_fmpz_2exp(man, exp, x); e = *exp; fmpz_set_ui(fmpq_denref(y), UWORD(1)); if (e >= 0) { fmpz_mul_2exp(fmpq_numref(y), man, e); } else { fmpz_set(fmpq_numref(y), man); fmpz_mul_2exp(fmpq_denref(y), fmpq_denref(y), -e); } fmpz_clear(man); fmpz_clear(exp); } }
int arf_cmp_2exp_si(const arf_t x, long e) { if (arf_is_special(x)) { if (arf_is_zero(x)) return -1; if (arf_is_pos_inf(x)) return 1; if (arf_is_neg_inf(x)) return -1; return 0; } if (ARF_SGNBIT(x)) return -1; /* Fast path. */ if (!COEFF_IS_MPZ(ARF_EXP(x))) { if (ARF_IS_POW2(x) && (ARF_EXP(x) - 1 == e)) return 0; else return (ARF_EXP(x) <= e) ? -1 : 1; } if (ARF_IS_POW2(x)) { fmpz_t t; fmpz_init(t); fmpz_one(t); fmpz_add_si(t, t, e); if (fmpz_equal(ARF_EXPREF(x), t)) { fmpz_clear(t); return 0; } fmpz_clear(t); } return (fmpz_cmp_si(ARF_EXPREF(x), e) <= 0) ? -1 : 1; }
static __inline__ void _arb_vec_get_fmpz_2exp_blocks(fmpz * coeffs, fmpz * exps, slong * blocks, const fmpz_t scale, arb_srcptr x, slong len, slong prec) { fmpz_t top, bot, t, b, v, block_top, block_bot; slong i, j, s, block, bits, maxheight; int in_zero; fmpz_init(top); fmpz_init(bot); fmpz_init(t); fmpz_init(b); fmpz_init(v); fmpz_init(block_top); fmpz_init(block_bot); blocks[0] = 0; block = 0; in_zero = 1; if (prec == ARF_PREC_EXACT) maxheight = ARF_PREC_EXACT; else maxheight = ALPHA * prec + BETA; for (i = 0; i < len; i++) { bits = arf_bits(arb_midref(x + i)); /* Skip (must be zero, since we assume there are no Infs/NaNs). */ if (bits == 0) continue; /* Bottom and top exponent of current number */ fmpz_set(top, ARF_EXPREF(arb_midref(x + i))); fmpz_submul_ui(top, scale, i); fmpz_sub_ui(bot, top, bits); /* Extend current block. */ if (in_zero) { fmpz_swap(block_top, top); fmpz_swap(block_bot, bot); } else { fmpz_max(t, top, block_top); fmpz_min(b, bot, block_bot); fmpz_sub(v, t, b); /* extend current block */ if (fmpz_cmp_ui(v, maxheight) < 0) { fmpz_swap(block_top, t); fmpz_swap(block_bot, b); } else /* start new block */ { /* write exponent for previous block */ fmpz_set(exps + block, block_bot); block++; blocks[block] = i; fmpz_swap(block_top, top); fmpz_swap(block_bot, bot); } } in_zero = 0; } /* write exponent for last block */ fmpz_set(exps + block, block_bot); /* end marker */ blocks[block + 1] = len; /* write the block data */ for (i = 0; blocks[i] != len; i++) { for (j = blocks[i]; j < blocks[i + 1]; j++) { if (arf_is_special(arb_midref(x + j))) { fmpz_zero(coeffs + j); } else { /* TODO: make this a single operation */ arf_get_fmpz_2exp(coeffs + j, bot, arb_midref(x + j)); fmpz_mul_ui(t, scale, j); fmpz_sub(t, bot, t); s = _fmpz_sub_small(t, exps + i); if (s < 0) abort(); /* Bug catcher */ fmpz_mul_2exp(coeffs + j, coeffs + j, s); } } } fmpz_clear(top); fmpz_clear(bot); fmpz_clear(t); fmpz_clear(b); fmpz_clear(v); fmpz_clear(block_top); fmpz_clear(block_bot); }
int arf_submul_mpz(arf_ptr z, arf_srcptr x, const mpz_t y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn, zn, tn, alloc; mp_srcptr xptr, yptr, zptr; mp_ptr tptr, tptr2; fmpz_t texp, yexp; slong shift; int tsgnbit, ysgnbit, inexact; ARF_MUL_TMP_DECL yn = FLINT_ABS(y->_mp_size); if (arf_is_special(x) || yn == 0 || arf_is_special(z)) { if (arf_is_zero(z)) { /* TODO: make more efficient */ arf_mul_mpz(z, x, y, ARF_PREC_EXACT, rnd); return arf_neg_round(z, z, prec, rnd); } else if (arf_is_finite(x)) { return arf_set_round(z, z, prec, rnd); } else { /* todo: speed up */ arf_t t; arf_init(t); arf_mul_mpz(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN); inexact = arf_sub(z, z, t, prec, rnd); arf_clear(t); return inexact; } } ARF_GET_MPN_READONLY(xptr, xn, x); yptr = y->_mp_d; ysgnbit = (y->_mp_size > 0); *yexp = yn * FLINT_BITS; ARF_GET_MPN_READONLY(zptr, zn, z); fmpz_init(texp); tsgnbit = ARF_SGNBIT(x) ^ ysgnbit; alloc = tn = xn + yn; ARF_MUL_TMP_ALLOC(tptr2, alloc) tptr = tptr2; ARF_MPN_MUL(tptr, xptr, xn, yptr, yn); shift = (tptr[tn - 1] == 0) * FLINT_BITS; tn -= (tptr[tn - 1] == 0); _fmpz_add2_fast(texp, ARF_EXPREF(x), yexp, -shift); shift = _fmpz_sub_small(ARF_EXPREF(z), texp); if (shift >= 0) inexact = _arf_add_mpn(z, zptr, zn, ARF_SGNBIT(z), ARF_EXPREF(z), tptr, tn, tsgnbit, shift, prec, rnd); else inexact = _arf_add_mpn(z, tptr, tn, tsgnbit, texp, zptr, zn, ARF_SGNBIT(z), -shift, prec, rnd); ARF_MUL_TMP_FREE(tptr2, alloc) fmpz_clear(texp); return inexact; }
int arf_submul(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn, zn, tn, alloc; mp_srcptr xptr, yptr, zptr; mp_ptr tptr, tptr2; fmpz_t texp; slong shift; int tsgnbit, inexact; ARF_MUL_TMP_DECL if (arf_is_special(x) || arf_is_special(y) || arf_is_special(z)) { if (arf_is_zero(z)) { return arf_neg_mul(z, x, y, prec, rnd); } else if (arf_is_finite(x) && arf_is_finite(y)) { return arf_set_round(z, z, prec, rnd); } else { /* todo: speed up */ arf_t t; arf_init(t); arf_mul(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN); inexact = arf_sub(z, z, t, prec, rnd); arf_clear(t); return inexact; } } tsgnbit = ARF_SGNBIT(x) ^ ARF_SGNBIT(y) ^ 1; ARF_GET_MPN_READONLY(xptr, xn, x); ARF_GET_MPN_READONLY(yptr, yn, y); ARF_GET_MPN_READONLY(zptr, zn, z); fmpz_init(texp); _fmpz_add2_fast(texp, ARF_EXPREF(x), ARF_EXPREF(y), 0); shift = _fmpz_sub_small(ARF_EXPREF(z), texp); alloc = tn = xn + yn; ARF_MUL_TMP_ALLOC(tptr2, alloc) tptr = tptr2; ARF_MPN_MUL(tptr, xptr, xn, yptr, yn); tn -= (tptr[0] == 0); tptr += (tptr[0] == 0); if (shift >= 0) inexact = _arf_add_mpn(z, zptr, zn, ARF_SGNBIT(z), ARF_EXPREF(z), tptr, tn, tsgnbit, shift, prec, rnd); else inexact = _arf_add_mpn(z, tptr, tn, tsgnbit, texp, zptr, zn, ARF_SGNBIT(z), -shift, prec, rnd); ARF_MUL_TMP_FREE(tptr2, alloc) fmpz_clear(texp); return inexact; }
void acb_inv(acb_t res, const acb_t z, slong prec) { mag_t am, bm; slong hprec; #define a arb_midref(acb_realref(z)) #define b arb_midref(acb_imagref(z)) #define x arb_radref(acb_realref(z)) #define y arb_radref(acb_imagref(z)) /* choose precision for the floating-point approximation of a^2+b^2 so that the double rounding result in less than 2 ulp error; also use at least MAG_BITS bits since the value will be recycled for error bounds */ hprec = FLINT_MAX(prec + 3, MAG_BITS); if (arb_is_zero(acb_imagref(z))) { arb_inv(acb_realref(res), acb_realref(z), prec); arb_zero(acb_imagref(res)); return; } if (arb_is_zero(acb_realref(z))) { arb_inv(acb_imagref(res), acb_imagref(z), prec); arb_neg(acb_imagref(res), acb_imagref(res)); arb_zero(acb_realref(res)); return; } if (!acb_is_finite(z)) { acb_indeterminate(res); return; } if (mag_is_zero(x) && mag_is_zero(y)) { int inexact; arf_t a2b2; arf_init(a2b2); inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN); if (arf_is_special(a2b2)) { acb_indeterminate(res); } else { _arb_arf_div_rounded_den(acb_realref(res), a, a2b2, inexact, prec); _arb_arf_div_rounded_den(acb_imagref(res), b, a2b2, inexact, prec); arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res))); } arf_clear(a2b2); return; } mag_init(am); mag_init(bm); /* first bound |a|-x, |b|-y */ arb_get_mag_lower(am, acb_realref(z)); arb_get_mag_lower(bm, acb_imagref(z)); if ((mag_is_zero(am) && mag_is_zero(bm))) { acb_indeterminate(res); } else { /* The propagated error in the real part is given exactly by (a+x')/((a+x')^2+(b+y'))^2 - a/(a^2+b^2) = P / Q, P = [(b^2-a^2) x' - a (x'^2+y'^2 + 2y'b)] Q = [(a^2+b^2)((a+x')^2+(b+y')^2)] where |x'| <= x and |y'| <= y, and