コード例 #1
0
ファイル: smf_get_mask.c プロジェクト: bbrond/starlink
unsigned char *smf_get_mask( ThrWorkForce *wf, smf_modeltype mtype,
                             AstKeyMap *config, smfDIMMData *dat, int flags,
                             int *status ) {

/* Local Variables: */
   AstCircle *circle;         /* AST Region used to mask a circular area */
   AstKeyMap *akm;            /* KeyMap holding AST config values */
   AstKeyMap *subkm;          /* KeyMap holding model config values */
   char refparam[ DAT__SZNAM ];/* Name for reference NDF parameter */
   char words[100];           /* Buffer for variable message words */
   const char *cval;          /* The ZERO_MASK string value */
   const char *modname;       /* The name of the model  being masked */
   const char *skyrefis;      /* Pointer to SkyRefIs attribute value */
   dim_t i;                   /* Pixel index */
   double *pd;                /* Pointer to next element of map data */
   double *predef;            /* Pointer to mask defined by previous run */
   double *ptr;               /* Pointer to NDF  Data array */
   double *pv;                /* Pointer to next element of map variance */
   double centre[ 2 ];        /* Coords of circle centre in radians */
   double meanhits;           /* Mean hits in the map */
   double radius[ 1 ];        /* Radius of circle in radians */
   double zero_circle[ 3 ];   /* LON/LAT/Radius of circular mask */
   double zero_lowhits;       /* Fraction of mean hits at which to threshold */
   double zero_snr;           /* Higher SNR at which to threshold */
   double zero_snrlo;         /* Lower SNR at which to threshold */
   int *ph;                   /* Pointer to next hits value */
   int have_mask;             /* Did a mask already exist on entry? */
   int imask;                 /* Index of next mask type */
   int indf1;                 /* Id. for supplied reference NDF */
   int indf2;                 /* Id. for used section of reference NDF */
   int isstatic;              /* Are all used masks static? */
   int lbnd_grid[ 2 ];        /* Lower bounds of map in GRID coords */
   int mask_types[ NTYPE ];   /* Identifier for the types of mask to use */
   int munion;                /* Use union of supplied masks */
   int nel;                   /* Number of mapped NDF pixels */
   int nmask;                 /* The number of masks to be combined */
   int nsource;               /* No. of source pixels in final mask */
   int skip;                  /* No. of iters for which AST is not subtracted */
   int thresh;                /* Absolute threshold on hits */
   int ubnd_grid[ 2 ];        /* Upper bounds of map in GRID coords */
   int zero_c_n;              /* Number of zero circle parameters read */
   int zero_mask;             /* Use the reference NDF as a mask? */
   int zero_niter;            /* Only mask for the first "niter" iterations. */
   int zero_notlast;          /* Don't zero on last iteration? */
   size_t ngood;              /* Number good samples for stats */
   smf_qual_t *pq;            /* Pinter to map quality */
   unsigned char **mask;      /* Address of model's mask pointer */
   unsigned char *newmask;    /* Individual mask work space */
   unsigned char *pm;         /* Pointer to next returned mask pixel */
   unsigned char *pn;         /* Pointer to next new mask pixel */
   unsigned char *result;     /* Returned mask pointer */

/* Initialise returned values */
   result = NULL;

/* Check inherited status. Also check that a map is being created.  */
   if( *status != SAI__OK || !dat || !dat->map ) return result;

/* Begin an AST context. */
   astBegin;

/* Get the sub-keymap containing the configuration parameters for the
   requested model. Also get a pointer to the mask array to use (there is
   one for each maskable model)*/
   if( mtype == SMF__COM ) {
      modname = "COM";
      mask = &(dat->com_mask);
   } else if( mtype == SMF__AST ) {
      modname = "AST";
      mask = &(dat->ast_mask);
   } else if( mtype == SMF__FLT ) {
      modname = "FLT";
      mask = &(dat->flt_mask);
   } else {
      modname = NULL;
      mask = NULL;
      *status = SAI__ERROR;
      errRepf( " ", "smf_get_mask: Unsupported model type %d supplied - "
               "must be COM, FLT or AST.", status, mtype );
   }
   subkm = NULL;
   astMapGet0A( config, modname, &subkm );

