コード例 #1
0
ファイル: arb_extras.c プロジェクト: jwbober/ntlib
void arf_twobytwo_diag(arf_t u1, arf_t u2, const arf_t a, const arf_t b, const arf_t d, slong prec) {
    // Compute the orthogonal matrix that diagonalizes
    //
    //    A = [a b]
    //        [b d]
    //
    // This matrix will have the form
    //
    //    U = [cos x , -sin x]
    //        [sin x, cos x]
    //
    // where the diagonal matrix is U^t A U.
    // We set u1 = cos x, u2 = -sin x.

    if(arf_is_zero(b)) {
        arf_set_ui(u1, 1);
        arf_set_ui(u2, 0);
        return;
    }
    arf_t x; arf_init(x);

    arf_mul(u1, b, b, prec, ARF_RND_NEAR);            // u1 = b^2
    arf_sub(u2, a, d, prec, ARF_RND_NEAR);            // u2 = a - d
    arf_mul_2exp_si(u2, u2, -1);                      // u2 = (a - d)/2
    arf_mul(u2, u2, u2, prec, ARF_RND_NEAR);          // u2 = ( (a - d)/2 )^2
    arf_add(u1, u1, u2, prec, ARF_RND_NEAR);          // u1 = b^2 + ( (a-d)/2 )^2
    arf_sqrt(u1, u1, prec, ARF_RND_NEAR);             // u1 = sqrt(above)

    arf_mul_2exp_si(u1, u1, 1);                       // u1 = 2 (sqrt (above) )
    arf_add(u1, u1, d, prec, ARF_RND_NEAR);           // u1 += d
    arf_sub(u1, u1, a, prec, ARF_RND_NEAR);           // u1 -= a
    arf_mul_2exp_si(u1, u1, -1);                      // u1 = (d - a)/2 + sqrt(b^2 + ( (a-d)/2 )^2)

    arf_mul(x, u1, u1, prec, ARF_RND_NEAR);
    arf_addmul(x, b, b, prec, ARF_RND_NEAR);          // x = u1^2 + b^2
    arf_sqrt(x, x, prec, ARF_RND_NEAR);               // x = sqrt(u1^2 + b^2)
    arf_div(u2, u1, x, prec, ARF_RND_NEAR);
    arf_div(u1, b, x, prec, ARF_RND_NEAR);
    arf_neg(u1, u1);

    arf_clear(x);
}
コード例 #2
0
ファイル: sqrtpos.c プロジェクト: bluescarni/arb
void
arb_sqrtpos(arb_t z, const arb_t x, long prec)
{
    if (!arb_is_finite(x))
    {
        if (mag_is_zero(arb_radref(x)) && arf_is_pos_inf(arb_midref(x)))
            arb_pos_inf(z);
        else
            arb_zero_pm_inf(z);
    }
    else if (arb_contains_nonpositive(x))
    {
        arf_t t;

        arf_init(t);

        arf_set_mag(t, arb_radref(x));
        arf_add(t, arb_midref(x), t, MAG_BITS, ARF_RND_CEIL);

        if (arf_sgn(t) <= 0)
        {
            arb_zero(z);
        }
        else
        {
            arf_sqrt(t, t, MAG_BITS, ARF_RND_CEIL);
            arf_mul_2exp_si(t, t, -1);
            arf_set(arb_midref(z), t);
            arf_get_mag(arb_radref(z), t);
        }

        arf_clear(t);
    }
    else
    {
        arb_sqrt(z, x, prec);
    }

    arb_nonnegative_part(z, z, prec);
}
コード例 #3
0
ファイル: root.c プロジェクト: isuruf/arb
int
arf_root(arf_ptr z, arf_srcptr x, ulong k, slong prec, arf_rnd_t rnd)
{
    mp_size_t xn, zn, val;
    mp_srcptr xptr;
    mp_ptr tmp, zptr;
    mpfr_t xf, zf;
    fmpz_t q, r;
    int inexact;

    if (k == 0)
    {
        arf_nan(z);
        return 0;
    }

    if (k == 1)
        return arf_set_round(z, x, prec, rnd);

    if (k == 2)
        return arf_sqrt(z, x, prec, rnd);

    if (arf_is_special(x))
    {
        if (arf_is_neg_inf(x))
            arf_nan(z);
        else
            arf_set(z, x);
        return 0;
    }

    if (ARF_SGNBIT(x))
    {
        arf_nan(z);
        return 0;
    }

    fmpz_init(q);
    fmpz_init(r);

    /* x = m * 2^e where e = qk + r */
    /* x^(1/k) = (m * 2^(qk+r))^(1/k)  */
    /* x^(1/k) = (m * 2^r)^(1/k) * 2^q  */
    fmpz_set_ui(r, k);
    fmpz_fdiv_qr(q, r, ARF_EXPREF(x), r);

    ARF_GET_MPN_READONLY(xptr, xn, x);
    zn = (prec + FLINT_BITS - 1) / FLINT_BITS;

    zf->_mpfr_d = tmp = flint_malloc(zn * sizeof(mp_limb_t));
    zf->_mpfr_prec = prec;
    zf->_mpfr_sign = 1;
    zf->_mpfr_exp = 0;

    xf->_mpfr_d = (mp_ptr) xptr;
    xf->_mpfr_prec = xn * FLINT_BITS;
    xf->_mpfr_sign = 1;
    xf->_mpfr_exp = fmpz_get_ui(r);

    inexact = mpfr_root(zf, xf, k, arf_rnd_to_mpfr(rnd));
    inexact = (inexact != 0);

    val = 0;
    while (tmp[val] == 0)
        val++;

    ARF_GET_MPN_WRITE(zptr, zn - val, z);
    flint_mpn_copyi(zptr, tmp + val, zn - val);

    fmpz_add_si(ARF_EXPREF(z), q, zf->_mpfr_exp);

    flint_free(tmp);
    fmpz_clear(q);
    fmpz_clear(r);

    return inexact;
}