analogously for the imaginary part. */ mag_t t, u, v, w; arf_t a2b2; int inexact; mag_init(t); mag_init(u); mag_init(v); mag_init(w); arf_init(a2b2); inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN); /* compute denominator */ /* t = (|a|-x)^2 + (|b|-x)^2 (lower bound) */ mag_mul_lower(t, am, am); mag_mul_lower(u, bm, bm); mag_add_lower(t, t, u); /* u = a^2 + b^2 (lower bound) */ arf_get_mag_lower(u, a2b2); /* t = ((|a|-x)^2 + (|b|-x)^2)(a^2 + b^2) (lower bound) */ mag_mul_lower(t, t, u); /* compute numerator */ /* real: |a^2-b^2| x + |a| ((x^2 + y^2) + 2 |b| y)) */ /* imag: |a^2-b^2| y + |b| ((x^2 + y^2) + 2 |a| x)) */ /* am, bm = upper bounds for a, b */ arf_get_mag(am, a); arf_get_mag(bm, b); /* v = x^2 + y^2 */ mag_mul(v, x, x); mag_addmul(v, y, y); /* u = |a| ((x^2 + y^2) + 2 |b| y) */ mag_mul_2exp_si(u, bm, 1); mag_mul(u, u, y); mag_add(u, u, v); mag_mul(u, u, am); /* v = |b| ((x^2 + y^2) + 2 |a| x) */ mag_mul_2exp_si(w, am, 1); mag_addmul(v, w, x); mag_mul(v, v, bm); /* w = |b^2 - a^2| (upper bound) */ if (arf_cmpabs(a, b) >= 0) mag_mul(w, am, am); else mag_mul(w, bm, bm); mag_addmul(u, w, x); mag_addmul(v, w, y); mag_div(arb_radref(acb_realref(res)), u, t); mag_div(arb_radref(acb_imagref(res)), v, t); _arb_arf_div_rounded_den_add_err(acb_realref(res), a, a2b2, inexact, prec); _arb_arf_div_rounded_den_add_err(acb_imagref(res), b, a2b2, inexact, prec); arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res))); mag_clear(t); mag_clear(u); mag_clear(v); mag_clear(w); arf_clear(a2b2); } mag_clear(am); mag_clear(bm); #undef a #undef b #undef x #undef y }
void arb_atan_arf(arb_t z, const arf_t x, slong prec) { if (arf_is_special(x)) { if (arf_is_zero(x)) { arb_zero(z); } else if (arf_is_pos_inf(x)) { arb_const_pi(z, prec); arb_mul_2exp_si(z, z, -1); } else if (arf_is_neg_inf(x)) { arb_const_pi(z, prec); arb_mul_2exp_si(z, z, -1); arb_neg(z, z); } else { arb_indeterminate(z); } } else if (COEFF_IS_MPZ(*ARF_EXPREF(x))) { if (fmpz_sgn(ARF_EXPREF(x)) < 0) arb_atan_eps(z, x, prec); else arb_atan_inf_eps(z, x, prec); } else { slong exp, wp, wn, N, r; mp_srcptr xp; mp_size_t xn, tn; mp_ptr tmp, w, t, u; mp_limb_t p1, q1bits, p2, q2bits, error, error2; int negative, inexact, reciprocal; TMP_INIT; exp = ARF_EXP(x); negative = ARF_SGNBIT(x); if (exp < -(prec/2) - 2 || exp > prec + 2) { if (exp < 0) arb_atan_eps(z, x, prec); else arb_atan_inf_eps(z, x, prec); return; } ARF_GET_MPN_READONLY(xp, xn, x); /* Special case: +/- 1 (we require |x| != 1 later on) */ if (exp == 1 && xn == 1 && xp[xn-1] == LIMB_TOP) { arb_const_pi(z, prec); arb_mul_2exp_si(z, z, -2); if (negative) arb_neg(z, z); return; } /* Absolute working precision (NOT rounded to a limb multiple) */ wp = prec - FLINT_MIN(0, exp) + 4; /* Too high precision to use table */ if (wp > ARB_ATAN_TAB2_PREC) { arb_atan_arf_bb(z, x, prec); return; } /* Working precision in limbs */ wn = (wp + FLINT_BITS - 1) / FLINT_BITS; TMP_START; tmp = TMP_ALLOC_LIMBS(4 * wn + 3); w = tmp; /* requires wn+1 limbs */ t = w + wn + 1; /* requires wn+1 limbs */ u = t + wn + 1; /* requires 2wn+1 limbs */ /* ----------------------------------------------------------------- */ /* Convert x or 1/x to a fixed-point number |w| < 1 */ /* ----------------------------------------------------------------- */ if (exp <= 0) /* |x| < 1 */ { reciprocal = 0; /* todo: just zero top */ flint_mpn_zero(w, wn); /* w = x as a fixed-point number */ error = _arf_get_integer_mpn(w, xp, xn, exp + wn * FLINT_BITS); } else /* |x| > 1 */ { slong one_exp, one_limbs, one_bits; mp_ptr one; reciprocal = 1; one_exp = xn * FLINT_BITS + wn * FLINT_BITS - exp; flint_mpn_zero(w, wn); /* 1/x becomes zero */ if (one_exp >= FLINT_BITS - 1) { /* w = 1/x */ one_limbs = one_exp / FLINT_BITS; one_bits = one_exp % FLINT_BITS; if (one_limbs + 1 >= xn) { one = TMP_ALLOC_LIMBS(one_limbs + 1); flint_mpn_zero(one, one_limbs); one[one_limbs] = UWORD(1) << one_bits; /* todo: only zero necessary part */ flint_mpn_zero(w, wn); mpn_tdiv_q(w, one, one_limbs + 1, xp, xn); /* Now w must be < 1 since x > 1 and we rounded down; thus w[wn] must be zero */ } } /* todo: moderate powers of two would be exact... */ error = 1; } /* ----------------------------------------------------------------- */ /* Table-based argument reduction */ /* ----------------------------------------------------------------- */ /* choose p such that p/q <= x < (p+1)/q */ if (wp <= ARB_ATAN_TAB1_PREC) q1bits = ARB_ATAN_TAB1_BITS; else q1bits = ARB_ATAN_TAB21_BITS; p1 = w[wn-1] >> (FLINT_BITS - q1bits); /* atan(w) = atan(p/q) + atan(w2) */ /* where w2 = (q*w-p)/(q+p*w) */ if (p1 != 0) { t[wn] = (UWORD(1) << q1bits) + mpn_mul_1(t, w, wn, p1); flint_mpn_zero(u, wn); u[2 * wn] = mpn_lshift(u + wn, w, wn, q1bits) - p1; mpn_tdiv_q(w, u, 2 * wn + 1, t, wn + 1); error++; /* w2 is computed with 1 ulp error */ } /* Do a second round of argument reduction */ if (wp <= ARB_ATAN_TAB1_PREC) { p2 = 0; } else { q2bits = ARB_ATAN_TAB21_BITS + ARB_ATAN_TAB22_BITS; p2 = w[wn-1] >> (FLINT_BITS - q2bits); if (p2 != 0) { t[wn] = (UWORD(1) << q2bits) + mpn_mul_1(t, w, wn, p2); flint_mpn_zero(u, wn); u[2 * wn] = mpn_lshift(u + wn, w, wn, q2bits) - p2; mpn_tdiv_q(w, u, 2 * wn + 1, t, wn + 1); error++; } } /* |w| <= 2^-r */ r = _arb_mpn_leading_zeros(w, wn); /* N >= (wp-r)/(2r) */ N = (wp - r + (2*r-1)) / (2*r); /* Evaluate Taylor series */ _arb_atan_taylor_rs(t, &error2, w, wn, N, 1); /* Taylor series evaluation error */ error += error2; /* Size of output number */ tn = wn; /* First table lookup */ if (p1 != 0) { if (wp <= ARB_ATAN_TAB1_PREC) mpn_add_n(t, t, arb_atan_tab1[p1] + ARB_ATAN_TAB1_LIMBS - tn, tn); else mpn_add_n(t, t, arb_atan_tab21[p1] + ARB_ATAN_TAB2_LIMBS - tn, tn); error++; } /* Second table lookup */ if (p2 != 0) { mpn_add_n(t, t, arb_atan_tab22[p2] + ARB_ATAN_TAB2_LIMBS - tn, tn); error++; } /* pi/2 - atan(1/x) */ if (reciprocal) { t[tn] = LIMB_ONE - mpn_sub_n(t, arb_atan_pi2_minus_one + ARB_ATAN_TAB2_LIMBS - tn, t, tn); /* result can be >= 1 */ tn += (t[tn] != 0); /* error of pi/2 */ error++; } /* The accumulated arithmetic error */ mag_set_ui_2exp_si(arb_radref(z), error, -wn * FLINT_BITS); /* Truncation error from the Taylor series */ mag_add_ui_2exp_si(arb_radref(z), arb_radref(z), 1, -r*(2*N+1)); /* Set the midpoint */ inexact = _arf_set_mpn_fixed(arb_midref(z), t, tn, wn, negative, prec, ARB_RND); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); TMP_END; } }
int main() { slong iter; flint_rand_t state; flint_printf("atan_arf_bb...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 5000; iter++) { arb_t x, y, z; slong prec, prec2; arb_init(x); arb_init(y); arb_init(z); prec = 2 + n_randint(state, 8000); arb_randtest(x, state, 1 + n_randint(state, 8000), 3); mag_zero(arb_radref(x)); if (n_randint(state, 2)) arb_mul_2exp_si(x, x, 1 + n_randint(state, 40)); else arb_mul_2exp_si(x, x, -n_randint(state, 1.5 * prec)); if (!arf_is_special(arb_midref(x))) prec2 = prec + 100 + 2 * (-ARF_EXP(arb_midref(x))); else prec2 = prec + 100; arb_atan_arf_via_mpfr(y, arb_midref(x), prec2); arb_atan_arf_bb(z, arb_midref(x), prec); if (!arb_contains(z, y)) { flint_printf("FAIL: containment\n\n"); flint_printf("prec = %wd\n\n", prec); flint_printf("x = "); arb_printd(x, 50); flint_printf("\n\n"); flint_printf("y = "); arb_printd(y, 50); flint_printf("\n\n"); flint_printf("z = "); arb_printd(z, 50); flint_printf("\n\n"); abort(); } if (arb_rel_accuracy_bits(z) < prec - 2) { flint_printf("FAIL: poor accuracy\n\n"); flint_printf("prec = %wd, acc = %wd\n\n", prec, arb_rel_accuracy_bits(z)); flint_printf("x = "); arb_printd(x, 50); flint_printf("\n\n"); flint_printf("y = "); arb_printd(y, 50); flint_printf("\n\n"); flint_printf("z = "); arb_printd(z, 50); flint_printf("\n\n"); abort(); } arb_atan_arf_bb(x, arb_midref(x), prec); if (!arb_overlaps(x, z)) { flint_printf("FAIL: aliasing\n\n"); abort(); } arb_clear(x); arb_clear(y); arb_clear(z); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
int arf_root(arf_ptr z, arf_srcptr x, ulong k, slong prec, arf_rnd_t rnd) { mp_size_t xn, zn, val; mp_srcptr xptr; mp_ptr tmp, zptr; mpfr_t xf, zf; fmpz_t q, r; int inexact; if (k == 0) { arf_nan(z); return 0; } if (k == 1) return arf_set_round(z, x, prec, rnd); if (k == 2) return arf_sqrt(z, x, prec, rnd); if (arf_is_special(x)) { if (arf_is_neg_inf(x)) arf_nan(z); else arf_set(z, x); return 0; } if (ARF_SGNBIT(x)) { arf_nan(z); return 0; } fmpz_init(q); fmpz_init(r); /* x = m * 2^e where e = qk + r */ /* x^(1/k) = (m * 2^(qk+r))^(1/k) */ /* x^(1/k) = (m * 2^r)^(1/k) * 2^q */ fmpz_set_ui(r, k); fmpz_fdiv_qr(q, r, ARF_EXPREF(x), r); ARF_GET_MPN_READONLY(xptr, xn, x); zn = (prec + FLINT_BITS - 1) / FLINT_BITS; zf->_mpfr_d = tmp = flint_malloc(zn * sizeof(mp_limb_t)); zf->_mpfr_prec = prec; zf->_mpfr_sign = 1; zf->_mpfr_exp = 0; xf->_mpfr_d = (mp_ptr) xptr; xf->_mpfr_prec = xn * FLINT_BITS; xf->_mpfr_sign = 1; xf->_mpfr_exp = fmpz_get_ui(r); inexact = mpfr_root(zf, xf, k, arf_rnd_to_mpfr(rnd)); inexact = (inexact != 0); val = 0; while (tmp[val] == 0) val++; ARF_GET_MPN_WRITE(zptr, zn - val, z); flint_mpn_copyi(zptr, tmp + val, zn - val); fmpz_add_si(ARF_EXPREF(z), q, zf->_mpfr_exp); flint_free(tmp); fmpz_clear(q); fmpz_clear(r); return inexact; }
int main() { slong iter; flint_rand_t state; flint_printf("set_round...."); fflush(stdout); flint_randinit(state); { arf_t x, y, z; arf_init(x); arf_init(y); arf_init(z); for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++) { slong bits1, bits2; int ret1, ret2; mpfr_t g1, g2; fmpz_t e; arf_rnd_t rnd; bits1 = 1 + n_randint(state, 1000); bits2 = 2 + n_randint(state, 1000); if (n_randint(state, 100) == 0) bits2 = ARF_PREC_EXACT; switch (n_randint(state, 5)) { case 0: rnd = ARF_RND_DOWN; break; case 1: rnd = ARF_RND_UP; break; case 2: rnd = ARF_RND_FLOOR; break; case 3: rnd = ARF_RND_CEIL; break; default: rnd = ARF_RND_NEAR; break; } fmpz_init(e); mpfr_init2(g1, FLINT_MAX(2, bits1)); mpfr_init2(g2, FLINT_MIN(bits2, 10000)); if (n_randint(state, 100) == 0) { arf_clear(x); arf_clear(y); arf_clear(z); arf_init(x); arf_init(y); arf_init(z); } /* dirty output variables */ if (n_randint(state, 2)) { arf_randtest_special(y, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); arf_randtest_special(z, state, 1 + n_randint(state, 1000), 1 + n_randint(state, 100)); } arf_randtest_special(x, state, bits1, 1 + n_randint(state, 10)); arf_get_mpfr(g1, x, MPFR_RNDD); /* exact */ /* test large exponents */ if (n_randint(state, 4) == 0) fmpz_randtest(e, state, 1 + n_randint(state, 100)); if (!arf_is_special(x)) fmpz_add(ARF_EXPREF(x), ARF_EXPREF(x), e); ret1 = arf_set_round(y, x, bits2, rnd); ret2 = mpfr_set(g2, g1, arf_rnd_to_mpfr(rnd)); arf_set_mpfr(z, g2); if (!arf_is_special(y)) fmpz_sub(ARF_EXPREF(y), ARF_EXPREF(y), e); if (!arf_equal(y, z) || ((ret1 == ARF_RESULT_EXACT) != (ret2 == 0))) { flint_printf("FAIL\n\n"); flint_printf("bits1: %wd\n", bits1); flint_printf("bits2: %wd\n", bits2); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = "); arf_print(y); flint_printf("\n\n"); flint_printf("z = "); arf_print(z); flint_printf("\n\n"); flint_printf("ret1 = %d, ret2 = %d\n\n", ret1, ret2); flint_abort(); } if (!arf_is_special(x)) fmpz_add(ARF_EXPREF(x), ARF_EXPREF(x), e); ret1 = arf_set_round(y, x, bits2, rnd); arf_set(z, x); ret2 = arf_set_round(z, z, bits2, rnd); if (!arf_equal(y, z) || ret1 != ret2) { flint_printf("FAIL (aliasing)\n\n"); flint_printf("bits1: %wd\n", bits1); flint_printf("bits2: %wd\n", bits2); flint_printf("x = "); arf_print(x); flint_printf("\n\n"); flint_printf("y = "); arf_print(y); flint_printf("\n\n"); flint_printf("z = "); arf_print(z); flint_printf("\n\n"); flint_printf("ret1 = %d, ret2 = %d\n\n", ret1, ret2); flint_abort(); } mpfr_clear(g1); mpfr_clear(g2); fmpz_clear(e); } arf_clear(x); arf_clear(y); arf_clear(z); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void arb_log_arf(arb_t z, const arf_t x, slong prec) { if (arf_is_special(x)) { if (arf_is_pos_inf(x)) arb_pos_inf(z); else arb_indeterminate(z); } else if (ARF_SGNBIT(x)) { arb_indeterminate(z); } else if (ARF_IS_POW2(x)) { if (fmpz_is_one(ARF_EXPREF(x))) { arb_zero(z); } else { fmpz_t exp; fmpz_init(exp); _fmpz_add_fast(exp, ARF_EXPREF(x), -1); arb_const_log2(z, prec + 2); arb_mul_fmpz(z, z, exp, prec); fmpz_clear(exp); } } else if (COEFF_IS_MPZ(*ARF_EXPREF(x))) { arb_log_arf_huge(z, x, prec); } else { slong exp, wp, wn, N, r, closeness_to_one; mp_srcptr xp; mp_size_t xn, tn; mp_ptr tmp, w, t, u; mp_limb_t p1, q1bits, p2, q2bits, error, error2, cy; int negative, inexact, used_taylor_series; TMP_INIT; exp = ARF_EXP(x); negative = 0; ARF_GET_MPN_READONLY(xp, xn, x); /* compute a c >= 0 such that |x-1| <= 2^(-c) if c > 0 */ closeness_to_one = 0; if (exp == 0) { slong i; closeness_to_one = FLINT_BITS - FLINT_BIT_COUNT(~xp[xn - 1]); if (closeness_to_one == FLINT_BITS) { for (i = xn - 2; i > 0 && xp[i] == LIMB_ONES; i--) closeness_to_one += FLINT_BITS; closeness_to_one += (FLINT_BITS - FLINT_BIT_COUNT(~xp[i])); } } else if (exp == 1) { closeness_to_one = FLINT_BITS - FLINT_BIT_COUNT(xp[xn - 1] & (~LIMB_TOP)); if (closeness_to_one == FLINT_BITS) { slong i; for (i = xn - 2; xp[i] == 0; i--) closeness_to_one += FLINT_BITS; closeness_to_one += (FLINT_BITS - FLINT_BIT_COUNT(xp[i])); } closeness_to_one--; } /* if |t-1| <= 0.5 */ /* |log(1+t) - t| <= t^2 */ /* |log(1+t) - (t-t^2/2)| <= t^3 */ if (closeness_to_one > prec + 1) { inexact = arf_sub_ui(arb_midref(z), x, 1, prec, ARB_RND); mag_set_ui_2exp_si(arb_radref(z), 1, -2 * closeness_to_one); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); return; } else if (2 * closeness_to_one > prec + 1) { arf_t t, u; arf_init(t); arf_init(u); arf_sub_ui(t, x, 1, ARF_PREC_EXACT, ARF_RND_DOWN); arf_mul(u, t, t, ARF_PREC_EXACT, ARF_RND_DOWN); arf_mul_2exp_si(u, u, -1); inexact = arf_sub(arb_midref(z), t, u, prec, ARB_RND); mag_set_ui_2exp_si(arb_radref(z), 1, -3 * closeness_to_one); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); arf_clear(t); arf_clear(u); return; } /* Absolute working precision (NOT rounded to a limb multiple) */ wp = prec + closeness_to_one + 5; /* Too high precision to use table */ if (wp > ARB_LOG_TAB2_PREC) { arf_log_via_mpfr(arb_midref(z), x, prec, ARB_RND); arf_mag_set_ulp(arb_radref(z), arb_midref(z), prec); return; } /* Working precision in limbs */ wn = (wp + FLINT_BITS - 1) / FLINT_BITS; TMP_START; tmp = TMP_ALLOC_LIMBS(4 * wn + 3); w = tmp; /* requires wn+1 limbs */ t = w + wn + 1; /* requires wn+1 limbs */ u = t + wn + 1; /* requires 2wn+1 limbs */ /* read x-1 */ if (xn <= wn) { flint_mpn_zero(w, wn - xn); mpn_lshift(w + wn - xn, xp, xn, 1); error = 0; } else { mpn_lshift(w, xp + xn - wn, wn, 