/* Get the "ast.skip" value - when considering "zero_niter" and
   "zero_freeze", we only count iterations for which the AST model
   is subtracted (i.e. the ones following the initial "ast.skip"
   iterations). */
   astMapGet0A( config, "AST", &akm );
   astMapGet0I( akm, "SKIP", &skip );
   akm = astAnnul( akm );

/* Get the number of iterations over which the mask is to be applied. Zero
   means all. Return with no mask if this number of iterations has
   already been performed. */
   zero_niter = 0;
   astMapGet0I( subkm, "ZERO_NITER", &zero_niter );
   if( zero_niter == 0 || dat->iter < zero_niter + skip ) {

/* Only return a mask if this is not the last iteration, or if ZERO_NOTLAST
   is unset. */
      zero_notlast = 0;
      astMapGet0I( subkm, "ZERO_NOTLAST", &zero_notlast );
      if( !( flags & SMF__DIMM_LASTITER ) || !zero_notlast ) {

/* Create a list of the mask types to be combined to get the final mask by
   looking for non-default values for the corresponding configuration
   parameters in the supplied KeyMap. Static masks (predefined, circles
   or external NDFs) may be used on any iteration, but dynamic masks
   (lowhits, snr) will only be avialable once the map has been determined
   at the end of the first iteration. This means that when masking anything
   but the AST model (which is determined after the map), the dynamic masks
   cannot be used on the first iteration. Make a note if all masks being
   used are static. */

         isstatic = 1;
         nmask = 0;

         zero_lowhits = 0.0;
         astMapGet0D( subkm, "ZERO_LOWHITS", &zero_lowhits );
         if( zero_lowhits > 0.0 ) {
            if( mtype == SMF__AST || !( flags & SMF__DIMM_FIRSTITER ) ) {
               mask_types[ nmask++] = LOWHITS;
               isstatic = 0;
            }
         } else if( zero_lowhits <  0.0 && *status == SAI__OK ) {
            *status = SAI__ERROR;
            errRepf( " ", "Bad value for config parameter %s.ZERO_LOWHITS (%g) - "
                     "it must not be negative.", status, modname, zero_lowhits );
         }

         if( astMapGet1D( subkm, "ZERO_CIRCLE", 3, &zero_c_n, zero_circle ) ) {
            if( zero_c_n == 1 || zero_c_n == 3 ) {
               mask_types[ nmask++] = CIRCLE;
            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               errRepf( " ", "Bad number of values (%d) for config parameter "
                        "%s.ZERO_CIRCLE - must be 1 or 3.", status, zero_c_n,
                        modname );
            }
         }

         cval = NULL;
         astMapGet0C( subkm, "ZERO_MASK", &cval );
         if( cval ) {
            if( !astChrMatch( cval, "REF" ) &&
                !astChrMatch( cval, "MASK2" ) &&
                !astChrMatch( cval, "MASK3" ) ) {
               astMapGet0I( subkm, "ZERO_MASK", &zero_mask );
               cval = ( zero_mask > 0 ) ? "REF" : NULL;
            }
            if( cval ) {
               strcpy( refparam, cval );
               astChrCase( NULL, refparam, 1, 0 );
               mask_types[ nmask++] = REFNDF;
            }
         }

         zero_snr = 0.0;
         astMapGet0D( subkm, "ZERO_SNR", &zero_snr );
         if( zero_snr > 0.0 ) {
            if( mtype == SMF__AST || !( flags & SMF__DIMM_FIRSTITER ) ) {
               mask_types[ nmask++] = SNR;
               isstatic = 0;
            }
         } else if( zero_snr <  0.0 && *status == SAI__OK ) {
            *status = SAI__ERROR;
            errRepf( " ", "Bad value for config parameter %s.ZERO_SNR (%g) - "
                     "it must not be negative.", status, modname, zero_snr );
         }

         if( astMapHasKey( subkm, "ZERO_MASK_POINTER" ) ) {
            astMapGet0P( subkm, "ZERO_MASK_POINTER", (void **) &predef );
            if( predef ) mask_types[ nmask++] = PREDEFINED;
         }

