int _arb_poly_newton_step(arb_t xnew, arb_srcptr poly, long len, const arb_t x, const arb_t convergence_interval, const arf_t convergence_factor, long prec) { arf_t err; arb_t t, u, v; int result; arf_init(err); arb_init(t); arb_init(u); arb_init(v); arf_set_mag(err, arb_radref(x)); arf_mul(err, err, err, MAG_BITS, ARF_RND_UP); arf_mul(err, err, convergence_factor, MAG_BITS, ARF_RND_UP); arf_set(arb_midref(t), arb_midref(x)); mag_zero(arb_radref(t)); _arb_poly_evaluate2(u, v, poly, len, t, prec); arb_div(u, u, v, prec); arb_sub(u, t, u, prec); arb_add_error_arf(u, err); if (arb_contains(convergence_interval, u) && (mag_cmp(arb_radref(u), arb_radref(x)) < 0)) { arb_swap(xnew, u); result = 1; } else { arb_set(xnew, x); result = 0; } arb_clear(t); arb_clear(u); arb_clear(v); arf_clear(err); return result; }
void arb_square(arb_t out, const arb_t in, slong prec) { mag_mul(arb_radref(out), arb_radref(in), arb_radref(in)); int inexact = arf_mul(arb_midref(out), arb_midref(in), arb_midref(in), ARB_RND, prec); if (inexact) arf_mag_add_ulp(arb_radref(out), arb_radref(out), arb_midref(out), prec); }
int main() { slong iter; flint_rand_t state; flint_printf("get_mag...."); fflush(stdout); flint_randinit(state); for (iter = 0; iter < 10000 * arb_test_multiplier(); iter++) { acb_t a; arf_t m2, x, y, s; mag_t m; acb_init(a); mag_init(m); arf_init(m2); arf_init(x); arf_init(y); arf_init(s); acb_randtest_special(a, state, 200, 10); acb_get_mag(m, a); MAG_CHECK_BITS(m) /* check m^2 >= x^2 + y^2 */ arf_set_mag(m2, m); arf_mul(m2, m2, m2, ARF_PREC_EXACT, ARF_RND_DOWN); arb_get_abs_ubound_arf(x, acb_realref(a), ARF_PREC_EXACT); arb_get_abs_ubound_arf(y, acb_imagref(a), ARF_PREC_EXACT); arf_sosq(s, x, y, ARF_PREC_EXACT, ARF_RND_DOWN); if (arf_cmp(m2, s) < 0) { flint_printf("FAIL:\n\n"); flint_printf("a = "); acb_print(a); flint_printf("\n\n"); flint_printf("m = "); mag_print(m); flint_printf("\n\n"); flint_abort(); } acb_clear(a); mag_clear(m); arf_clear(m2); arf_clear(x); arf_clear(y); arf_clear(s); } flint_randclear(state); flint_cleanup(); flint_printf("PASS\n"); return EXIT_SUCCESS; }
void arf_twobytwo_diag(arf_t u1, arf_t u2, const arf_t a, const arf_t b, const arf_t d, slong prec) { // Compute the orthogonal matrix that diagonalizes // // A = [a b] // [b d] // // This matrix will have the form // // U = [cos x , -sin x] // [sin x, cos x] // // where the diagonal matrix is U^t A U. // We set u1 = cos x, u2 = -sin x. if(arf_is_zero(b)) { arf_set_ui(u1, 1); arf_set_ui(u2, 0); return; } arf_t x; arf_init(x); arf_mul(u1, b, b, prec, ARF_RND_NEAR); // u1 = b^2 arf_sub(u2, a, d, prec, ARF_RND_NEAR); // u2 = a - d arf_mul_2exp_si(u2, u2, -1); // u2 = (a - d)/2 arf_mul(u2, u2, u2, prec, ARF_RND_NEAR); // u2 = ( (a - d)/2 )^2 arf_add(u1, u1, u2, prec, ARF_RND_NEAR); // u1 = b^2 + ( (a-d)/2 )^2 arf_sqrt(u1, u1, prec, ARF_RND_NEAR); // u1 = sqrt(above) arf_mul_2exp_si(u1, u1, 1); // u1 = 2 (sqrt (above) ) arf_add(u1, u1, d, prec, ARF_RND_NEAR); // u1 += d arf_sub(u1, u1, a, prec, ARF_RND_NEAR); // u1 -= a arf_mul_2exp_si(u1, u1, -1); // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2) arf_mul(x, u1, u1, prec, ARF_RND_NEAR); arf_addmul(x, b, b, prec, ARF_RND_NEAR); // x = u1^2 + b^2 arf_sqrt(x, x, prec, ARF_RND_NEAR); // x = sqrt(u1^2 + b^2) arf_div(u2, u1, x, prec, ARF_RND_NEAR); arf_div(u1, b, x, prec, ARF_RND_NEAR); arf_neg(u1, u1); arf_clear(x); }
int arf_mul_fmpz_naive(arf_t z, const arf_t x, const fmpz_t y, slong prec, arf_rnd_t rnd) { arf_t t; int r; arf_init(t); arf_set_fmpz(t, y); r = arf_mul(z, x, t, prec, rnd); arf_clear(t); return r; }
int arf_addmul_naive(arf_t z, const arf_t x, const arf_t y, long prec, arf_rnd_t rnd) { arf_t t; int inexact; arf_init(t); arf_mul(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN); inexact = arf_add(z, z, t, prec, rnd); arf_clear(t); return inexact; }
void arb_mul_naive(arb_t z, const arb_t x, const arb_t y, slong prec) { arf_t zm_exact, zm_rounded, zr, t, u; arf_init(zm_exact); arf_init(zm_rounded); arf_init(zr); arf_init(t); arf_init(u); arf_mul(zm_exact, arb_midref(x), arb_midref(y), ARF_PREC_EXACT, ARF_RND_DOWN); arf_set_round(zm_rounded, zm_exact, prec, ARB_RND); /* rounding error */ if (arf_equal(zm_exact, zm_rounded)) { arf_zero(zr); } else { fmpz_t e; fmpz_init(e); /* more accurate, but not what we are testing arf_sub(zr, zm_exact, zm_rounded, MAG_BITS, ARF_RND_UP); arf_abs(zr, zr); */ fmpz_sub_ui(e, ARF_EXPREF(zm_rounded), prec); arf_one(zr); arf_mul_2exp_fmpz(zr, zr, e); fmpz_clear(e); } /* propagated error */ if (!arb_is_exact(x)) { arf_set_mag(t, arb_radref(x)); arf_abs(u, arb_midref(y)); arf_addmul(zr, t, u, MAG_BITS, ARF_RND_UP); } if (!arb_is_exact(y)) { arf_set_mag(t, arb_radref(y)); arf_abs(u, arb_midref(x)); arf_addmul(zr, t, u, MAG_BITS, ARF_RND_UP); } if (!arb_is_exact(x) && !arb_is_exact(y)) { arf_set_mag(t, arb_radref(x)); arf_set_mag(u, arb_radref(y)); arf_addmul(zr, t, u, MAG_BITS, ARF_RND_UP); } arf_set(arb_midref(z), zm_rounded); arf_get_mag(arb_radref(z), zr); arf_clear(zm_exact); arf_clear(zm_rounded); arf_clear(zr); arf_clear(t); arf_clear(u); }
int arf_submul(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn, zn, tn, alloc; mp_srcptr xptr, yptr, zptr; mp_ptr tptr, tptr2; fmpz_t texp; slong shift; int tsgnbit, inexact; ARF_MUL_TMP_DECL if (arf_is_special(x) || arf_is_special(y) || arf_is_special(z)) { if (arf_is_zero(z)) { return arf_neg_mul(z, x, y, prec, rnd); } else if (arf_is_finite(x) && arf_is_finite(y)) { return arf_set_round(z, z, prec, rnd); } else { /* todo: speed up */ arf_t t; arf_init(t); arf_mul(t, x, y, ARF_PREC_EXACT, ARF_RND_DOWN); inexact = arf_sub(z, z, t, prec, rnd); arf_clear(t); return inexact; } } tsgnbit = ARF_SGNBIT(x) ^ ARF_SGNBIT(y) ^ 