1); error = 1; } /* First table-based argument reduction */ if (wp <= ARB_LOG_TAB1_PREC) q1bits = ARB_LOG_TAB11_BITS; else q1bits = ARB_LOG_TAB21_BITS; p1 = w[wn-1] >> (FLINT_BITS - q1bits); /* Special case: covers logarithms of small integers */ if (xn == 1 && (w[wn-1] == (p1 << (FLINT_BITS - q1bits)))) { p2 = 0; flint_mpn_zero(t, wn); used_taylor_series = 0; N = r = 0; /* silence compiler warning */ } else { /* log(1+w) = log(1+p/q) + log(1 + (qw-p)/(p+q)) */ w[wn] = mpn_mul_1(w, w, wn, UWORD(1) << q1bits) - p1; mpn_divrem_1(w, 0, w, wn + 1, p1 + (UWORD(1) << q1bits)); error += 1; /* Second table-based argument reduction (fused with log->atanh conversion) */ if (wp <= ARB_LOG_TAB1_PREC) q2bits = ARB_LOG_TAB11_BITS + ARB_LOG_TAB12_BITS; else q2bits = ARB_LOG_TAB21_BITS + ARB_LOG_TAB22_BITS; p2 = w[wn-1] >> (FLINT_BITS - q2bits); u[2 * wn] = mpn_lshift(u + wn, w, wn, q2bits); flint_mpn_zero(u, wn); flint_mpn_copyi(t, u + wn, wn + 1); t[wn] += p2 + (UWORD(1) << (q2bits + 1)); u[2 * wn] -= p2; mpn_tdiv_q(w, u, 2 * wn + 1, t, wn + 1); /* propagated error from 1 ulp error: 2 atanh'(1/3) = 2.25 */ error += 3; /* |w| <= 2^-r */ r = _arb_mpn_leading_zeros(w, wn); /* N >= (wp-r)/(2r) */ N = (wp - r + (2*r-1)) / (2*r); N = FLINT_MAX(N, 0); /* Evaluate Taylor series */ _arb_atan_taylor_rs(t, &error2, w, wn, N, 0); /* Multiply by 2 */ mpn_lshift(t, t, wn, 1); /* Taylor series evaluation error (multiply by 2) */ error += error2 * 2; used_taylor_series = 1; } /* Size of output number */ tn = wn; /* First table lookup */ if (p1 != 0) { if (wp <= ARB_LOG_TAB1_PREC) mpn_add_n(t, t, arb_log_tab11[p1] + ARB_LOG_TAB1_LIMBS - tn, tn); else mpn_add_n(t, t, arb_log_tab21[p1] + ARB_LOG_TAB2_LIMBS - tn, tn); error++; } /* Second table lookup */ if (p2 != 0) { if (wp <= ARB_LOG_TAB1_PREC) mpn_add_n(t, t, arb_log_tab12[p2] + ARB_LOG_TAB1_LIMBS - tn, tn); else mpn_add_n(t, t, arb_log_tab22[p2] + ARB_LOG_TAB2_LIMBS - tn, tn); error++; } /* add exp * log(2) */ exp--; if (exp > 0) { cy = mpn_addmul_1(t, arb_log_log2_tab + ARB_LOG_TAB2_LIMBS - tn, tn, exp); t[tn] = cy; tn += (cy != 0); error += exp; } else if (exp < 0) { t[tn] = 0; u[tn] = mpn_mul_1(u, arb_log_log2_tab + ARB_LOG_TAB2_LIMBS - tn, tn, -exp); if (mpn_cmp(t, u, tn + 1) >= 0) { mpn_sub_n(t, t, u, tn + 1); } else { mpn_sub_n(t, u, t, tn + 1); negative = 1; } error += (-exp); tn += (t[tn] != 0); } /* The accumulated arithmetic error */ mag_set_ui_2exp_si(arb_radref(z), error, -wn * FLINT_BITS); /* Truncation error from the Taylor series */ if (used_taylor_series) mag_add_ui_2exp_si(arb_radref(z), arb_radref(z), 1, -r*(2*N+1) + 1); /* Set the midpoint */ inexact = _arf_set_mpn_fixed(arb_midref(z), t, tn, wn, negative, prec); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); TMP_END; } }
void arf_get_fmpz(fmpz_t z, const arf_t x, arf_rnd_t rnd) { if (arf_is_special(x)) { if (arf_is_zero(x)) { fmpz_zero(z); } else { flint_printf("arf_get_fmpz: cannot convert infinity or nan to integer\n"); abort(); } } else if (COEFF_IS_MPZ(*ARF_EXPREF(x))) { /* tiny */ if (fmpz_sgn(ARF_EXPREF(x)) < 0) { int negative = ARF_SGNBIT(x); if (rnd == ARF_RND_NEAR || rnd == ARF_RND_DOWN || (rnd == ARF_RND_FLOOR && !negative) || (rnd == ARF_RND_CEIL && negative)) { fmpz_zero(z); } else { fmpz_set_si(z, negative ? -1 : 1); } } else { flint_printf("arf_get_fmpz: number too large to convert to integer\n"); abort(); } } else { slong exp; int negative, inexact; mp_size_t xn, zn; mp_srcptr xp; __mpz_struct * zz; /* TBD: implement efficiently */ if (rnd == ARF_RND_NEAR) { fmpr_t t; fmpr_init(t); arf_get_fmpr(t, x); fmpr_get_fmpz(z, t, rnd); fmpr_clear(t); return; } exp = ARF_EXP(x); negative = ARF_SGNBIT(x); /* |x| < 