/* No need to create a mask if no masking was requested or possible. */
         if( nmask > 0 ) {

/* Decide if we are using the union or intersection of the masks. */
            astMapGet0I( subkm, "ZERO_UNION", &munion );

/* Note if a mask existed on entry. If not, create a mask now, and
   initialise it to hold the mask defined by the initial sky map. */
            if( *mask == NULL ) {
               have_mask = 0;
               if( dat->initqual ) {
                  *mask = astMalloc( dat->msize*sizeof( **mask ) );
                  if( *mask ) {
                     pm = *mask;
                     pq = dat->initqual;
                     for( i = 0; i < dat->msize; i++ ) {
                        *(pm++) = ( *(pq++) != 0 );
                     }
                  }
               } else{
                  *mask = astCalloc( dat->msize, sizeof( **mask ) );
               }
            } else {
               have_mask = 1;
            }

/* If we are combining more than one mask, we need work space to hold
   an individual mask independently of the total mask. If we are using
   only one mask, then just use the main mask array. */
            if( nmask > 1 ) {
               newmask = astMalloc( dat->msize*sizeof( *newmask ) );
            } else {
               newmask = *mask;
            }

/* Get the number of iterations after which the mask is to be frozen.
   Zero means "never freeze the mask". */
            int zero_freeze = 0;
            astMapGet0I( subkm, "ZERO_FREEZE", &zero_freeze );

/* Loop round each type of mask to be used. */
            for( imask = 0; imask < nmask && *status == SAI__OK; imask++ ){

/* If the mask is now frozen, we just return the existing mask. So leave the
   loop. */
               if( zero_freeze != 0 && dat->iter > zero_freeze + skip ) {
                  break;

/* Low hits masking... */
               } else if( mask_types[ imask ] == LOWHITS ) {

/* Set hits pixels with 0 hits to VAL__BADI so that stats1 ignores them */
                  ph = dat->hitsmap;
                  for( i = 0; i < dat->msize; i++,ph++ ) {
                     if( *ph == 0 ) *ph = VAL__BADI;
                  }

/* Find the mean hits in the map */
                  smf_stats1I( dat->hitsmap, 1, dat->msize, NULL, 0, 0, &meanhits,
                               NULL, NULL, &ngood, status );
                  msgOutiff( MSG__DEBUG, " ", "smf_get_mask: mean hits = %lf, ngood "
                             "= %zd", status, meanhits, ngood );

/* Create the mask */
                  thresh = meanhits*zero_lowhits;
                  ph = dat->hitsmap;
                  pn = newmask;
                  for( i = 0; i < dat->msize; i++,ph++ ) {
                     *(pn++) = ( *ph != VAL__BADI && *ph < thresh ) ? 1 : 0;
                  }

/* Report masking info. */
                  msgOutiff( MSG__DEBUG, " ", "smf_get_mask: masking %s "
                             "model at hits = %d.", status, modname, thresh );

/* Circle masking... */
               } else if( mask_types[ imask ] == CIRCLE ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the circle
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* If only one parameter supplied it is radius, assume reference
   LON/LAT from the frameset to get the centre. If the SkyFrame
   represents offsets from the reference position (i.e. the source is
   moving), assume the circle is to be centred on the origin.  */
                     if( zero_c_n == 1 ) {
                        zero_circle[ 2 ] = zero_circle[ 0 ];