1; ARF_GET_MPN_READONLY(xptr, xn, x); ARF_GET_MPN_READONLY(yptr, yn, y); ARF_GET_MPN_READONLY(zptr, zn, z); fmpz_init(texp); _fmpz_add2_fast(texp, ARF_EXPREF(x), ARF_EXPREF(y), 0); shift = _fmpz_sub_small(ARF_EXPREF(z), texp); alloc = tn = xn + yn; ARF_MUL_TMP_ALLOC(tptr2, alloc) tptr = tptr2; ARF_MPN_MUL(tptr, xptr, xn, yptr, yn); tn -= (tptr[0] == 0); tptr += (tptr[0] == 0); if (shift >= 0) inexact = _arf_add_mpn(z, zptr, zn, ARF_SGNBIT(z), ARF_EXPREF(z), tptr, tn, tsgnbit, shift, prec, rnd); else inexact = _arf_add_mpn(z, tptr, tn, tsgnbit, texp, zptr, zn, ARF_SGNBIT(z), -shift, prec, rnd); ARF_MUL_TMP_FREE(tptr2, alloc) fmpz_clear(texp); return inexact; }
int arb_mat_jacobi(arb_mat_t D, arb_mat_t P, const arb_mat_t A, slong prec) { // // Given a d x d real symmetric matrix A, compute an orthogonal matrix // P and a diagonal D such that A = P D P^t = P D P^(-1). // // D should have already been initialized as a d x 1 matrix, and Pp // should have already been initialized as a d x d matrix. // // If the eigenvalues can be certified as unique, then a nonzero int is // returned, and the eigenvectors should have reasonable error bounds. If // the eigenvalues cannot be certified as unique, then some of the // eigenvectors will have infinite error radius. #define B(i,j) arb_mat_entry(B, i, j) #define D(i) arb_mat_entry(D, i, 0) #define P(i,j) arb_mat_entry(P, i, j) int dim = arb_mat_nrows(A); if(dim == 1) { arb_mat_set(D, A); arb_mat_one(P); return 0; } arb_mat_t B; arb_mat_init(B, dim, dim); arf_t * B1 = (arf_t*)malloc(dim * sizeof(arf_t)); arf_t * B2 = (arf_t*)malloc(dim * sizeof(arf_t)); arf_t * row_max = (arf_t*)malloc((dim - 1) * sizeof(arf_t)); int * row_max_indices = (int*)malloc((dim - 1) * sizeof(int)); for(int k = 0; k < dim; k++) { arf_init(B1[k]); arf_init(B2[k]); } for(int k = 0; k < dim - 1; k++) { arf_init(row_max[k]); } arf_t x1, x2; arf_init(x1); arf_init(x2); arf_t Gii, Gij, Gji, Gjj; arf_init(Gii); arf_init(Gij); arf_init(Gji); arf_init(Gjj); arb_mat_set(B, A); arb_mat_one(P); for(int i = 0; i < dim - 1; i++) { for(int j = i + 1; j < dim; j++) { arf_abs(x1, arb_midref(B(i,j))); if(arf_cmp(row_max[i], x1) < 0) { arf_set(row_max[i], x1); row_max_indices[i] = j; } } } int finished = 0; while(!finished) { arf_zero(x1); int i = 0; int j = 0; for(int k = 0; k < dim - 1; k++) { if(arf_cmp(x1, row_max[k]) < 0) { arf_set(x1, row_max[k]); i = k; } } j = row_max_indices[i]; slong bound = arf_abs_bound_lt_2exp_si(x1); if(bound < -prec * .9) { finished = 1; break; } else { //printf("%ld\n", arf_abs_bound_lt_2exp_si(x1)); //arb_mat_printd(B, 10); //printf("\n"); } arf_twobytwo_diag(Gii, Gij, arb_midref(B(i,i)), arb_midref(B(i,j)), arb_midref(B(j,j)), 2*prec); arf_neg(Gji, Gij); arf_set(Gjj, Gii); //printf("%d %d\n", i, j); //arf_printd(Gii, 100); //printf(" "); //arf_printd(Gij, 100); //printf("\n"); if(arf_is_zero(Gij)) { // If this