ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef State, const SymExpr *LHS, BinaryOperator::Opcode Op, const llvm::APSInt &Int) { assert(BinaryOperator::isComparisonOp(Op) && "Non-comparison ops should be rewritten as comparisons to zero."); // Get the type used for calculating wraparound. BasicValueFactory &BVF = getBasicVals(); APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType()); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. SymbolRef Sym = LHS; llvm::APSInt Adjustment = WraparoundType.getZeroValue(); computeAdjustment(Sym, Adjustment); // Convert the right-hand side integer as necessary. APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); llvm::APSInt ConvertedInt = ComparisonType.convert(Int); // Prefer unsigned comparisons. if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() && ComparisonType.isUnsigned() && !WraparoundType.isUnsigned()) Adjustment.setIsSigned(false); switch (Op) { default: llvm_unreachable("invalid operation not caught by assertion above"); case BO_EQ: return assumeSymEQ(State, Sym, ConvertedInt, Adjustment); case BO_NE: return assumeSymNE(State, Sym, ConvertedInt, Adjustment); case BO_GT: return assumeSymGT(State, Sym, ConvertedInt, Adjustment); case BO_GE: return assumeSymGE(State, Sym, ConvertedInt, Adjustment); case BO_LT: return assumeSymLT(State, Sym, ConvertedInt, Adjustment); case BO_LE: return assumeSymLE(State, Sym, ConvertedInt, Adjustment); } // end switch }
ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state, const SymExpr *LHS, BinaryOperator::Opcode op, const llvm::APSInt& Int) { assert(BinaryOperator::isComparisonOp(op) && "Non-comparison ops should be rewritten as comparisons to zero."); BasicValueFactory &BVF = getBasicVals(); ASTContext &Ctx = BVF.getContext(); // Get the type used for calculating wraparound. APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType(Ctx)); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. SymbolRef Sym = LHS; llvm::APSInt Adjustment = WraparoundType.getZeroValue(); computeAdjustment(Sym, Adjustment); // Convert the right-hand side integer as necessary. APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int)); llvm::APSInt ConvertedInt = ComparisonType.convert(Int); switch (op) { default: // No logic yet for other operators. assume the constraint is feasible. return state; case BO_EQ: return assumeSymEQ(state, Sym, ConvertedInt, Adjustment); case BO_NE: return assumeSymNE(state, Sym, ConvertedInt, Adjustment); case BO_GT: return assumeSymGT(state, Sym, ConvertedInt, Adjustment); case BO_GE: return assumeSymGE(state, Sym, ConvertedInt, Adjustment); case BO_LT: return assumeSymLT(state, Sym, ConvertedInt, Adjustment); case BO_LE: return assumeSymLE(state, Sym, ConvertedInt, Adjustment); } // end switch }
ProgramStateRef SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State, SymbolRef Sym, bool Assumption) { BasicValueFactory &BVF = getBasicVals(); QualType T = Sym->getType(); // None of the constraint solvers currently support non-integer types. if (!T->isIntegralOrEnumerationType()) return State; const llvm::APSInt &zero = BVF.getValue(0, T); if (Assumption) return assumeSymNE(State, Sym, zero, zero); else return assumeSymEQ(State, Sym, zero, zero); }
ProgramStateRef RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State, SymbolRef Sym, bool Assumption) { BasicValueFactory &BVF = getBasicVals(); QualType T = Sym->getType(); // Non-integer types are not supported. if (!T->isIntegralOrEnumerationType()) return State; // Reverse the operation and add directly to state. const llvm::APSInt &Zero = BVF.getValue(0, T); if (Assumption) return assumeSymNE(State, Sym, Zero, Zero); else return assumeSymEQ(State, Sym, Zero, Zero); }
const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state, Loc Cond, bool Assumption) { BasicValueFactory &BasicVals = state->getBasicVals(); switch (Cond.getSubKind()) { default: assert (false && "'Assume' not implemented for this Loc."); return state; case loc::MemRegionKind: { // FIXME: Should this go into the storemanager? const MemRegion *R = cast<loc::MemRegionVal>(Cond).getRegion(); const SubRegion *SubR = dyn_cast<SubRegion>(R); while (SubR) { // FIXME: now we only find the first symbolic region. if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) { const llvm::APSInt &zero = BasicVals.getZeroWithPtrWidth(); if (Assumption) return assumeSymNE(state, SymR->getSymbol(), zero, zero); else return assumeSymEQ(state, SymR->getSymbol(), zero, zero); } SubR = dyn_cast<SubRegion>(SubR->getSuperRegion()); } // FALL-THROUGH. } case loc::GotoLabelKind: return Assumption ? state : NULL; case loc::ConcreteIntKind: { bool b = cast<loc::ConcreteInt>(Cond).getValue() != 0; bool isFeasible = b ? Assumption : !Assumption; return isFeasible ? state : NULL; } } // end switch }