                        skyrefis = astGetC( dat->outfset, "SkyRefIs" );
                        if( skyrefis && !strcmp( skyrefis, "Origin" ) ) {
                           zero_circle[ 0 ] = 0.0;
                           zero_circle[ 1 ] = 0.0;
                        } else {
                           zero_circle[ 0 ] = astGetD( dat->outfset, "SkyRef(1)" );
                           zero_circle[ 1 ] = astGetD( dat->outfset, "SkyRef(2)" );
                        }

                        zero_circle[ 0 ] *= AST__DR2D;
                        zero_circle[ 1 ] *= AST__DR2D;
                     }

/* The supplied bounds are for pixel coordinates... we need bounds for grid
    coordinates which have an offset */
                     lbnd_grid[ 0 ] = 1;
                     lbnd_grid[ 1 ] = 1;
                     ubnd_grid[ 0 ] = dat->ubnd_out[ 0 ] - dat->lbnd_out[ 0 ] + 1;
                     ubnd_grid[ 1 ] = dat->ubnd_out[ 1 ] - dat->lbnd_out[ 1 ] + 1;

/* Coordinates & radius of the circular region converted from degrees
   to radians */
                     centre[ 0 ] = zero_circle[ 0 ]*AST__DD2R;
                     centre[ 1 ] = zero_circle[ 1 ]*AST__DD2R;
                     radius[ 0 ] = zero_circle[ 2 ]*AST__DD2R;

/* Create the Circle, defined in the current Frame of the FrameSet (i.e.
   the sky frame). */
                     circle = astCircle( astGetFrame( dat->outfset, AST__CURRENT), 1,
                                         centre, radius, NULL, " " );

/* Fill the mask with zeros. */
                     memset( newmask, 0, sizeof( *newmask )*dat->msize );

/* Get the mapping from the sky frame (current) to the grid frame (base),
   and then set the mask to 1 for all of the values outside this circle */
                     astMaskUB( circle, astGetMapping( dat->outfset, AST__CURRENT,
                                                       AST__BASE ),
                                0, 2, lbnd_grid, ubnd_grid, newmask, 1 );

/* Report masking info. */
                     if( zero_niter == 0 ) {
                        sprintf( words, "on each iteration" );
                     } else {
                        sprintf( words, "for %d iterations", zero_niter );
                     }

                     msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model will"
                                " be masked %s using a circle of "
                                "radius %g arc-secs, centred at %s=%s, %s=%s.",
                                status, modname, words, radius[0]*AST__DR2D*3600,
                                astGetC( dat->outfset, "Symbol(1)" ),
                                astFormat( dat->outfset, 1, centre[ 0 ] ),
                                astGetC( dat->outfset, "Symbol(2)" ),
                                astFormat( dat->outfset, 2, centre[ 1 ] ) );
                  }

/* Reference NDF masking... */
               } else if( mask_types[ imask ] == REFNDF ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the NDF
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* Begin an NDF context. */
                     ndfBegin();

/* Get an identifier for the NDF using the associated ADAM parameter. */
                     ndfAssoc( refparam, "READ", &indf1, status );

/* Get a section from this NDF that matches the bounds of the map. */
                     ndfSect( indf1, 2, dat->lbnd_out, dat->ubnd_out, &indf2,
                              status );

/* Map the section. */
                     ndfMap( indf2, "DATA", "_DOUBLE", "READ", (void **) &ptr,
                             &nel, status );

/* Check we can use the pointer safely. */
                     if( *status == SAI__OK ) {

/* Find bad pixels in the NDF and set those pixels to 1 in the mask. */
                        pn = newmask;
                        for( i = 0; i < dat->msize; i++ ) {
                           *(pn++) = ( *(ptr++) == VAL__BADD ) ? 1 : 0;
                        }