1 */ if (exp <= 0) { if (rnd == ARF_RND_DOWN || (rnd == ARF_RND_FLOOR && !negative) || (rnd == ARF_RND_CEIL && negative)) { fmpz_zero(z); } else { fmpz_set_si(z, negative ? -1 : 1); } return; } ARF_GET_MPN_READONLY(xp, xn, x); /* |x| < 2^31 or 2^63 (must save 1 bit for rounding up!) */ if (exp < FLINT_BITS) { mp_limb_t v, v2; v = xp[xn - 1]; v2 = v >> (FLINT_BITS - exp); inexact = (xn > 1) || ((v2 << (FLINT_BITS - exp)) != v); if (inexact && rnd != ARF_RND_DOWN) { if (negative && (rnd == ARF_RND_UP || rnd == ARF_RND_FLOOR)) v2++; if (!negative && (rnd == ARF_RND_UP || rnd == ARF_RND_CEIL)) v2++; } if (negative) fmpz_neg_ui(z, v2); else fmpz_set_ui(z, v2); return; } /* |x| >= 1 */ zn = (exp + FLINT_BITS - 1) / FLINT_BITS; zz = _fmpz_promote(z); if (zz->_mp_alloc < zn) mpz_realloc2(zz, zn * FLINT_BITS); inexact = _arf_get_integer_mpn(zz->_mp_d, xp, xn, exp); zz->_mp_size = negative ? -zn : zn; _fmpz_demote_val(z); if (inexact && rnd != ARF_RND_DOWN) { if (negative && (rnd == ARF_RND_UP || rnd == ARF_RND_FLOOR)) fmpz_sub_ui(z, z, 1); if (!negative && (rnd == ARF_RND_UP || rnd == ARF_RND_CEIL)) fmpz_add_ui(z, z, 1); } }
void arb_exp_arf_bb(arb_t z, const arf_t x, slong prec, int minus_one) { slong k, iter, bits, r, mag, q, wp, N; slong argred_bits, start_bits; mp_bitcnt_t Qexp[1]; int inexact; fmpz_t t, u, T, Q; arb_t w; if (arf_is_zero(x)) { if (minus_one) arb_zero(z); else arb_one(z); return; } if (arf_is_special(x)) { abort(); } mag = arf_abs_bound_lt_2exp_si(x); /* We assume that this function only gets called with something reasonable as input (huge/tiny input will be handled by the main exp wrapper). */ if (mag > 200 || mag < -2 * prec - 100) { flint_printf("arb_exp_arf_bb: unexpectedly large/small input\n"); abort(); } if (prec < 100000000) { argred_bits = 16; start_bits = 32; } else { argred_bits = 32; start_bits = 64; } /* Argument reduction: exp(x) -> exp(x/2^q). This improves efficiency of the first iteration in the bit-burst algorithm. */ q = FLINT_MAX(0, mag + argred_bits); /* Determine working precision. */ wp = prec + 10 + 2 * q + 2 * FLINT_BIT_COUNT(prec); if (minus_one && mag < 0) wp += (-mag); fmpz_init(t); fmpz_init(u); fmpz_init(Q); fmpz_init(T); arb_init(w); /* Convert x/2^q to a fixed-point number. */ inexact = arf_get_fmpz_fixed_si(t, x, -wp + q); /* Aliasing of z and x is safe now that only use t. */ /* Start with z = 1. */ arb_one(z); /* Bit-burst loop. */ for (iter = 0, bits = start_bits; !fmpz_is_zero(t); iter++, bits *= 2) { /* Extract bits. */ r = FLINT_MIN(bits, wp); fmpz_tdiv_q_2exp(u, t, wp - r); /* Binary splitting (+1 fixed-point ulp truncation error). */ mag = fmpz_bits(u) - r; N = bs_num_terms(mag, wp); _arb_exp_sum_bs_powtab(T, Q, Qexp, u, r, N); /* T = T / Q (+1 fixed-point ulp error). */ if (*Qexp >= wp) { fmpz_tdiv_q_2exp(T, T, *Qexp - wp); fmpz_tdiv_q(T, T, Q); } else { fmpz_mul_2exp(T, T, wp - *Qexp); fmpz_tdiv_q(T, T, Q); } /* T = 1 + T */ fmpz_one(Q); fmpz_mul_2exp(Q, Q, wp); fmpz_add(T, T, Q); /* Now T = exp(u) with at most 2 fixed-point ulp error. */ /* Set z = z * T. */ arf_set_fmpz(arb_midref(w), T); arf_mul_2exp_si(arb_midref(w), arb_midref(w), -wp); mag_set_ui_2exp_si(arb_radref(w), 2, -wp); arb_mul(z, z, w, wp); /* Remove used bits. */ fmpz_mul_2exp(u, u, wp - r); fmpz_sub(t, t, u); } /* We have exp(x + eps) - exp(x) < 2*eps (by assumption that the argument reduction is large enough). */ if (inexact) arb_add_error_2exp_si(z, -wp + 1); fmpz_clear(t); fmpz_clear(u); fmpz_clear(Q); fmpz_clear(T); arb_clear(w); /* exp(x) = exp(x/2^q)^(2^q) */ for (k = 0; k < q; k++) arb_mul(z, z, z, wp); if (minus_one) arb_sub_ui(z, z, 1, wp); arb_set_round(z, z, prec); }