const ProgramState *SimpleConstraintManager::assumeSymRel(const ProgramState *state, const SymExpr *LHS, BinaryOperator::Opcode op, const llvm::APSInt& Int) { assert(BinaryOperator::isComparisonOp(op) && "Non-comparison ops should be rewritten as comparisons to zero."); // We only handle simple comparisons of the form "$sym == constant" // or "($sym+constant1) == constant2". // The adjustment is "constant1" in the above expression. It's used to // "slide" the solution range around for modular arithmetic. For example, // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to // the subclasses of SimpleConstraintManager to handle the adjustment. llvm::APSInt Adjustment; // First check if the LHS is a simple symbol reference. SymbolRef Sym = dyn_cast<SymbolData>(LHS); if (Sym) { Adjustment = 0; } else { // Next, see if it's a "($sym+constant1)" expression. const SymIntExpr *SE = dyn_cast<SymIntExpr>(LHS); // We don't handle "($sym1+$sym2)". // Give up and assume the constraint is feasible. if (!SE) return state; // We don't handle "(<expr>+constant1)". // Give up and assume the constraint is feasible. Sym = dyn_cast<SymbolData>(SE->getLHS()); if (!Sym) return state; // Get the constant out of the expression "($sym+constant1)". switch (SE->getOpcode()) { case BO_Add: Adjustment = SE->getRHS(); break; case BO_Sub: Adjustment = -SE->getRHS(); break; default: // We don't handle non-additive operators. // Give up and assume the constraint is feasible. return state; } } // FIXME: This next section is a hack. It silently converts the integers to // be of the same type as the symbol, which is not always correct. Really the // comparisons should be performed using the Int's type, then mapped back to // the symbol's range of values. ProgramStateManager &StateMgr = state->getStateManager(); ASTContext &Ctx = StateMgr.getContext(); QualType T = Sym->getType(Ctx); assert(T->isIntegerType() || Loc::isLocType(T)); unsigned bitwidth = Ctx.getTypeSize(T); bool isSymUnsigned = T->isUnsignedIntegerOrEnumerationType() || Loc::isLocType(T); // Convert the adjustment. Adjustment.setIsUnsigned(isSymUnsigned); Adjustment = Adjustment.extOrTrunc(bitwidth); // Convert the right-hand side integer. llvm::APSInt ConvertedInt(Int, isSymUnsigned); ConvertedInt = ConvertedInt.extOrTrunc(bitwidth); switch (op) { default: // No logic yet for other operators. assume the constraint is feasible. return state; case BO_EQ: return assumeSymEQ(state, Sym, ConvertedInt, Adjustment); case BO_NE: return assumeSymNE(state, Sym, ConvertedInt, Adjustment); case BO_GT: return assumeSymGT(state, Sym, ConvertedInt, Adjustment); case BO_GE: return assumeSymGE(state, Sym, ConvertedInt, Adjustment); case BO_LT: return assumeSymLT(state, Sym, ConvertedInt, Adjustment); case BO_LE: return assumeSymLE(state, Sym, ConvertedInt, Adjustment); } // end switch }
const ProgramState *SimpleConstraintManager::assumeAux(const ProgramState *state, NonLoc Cond, bool Assumption) { // We cannot reason about SymSymExprs, // and can only reason about some SymIntExprs. if (!canReasonAbout(Cond)) { // Just return the current state indicating that the path is feasible. // This may be an over-approximation of what is possible. return state; } BasicValueFactory &BasicVals = state->getBasicVals(); SymbolManager &SymMgr = state->getSymbolManager(); switch (Cond.getSubKind()) { default: assert(false && "'Assume' not implemented for this NonLoc"); case nonloc::SymbolValKind: { nonloc::SymbolVal& SV = cast<nonloc::SymbolVal>(Cond); SymbolRef sym = SV.getSymbol(); QualType T = SymMgr.getType(sym); const llvm::APSInt &zero = BasicVals.getValue(0, T); if (Assumption) return assumeSymNE(state, sym, zero, zero); else return assumeSymEQ(state, sym, zero, zero); } case nonloc::SymExprValKind: { nonloc::SymExprVal V = cast<nonloc::SymExprVal>(Cond); // For now, we only handle expressions whose RHS is an integer. // All other expressions are assumed to be feasible. const SymIntExpr *SE = dyn_cast<SymIntExpr>(V.getSymbolicExpression()); if (!SE) return state; BinaryOperator::Opcode op = SE->getOpcode(); // Implicitly compare non-comparison expressions to 0. if (!BinaryOperator::isComparisonOp(op)) { QualType T = SymMgr.getType(SE); const llvm::APSInt &zero = BasicVals.getValue(0, T); op = (Assumption ? BO_NE : BO_EQ); return assumeSymRel(state, SE, op, zero); } // From here on out, op is the real comparison we'll be testing. if (!Assumption) op = NegateComparison(op); return assumeSymRel(state, SE->getLHS(), op, SE->getRHS()); } case nonloc::ConcreteIntKind: { bool b = cast<nonloc::ConcreteInt>(Cond).getValue() != 0; bool isFeasible = b ? Assumption : !Assumption; return isFeasible ? state : NULL; } case nonloc::LocAsIntegerKind: return assumeAux(state, cast<nonloc::LocAsInteger>(Cond).getLoc(), Assumption); } // end switch }