/* Report masking info. */
                        ndfMsg( "N", indf2 );
                        msgSetc( "M", modname );
                        if( zero_niter == 0 ) {
                           msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The ^M "
                                      "model will be masked on each iteration "
                                      "using the bad pixels in NDF '^N'.",
                                      status );
                        } else {
                           msgSeti( "I", zero_niter );
                           msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The ^M "
                                      "model will be masked for ^I iterations "
                                      "using the bad pixels in NDF '^N'.",
                                      status );
                        }
                     }

/* End the NDF context. */
                     ndfEnd( status );
                  }

/* SNR masking... */
               } else if( mask_types[ imask ] == SNR ) {

/* Get the lower SNR limit. */
                  zero_snrlo = 0.0;
                  astMapGet0D( subkm, "ZERO_SNRLO", &zero_snrlo );
                  if( zero_snrlo <= 0.0 ) {
                     zero_snrlo = zero_snr;
                  } else if( zero_snrlo > zero_snr && *status == SAI__OK ) {
                     *status = SAI__ERROR;
                     errRepf( " ", "Bad value for config parameter "
                              "%s.ZERO_SNRLO (%g) - it must not be higher "
                              "than %s.ZERO_SNR (%g).", status, modname,
                              zero_snrlo, modname, zero_snr );
                  }

/* If the higher and lower SNR limits are equal, just do a simple
   threshold on the SNR values to get the mask. */
                  if( zero_snr == zero_snrlo ) {
                     pd = dat->map;
                     pv = dat->mapvar;
                     pn = newmask;
                     for( i = 0; i < dat->msize; i++,pd++,pv++ ) {
                        *(pn++) = ( *pd != VAL__BADD && *pv != VAL__BADD &&
                                    *pv >= 0.0 && *pd < zero_snr*sqrt( *pv ) ) ? 1 : 0;
                     }

/* Report masking info. */
                     if( !have_mask ) {
                        if( zero_niter == 0 ) {
                           sprintf( words, "on each iteration" );
                        } else {
                           sprintf( words, "for %d iterations", zero_niter );
                        }
                        msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                   "will be masked %s using an SNR limit of %g.",
                                   status, modname, words, zero_snr );
                     }

/* If the higher and lower SNR limits are different, create an initial
   mask by thresholding at the ZERO_SNR value, and then extend the source
   areas within the mask down to an SNR limit of ZERO_SNRLO. */
                  } else {
                     smf_snrmask( wf, dat->map, dat->mapvar, dat->mdims,
                                  zero_snr, zero_snrlo, newmask, status );

/* Report masking info. */
                     if( !have_mask ) {
                        if( zero_niter == 0 ) {
                           sprintf( words, "on each iteration" );
                        } else {
                           sprintf( words, "for %d iterations", zero_niter );
                        }
                        msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                   "will be masked %s using an SNR limit of %g "
                                   "extended down to %g.", status, modname,
                                   words, zero_snr, zero_snrlo );
                     }
                  }

/* Predefined masking... */
               } else if( mask_types[ imask ] == PREDEFINED ) {

/* If we had a mask on entry, then there is no need to create a new one
   since it will not have changed. But we need to recalculate the
   mask if are combining it with any non-static masks. */
                  if( ! have_mask || ! isstatic ) {

/* Find bad pixels in the predefined array and set those pixels to 1 in
   the mask. */
                     pn = newmask;
                     for( i = 0; i < dat->msize; i++ ) {
                        *(pn++) = ( *(predef++) == VAL__BADD ) ? 1 : 0;
                     }

/* Report masking info. */
                     if( zero_niter == 0 ) {
                        sprintf( words, "on each iteration" );
                     } else {
                        sprintf( words, "for %d iterations", zero_niter );
                     }
                     msgOutiff( MSG__DEBUG, " ", "smf_get_mask: The %s model "
                                "will be masked %s using a smoothed form of "
                                "the final mask created with the previous map.",
                                status, modname, words );
                  }
               }