happens, we're finished = 1; // not going to do any better break; // without increasing the precision. } for(int k = 0; k < dim; k++) { arf_mul(B1[k], Gii, arb_midref(B(i,k)), prec, ARF_RND_NEAR); arf_addmul(B1[k], Gji, arb_midref(B(j,k)), prec, ARF_RND_NEAR); arf_mul(B2[k], Gij, arb_midref(B(i,k)), prec, ARF_RND_NEAR); arf_addmul(B2[k], Gjj, arb_midref(B(j,k)), prec, ARF_RND_NEAR); } for(int k = 0; k < dim; k++) { arf_set(arb_midref(B(i,k)), B1[k]); arf_set(arb_midref(B(j,k)), B2[k]); } for(int k = 0; k < dim; k++) { arf_mul(B1[k], Gii, arb_midref(B(k,i)), prec, ARF_RND_NEAR); arf_addmul(B1[k], Gji, arb_midref(B(k,j)), prec, ARF_RND_NEAR); arf_mul(B2[k], Gij, arb_midref(B(k,i)), prec, ARF_RND_NEAR); arf_addmul(B2[k], Gjj, arb_midref(B(k,j)), prec, ARF_RND_NEAR); } for(int k = 0; k < dim; k++) { arf_set(arb_midref(B(k,i)), B1[k]); arf_set(arb_midref(B(k,j)), B2[k]); } for(int k = 0; k < dim; k++) { arf_mul(B1[k], Gii, arb_midref(P(k,i)), prec, ARF_RND_NEAR); arf_addmul(B1[k], Gji, arb_midref(P(k,j)), prec, ARF_RND_NEAR); arf_mul(B2[k], Gij, arb_midref(P(k,i)), prec, ARF_RND_NEAR); arf_addmul(B2[k], Gjj, arb_midref(P(k,j)), prec, ARF_RND_NEAR); } for(int k = 0; k < dim; k++) { arf_set(arb_midref(P(k,i)), B1[k]); arf_set(arb_midref(P(k,j)), B2[k]); } if(i < dim - 1) arf_set_ui(row_max[i], 0); if(j < dim - 1) arf_set_ui(row_max[j], 0); // Update the max in any row where the maximum // was in a column that changed. for(int k = 0; k < dim - 1; k++) { if(row_max_indices[k] == j || row_max_indices[k] == i) { arf_abs(row_max[k], arb_midref(B(k,k+1))); row_max_indices[k] = k+1; for(int l = k+2; l < dim; l++) { arf_abs(x1, arb_midref(B(k,l))); if(arf_cmp(row_max[k], x1) < 0) { arf_set(row_max[k], x1); row_max_indices[k] = l; } } } } // Update the max in the ith row. for(int k = i + 1; k < dim; k++) { arf_abs(x1, arb_midref(B(i, k))); if(arf_cmp(row_max[i], x1) < 0) { arf_set(row_max[i], x1); row_max_indices[i] = k; } } // Update the max in the jth row. for(int k = j + 1; k < dim; k++) { arf_abs(x1, arb_midref(B(j, k))); if(arf_cmp(row_max[j], x1) < 0) { arf_set(row_max[j], x1); row_max_indices[j] = k; } } // Go through column i to see if any of // the new entries are larger than the // max of their row. for(int k = 0; k < i; k++) { if(k == dim) continue; arf_abs(x1, arb_midref(B(k, i))); if(arf_cmp(row_max[k], x1) < 0) { arf_set(row_max[k], x1); row_max_indices[k] = i; } } // And then column j. for(int k = 0; k < j; k++) { if(k == dim) continue; arf_abs(x1, arb_midref(B(k, j))); if(arf_cmp(row_max[k], x1) < 0) { arf_set(row_max[k], x1); row_max_indices[k] = j; } } } for(int k = 0; k < dim; k++) { arb_set(D(k), B(k,k)); arb_set_exact(D(k)); } // At this point we've done that diagonalization and all that remains is // to certify the correctness and compute error bounds. arb_mat_t e; arb_t error_norms[dim]; for(int k = 0; k < dim; k++) arb_init(error_norms[k]); arb_mat_init(e, dim, 1); arb_t z1, z2; arb_init(z1); arb_init(z2); for(int j = 0; j < dim; j++) { arb_mat_set(B, A); for(int k = 0; k < dim; k++) { arb_sub(B(k, k), B(k, k), D(j), prec); } for(int k = 0; k < dim; k++) { arb_set(arb_mat_entry(e, k, 0), P(k, j)); } arb_mat_L2norm(z2, e, prec); arb_mat_mul(e, B, e, prec); arb_mat_L2norm(error_norms[j], e, prec); arb_div(z2, error_norms[j], z2, prec); // and now z1 is an upper bound for the // error in the eigenvalue arb_add_error(D(j), z2); } int unique_eigenvalues = 1; for(int j = 0; j < dim; j++) { if(j == 0) { arb_sub(z1, D(j), D(1), prec); } else { arb_sub(z1, D(j), D(0), prec); } arb_get_abs_lbound_arf(x1, z1, prec); for(int k = 1; k < dim; k++) { if(k == j) continue; arb_sub(z1, D(j), D(k), prec); arb_get_abs_lbound_arf(x2, z1, prec); if(arf_cmp(x2, x1) < 0) { arf_set(x1, x2); } } if(arf_is_zero(x1)) { unique_eigenvalues = 0; } arb_div_arf(z1, error_norms[j], x1, prec); for(int k = 0; k < dim; k++) { arb_add_error(P(k, j), z1); } } arb_mat_clear(e); arb_clear(z1); arb_clear(z2); for(int k = 0; k < dim; k++) arb_clear(error_norms[k]); arf_clear(x1); arf_clear(x2); arb_mat_clear(B); for(int k = 0; k < dim; k++) { arf_clear(B1[k]); arf_clear(B2[k]); } for(int k = 0; k < dim - 1; k++) { arf_clear(row_max[k]); } arf_clear(Gii); arf_clear(Gij); arf_clear(Gji); arf_clear(Gjj); free(B1); free(B2); free(row_max); free(row_max_indices); if(unique_eigenvalues) return 0; else return 1; #undef B #undef D #undef P }
void arb_log_arf(arb_t z, const arf_t x, slong prec) { if (arf_is_special(x)) { if (arf_is_pos_inf(x)) arb_pos_inf(z); else arb_indeterminate(z); } else if (ARF_SGNBIT(x)) { arb_indeterminate(z); } else if (ARF_IS_POW2(x)) { if (fmpz_is_one(ARF_EXPREF(x))) { arb_zero(z); } else { fmpz_t exp; fmpz_init(exp); _fmpz_add_fast(exp, ARF_EXPREF(x), -1); arb_const_log2(z, prec + 2); arb_mul_fmpz(z, z, exp, prec); fmpz_clear(exp); } } else if (COEFF_IS_MPZ(*ARF_EXPREF(x))) { arb_log_arf_huge(z, x, prec); } else { slong exp, wp, wn, N, r, closeness_to_one; mp_srcptr xp; mp_size_t xn, tn; mp_ptr tmp, w, t, u; mp_limb_t p1, q1bits, p2, q2bits, error, error2, cy; int negative, inexact, used_taylor_series; TMP_INIT; exp = ARF_EXP(x); negative = 0; ARF_GET_MPN_READONLY(xp, xn, x); /* compute a c >= 0 such that |x-1| <= 2^(-c) if c > 0 */ closeness_to_one = 0; if (exp == 0) { slong i; closeness_to_one = FLINT_BITS - FLINT_BIT_COUNT(~xp[xn - 1]); if (closeness_to_one == FLINT_BITS) { for (i = xn - 2; i > 0 && xp[i] == LIMB_ONES; i--) closeness_to_one += FLINT_BITS; closeness_to_one += (FLINT_BITS - FLINT_BIT_COUNT(~xp[i])); } } else if (exp == 1) { closeness_to_one = FLINT_BITS - FLINT_BIT_COUNT(xp[xn - 1] & (~LIMB_TOP)); if (closeness_to_one == FLINT_BITS) { slong i; for (i = xn - 2; xp[i] == 0; i--) closeness_to_one += FLINT_BITS; closeness_to_one += (FLINT_BITS - FLINT_BIT_COUNT(xp[i])); } closeness_to_one--; } /* if |t-1| <= 0.5 */ /* |log(1+t) - t| <= t^2 */ /* |log(1+t) - (t-t^2/2)| <= t^3 */ if (closeness_to_one > prec + 1) { inexact = arf_sub_ui(arb_midref(z), x, 1, prec, ARB_RND); mag_set_ui_2exp_si(arb_radref(z), 1, -2 * closeness_to_one); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); return; } else if (2 * closeness_to_one > prec + 1) { arf_t t, u; arf_init(t); arf_init(u); arf_sub_ui(t, x, 1, ARF_PREC_EXACT, ARF_RND_DOWN); arf_mul(u, t, t, ARF_PREC_EXACT, ARF_RND_DOWN); arf_mul_2exp_si(u, u, -1); inexact = arf_sub(arb_midref(z), t, u, prec, ARB_RND); mag_set_ui_2exp_si(arb_radref(z), 1, -3 * closeness_to_one); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); arf_clear(t); arf_clear(u); return; } /* Absolute working precision (NOT rounded to a limb multiple) */ wp = prec + closeness_to_one + 5; /* Too high precision to use table */ if (wp > ARB_LOG_TAB2_PREC) { arf_log_via_mpfr(arb_midref(z), x, prec, ARB_RND); arf_mag_set_ulp(arb_radref(z), arb_midref(z), prec); return; } /* Working precision in limbs */ wn = (wp + FLINT_BITS - 1) / FLINT_BITS; TMP_START; tmp = TMP_ALLOC_LIMBS(4 * wn + 3); w = tmp; /* requires wn+1 limbs */ t = w + wn + 1; /* requires wn+1 limbs */ u = t + wn + 1; /* requires 2wn+1 limbs */ /* read x-1 */ if (xn <= wn) { flint_mpn_zero(w, wn - xn); mpn_lshift(w + wn - xn, xp, xn, 1); error = 0; } else { mpn_lshift(w, xp + xn - wn, wn, 1); error = 1; } /* First table-based argument reduction */ if (wp <= ARB_LOG_TAB1_PREC) q1bits = ARB_LOG_TAB11_BITS; else q1bits = ARB_LOG_TAB21_BITS; p1 = w[wn-1] >> (FLINT_BITS - q1bits); /* Special case: covers logarithms of small integers */ if (xn == 1 && (w[wn-1] == (p1 << (FLINT_BITS - q1bits)))) { p2 = 0; flint_mpn_zero(t, wn); used_taylor_series = 0; N = r = 0; /* silence compiler warning */ } else { /* log(1+w) = log(1+p/q) + log(1 + (qw-p)/(p+q)) */ w[wn] = mpn_mul_1(w, w, wn, UWORD(1) << q1bits) - p1; mpn_divrem_1(w, 0, w, wn + 1, p1 + (UWORD(1) << q1bits)); error += 1; /* Second table-based argument reduction (fused with log->atanh conversion) */ if (wp <= ARB_LOG_TAB1_PREC) q2bits = ARB_LOG_TAB11_BITS + ARB_LOG_TAB12_BITS; else q2bits = ARB_LOG_TAB21_BITS + ARB_LOG_TAB22_BITS; p2 = w[wn-1] >> (FLINT_BITS - q2bits); u[2 * wn] = mpn_lshift(u + wn, w, wn, q2bits); flint_mpn_zero(u, wn); flint_mpn_copyi(t, u + wn, wn + 1); t[wn] += p2 + (UWORD(1) << (q2bits + 1)); u[2 * wn] -= p2; mpn_tdiv_q(w, u, 2 * wn + 1, t, wn + 1); /* propagated error from 1 ulp error: 2 atanh'(1/3) = 2.25 */ error += 3; /* |w| <= 2^-r */ r = _arb_mpn_leading_zeros(w, wn); /* N >= (wp-r)/(2r) */ N = (wp - r + (2*r-1)) / (2*r); N = FLINT_MAX(N, 0); /* Evaluate Taylor series */ _arb_atan_taylor_rs(t, &error2, w, wn, N, 0); /* Multiply by 2 */ mpn_lshift(t, t, wn, 1); /* Taylor series evaluation error (multiply by 2) */ error += error2 * 2; used_taylor_series = 1; } /* Size of output number */ tn = wn; /* First table lookup */ if (p1 != 0) { if (wp <= ARB_LOG_TAB1_PREC) mpn_add_n(t, t, arb_log_tab11[p1] + ARB_LOG_TAB1_LIMBS - tn, tn); else mpn_add_n(t, t, arb_log_tab21[p1] + ARB_LOG_TAB2_LIMBS - tn, tn); error++; } /* Second table lookup */ if (p2 != 0) { if (wp <= ARB_LOG_TAB1_PREC) mpn_add_n(t, t, arb_log_tab12[p2] + ARB_LOG_TAB1_LIMBS - tn, tn); else mpn_add_n(t, t, arb_log_tab22[p2] + ARB_LOG_TAB2_LIMBS - tn, tn); error++; } /* add exp * log(2) */ exp--; if (exp > 0) { cy = mpn_addmul_1(t, arb_log_log2_tab + ARB_LOG_TAB2_LIMBS - tn, tn, exp); t[tn] = cy; tn += (cy != 0); error += exp; } else if (exp < 0) { t[tn] = 0; u[tn] = mpn_mul_1(u, arb_log_log2_tab + ARB_LOG_TAB2_LIMBS - tn, tn, -exp); if (mpn_cmp(t, u, tn + 1) >= 0) { mpn_sub_n(t, t, u, tn + 1); } else { mpn_sub_n(t, u, t, tn + 1); negative = 1; } error += (-exp); tn += (t[tn] != 0); } /* The accumulated arithmetic error */ mag_set_ui_2exp_si(arb_radref(z), error, -wn * FLINT_BITS); /* Truncation error from the Taylor series */ if (used_taylor_series) mag_add_ui_2exp_si(arb_radref(z), arb_radref(z), 1, -r*(2*N+1) + 1); /* Set the midpoint */ inexact = _arf_set_mpn_fixed(arb_midref(z), t, tn, wn, negative, prec); if (inexact) arf_mag_add_ulp(arb_radref(z), arb_radref(z), arb_midref(z), prec); TMP_END; } }
int acb_calc_integrate_taylor(acb_t res, acb_calc_func_t func, void * param, const acb_t a, const acb_t b, const arf_t inner_radius, const arf_t outer_radius, long accuracy_goal, long prec) { long num_steps, step, N, bp; int result; acb_t delta, m, x, y1, y2, sum; acb_ptr taylor_poly; arf_t err; acb_init(delta); acb_init(m); acb_init(x); acb_init(y1); acb_init(y2); acb_init(sum); arf_init(err); acb_sub(delta, b, a, prec); /* precision used for bounds calculations */ bp = MAG_BITS; /* compute the number of steps */ { arf_t t; arf_init(t); acb_get_abs_ubound_arf(t, delta, bp); arf_div(t, t, inner_radius, bp, ARF_RND_UP); arf_mul_2exp_si(t, t, -1); num_steps = (long) (arf_get_d(t, ARF_RND_UP) + 1.0); /* make sure it's not something absurd */ num_steps = FLINT_MIN(num_steps, 10 * prec); num_steps = FLINT_MAX(num_steps, 1); arf_clear(t); } result = ARB_CALC_SUCCESS; acb_zero(sum); for (step = 0; step < num_steps; step++) { /* midpoint of subinterval */ acb_mul_ui(m, delta, 2 * step + 1, prec); acb_div_ui(m, m, 2 * num_steps, prec); acb_add(m, m, a, prec); if (arb_calc_verbose) { printf("integration point %ld/%ld: ", 2 * step + 1, 2 * num_steps); acb_printd(m, 15); printf("\n"); } /* evaluate at +/- x */ /* TODO: exactify m, and include error in x? */ acb_div_ui(x, delta, 2 * num_steps, prec); /* compute bounds and number of terms to use */ { arb_t cbound, xbound, rbound; arf_t C, D, R, X, T; double DD, TT, NN; arb_init(cbound); arb_init(xbound); arb_init(rbound); arf_init(C); arf_init(D); arf_init(R); arf_init(X); arf_init(T); /* R