/* If required, add the new mask into the returned mask. If this is the
   first mask, we just copy the new mask to form the returned mask.
   Otherwise, we combine it with the existing returned mask. */
               if( ! have_mask || ! isstatic ) {
                  if( nmask > 1 ) {
                     if( imask == 0 ) {
                        memcpy( *mask, newmask, dat->msize*sizeof(*newmask));
                     } else {
                        pm = *mask;
                        pn = newmask;
                        if( munion ) {
                           for( i = 0; i < dat->msize; i++,pm++ ) {
                              if( *(pn++) == 0 ) *pm = 0;
                           }
                        } else {
                           for( i = 0; i < dat->msize; i++,pm++ ) {
                              if( *(pn++) == 1 ) *pm = 1;
                           }
                        }
                     }
                  }
               }
            }

/* Free the individual mask work array if it was used. */
            if( nmask > 1 ) newmask = astFree( newmask );

/* Check that the mask has some source pixels (i.e. pixels that have non-bad data values -
   we do not also check variance values since they are not available until the second
   iteration). */
            if( *status == SAI__OK ) {
               nsource = 0;
               pm = *mask;
               pd = dat->map;
               for( i = 0; i < dat->msize; i++,pd++,pv++,pm++ ) {
                  if( *pd != VAL__BADD && *pm == 0 ) nsource++;
               }
               if( nsource < 5 && *status == SAI__OK ) {
                  *status = SAI__ERROR;
                  errRepf( "", "The %s mask being used has fewer than 5 "
                           "source pixels.", status, modname );
                  if( zero_snr > 0.0 ) {
                     errRepf( "", "Maybe your zero_snr value (%g) is too high?",
                              status, zero_snr );
                  }
               }
            }

/* Return the mask pointer if all has gone well. */
            if( *status == SAI__OK ) result = *mask;
         }
      }
   }

/* End the AST context, annulling all AST Objects created in the context. */
   astEnd;

/* Return the pointer to the boolean mask. */
   return result;
}
コード例 #2
0
ファイル: smf_calc_mode.c プロジェクト: astrobuff/starlink
void smf_calc_mode ( smfHead * hdr, int * status ) {

  char sam_mode[SZFITSTR];   /* Value of SAM_MODE header */
  char obs_type[SZFITSTR];   /* value of OBS_TYPE header */
  char sw_mode[SZFITSTR];    /* value of SW_MODE header */
  char seq_type[SZFITSTR];   /* value of SEQ_TYPE header */
  char inbeamstr[SZFITSTR];  /* value of INBEAM header */

  smf_obstype type = SMF__TYP_NULL;   /* temporary type */
  smf_obstype stype = SMF__TYP_NULL;   /* temporary seq type */
  smf_obsmode mode = SMF__OBS_NULL;   /* temporary mode */
  smf_swmode  swmode = SMF__SWM_NULL; /* Switching mode */
  smf_inbeam_t inbeam = SMF__INBEAM_NOTHING; /* what is in beam? */

  if (*status != SAI__OK) return;

  if (hdr == NULL) {
    *status = SAI__ERROR;
    errRep( " ", "Null pointer supplied to " FUNC_NAME, status );
    return;
  }

  /* Proceed if we're using a valid instrument */
  if( hdr->instrument != INST__NONE ) {

    /* Read the relevant headers */
    smf_fits_getS( hdr, "SAM_MODE", sam_mode, sizeof(sam_mode), status );
    smf_fits_getS( hdr, "SW_MODE", sw_mode, sizeof(sw_mode), status );
    smf_fits_getS( hdr, "OBS_TYPE", obs_type, sizeof(obs_type), status );

    /* INBEAM can be undef */
    inbeamstr[0] = '\0';
    smf_getfitss( hdr, "INBEAM", inbeamstr, sizeof(inbeamstr), status );