is the outer radius */ arf_set(R, outer_radius); /* X = upper bound for |x| */ acb_get_abs_ubound_arf(X, x, bp); arb_set_arf(xbound, X); /* Compute C(m,R). Important subtlety: due to rounding when computing m, we will in general be farther than R away from the integration path. But since acb_calc_cauchy_bound actually integrates over the area traced by a complex interval, it will catch any extra singularities (giving an infinite bound). */ arb_set_arf(rbound, outer_radius); acb_calc_cauchy_bound(cbound, func, param, m, rbound, 8, bp); arf_set_mag(C, arb_radref(cbound)); arf_add(C, arb_midref(cbound), C, bp, ARF_RND_UP); /* Sanity check: we need C < inf and R > X */ if (arf_is_finite(C) && arf_cmp(R, X) > 0) { /* Compute upper bound for D = C * R * X / (R - X) */ arf_mul(D, C, R, bp, ARF_RND_UP); arf_mul(D, D, X, bp, ARF_RND_UP); arf_sub(T, R, X, bp, ARF_RND_DOWN); arf_div(D, D, T, bp, ARF_RND_UP); /* Compute upper bound for T = (X / R) */ arf_div(T, X, R, bp, ARF_RND_UP); /* Choose N */ /* TODO: use arf arithmetic to avoid overflow */ /* TODO: use relative accuracy (look at |f(m)|?) */ DD = arf_get_d(D, ARF_RND_UP); TT = arf_get_d(T, ARF_RND_UP); NN = -(accuracy_goal * 0.69314718055994530942 + log(DD)) / log(TT); N = NN + 0.5; N = FLINT_MIN(N, 100 * prec); N = FLINT_MAX(N, 1); /* Tail bound: D / (N + 1) * T^N */ { mag_t TT; mag_init(TT); arf_get_mag(TT, T); mag_pow_ui(TT, TT, N); arf_set_mag(T, TT); mag_clear(TT); } arf_mul(D, D, T, bp, ARF_RND_UP); arf_div_ui(err, D, N + 1, bp, ARF_RND_UP); } else { N = 1; arf_pos_inf(err); result = ARB_CALC_NO_CONVERGENCE; } if (arb_calc_verbose) { printf("N = %ld; bound: ", N); arf_printd(err, 15); printf("\n"); printf("R: "); arf_printd(R, 15); printf("\n"); printf("C: "); arf_printd(C, 15); printf("\n"); printf("X: "); arf_printd(X, 15); printf("\n"); } arb_clear(cbound); arb_clear(xbound); arb_clear(rbound); arf_clear(C); arf_clear(D); arf_clear(R); arf_clear(X); arf_clear(T); } /* evaluate Taylor polynomial */ taylor_poly = _acb_vec_init(N + 1); func(taylor_poly, m, param, N, prec); _acb_poly_integral(taylor_poly, taylor_poly, N + 1, prec); _acb_poly_evaluate(y2, taylor_poly, N + 1, x, prec); acb_neg(x, x); _acb_poly_evaluate(y1, taylor_poly, N + 1, x, prec); acb_neg(x, x); /* add truncation error */ arb_add_error_arf(acb_realref(y1), err); arb_add_error_arf(acb_imagref(y1), err); arb_add_error_arf(acb_realref(y2), err); arb_add_error_arf(acb_imagref(y2), err); acb_add(sum, sum, y2, prec); acb_sub(sum, sum, y1, prec); if (arb_calc_verbose) { printf("values: "); acb_printd(y1, 15); printf(" "); acb_printd(y2, 15); printf("\n"); } _acb_vec_clear(taylor_poly, N + 1); if (result == ARB_CALC_NO_CONVERGENCE) break; } acb_set(res, sum); acb_clear(delta); acb_clear(m); acb_clear(x); acb_clear(y1); acb_clear(y2); acb_clear(sum); arf_clear(err); return result; }