    /* SEQ_TYPE is "new" */
    if ( *status == SAI__OK ) {
      smf_fits_getS( hdr, "SEQ_TYPE", seq_type, sizeof(seq_type), status );
      if (*status == SMF__NOKWRD ) {
        errAnnul( status );
        one_strlcpy( seq_type, obs_type, sizeof(seq_type), status );
      }
    }

    /* start with sample type */
    if (strcasecmp( sam_mode, "SCAN" ) == 0 ||
        strcasecmp( sam_mode, "RASTER") == 0 ) {
      mode = SMF__OBS_SCAN;
    } else if (strcasecmp( sam_mode, "STARE" ) == 0) {
      mode = SMF__OBS_STARE;
    } else if (strcasecmp( sam_mode, "DREAM" ) == 0) {
      mode = SMF__OBS_DREAM;
    } else if (strcasecmp( sam_mode, "JIGGLE" ) == 0) {
      mode = SMF__OBS_JIGGLE;
    } else if (strcasecmp( sam_mode, "GRID" ) == 0) {
      mode = SMF__OBS_GRID;
    } else {
      if (*status != SAI__OK) {
        *status = SAI__ERROR;
        msgSetc( "MOD", sam_mode );
        errRep( " ", "Unrecognized observing mode '^MOD'", status );
      }
    }

    /* switching mode: options are "none", "pssw", "chop", "freqsw", "self" */
    if (strcasecmp( sw_mode, "NONE" ) == 0 ) {
      swmode = SMF__SWM_NULL;
    } else if (strcasecmp( sw_mode, "PSSW" ) == 0) {
      swmode = SMF__SWM_PSSW;
    } else if (strcasecmp( sw_mode, "CHOP" ) == 0) {
      swmode = SMF__SWM_CHOP;
    } else if (strcasecmp( sw_mode, "SELF" ) == 0) {
      swmode = SMF__SWM_SELF;
    } else if (strcasecmp( sw_mode, "FREQSW" ) == 0) {
      swmode = SMF__SWM_FREQSW;
    } else {
      if (*status != SAI__OK) {
        *status = SAI__ERROR;
        msgSetc( "MOD", sw_mode );
        errRep( " ", "Unrecognized switching mode '^MOD'", status );
      }
    }

    /* obs type */
    type = smf__parse_obstype( obs_type, status );
    stype = smf__parse_obstype( seq_type, status );

    /* in beam (convert to upper case to make it case insensitive) */
    astChrCase( NULL, inbeamstr, 1, 0 );
    if ( smf_pattern_extract( inbeamstr, "(POL)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_POL;
    }
    if ( smf_pattern_extract( inbeamstr, "(FTS)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_FTS;
    }
    if ( smf_pattern_extract( inbeamstr, "(BODY)", NULL, NULL, 0, status ) ) {
      inbeam |= SMF__INBEAM_BLACKBODY;
      /* We could consider ensuring FTS is not set in this case */
    }
  }

  hdr->obstype = type;
  hdr->seqtype = stype;
  hdr->obsmode = mode;
  hdr->swmode = swmode;
  hdr->inbeam = inbeam;

}
コード例 #3
0
ファイル: smf_calc_mapcoord.c プロジェクト: bbrond/starlink
static double *smf1_calc_mapcoord1( smfData *data, dim_t nbolo,
                                    dim_t ntslice, AstSkyFrame *oskyfrm,
                                    int *indf, int axis, int *status ){
/*
*  Name:
*     smf1_calc_mapcoord1

*  Purpose:
*     Create and map an NDF to receive the longitude or latitude values
*     at every sample.

*  Language:
*     Starlink ANSI C

*  Type of Module:
*     C function

*  Invocation:
*     double *smf1_calc_mapcoord1( smfData *data, dim_t nbolo,
*                                  dim_t ntslice, AstFrame *oskyfrm,
*                                  int *indf, int axis, int *status )

*  Arguments:
*     data = smfData* (Given)
*        Pointer to smfData struct
*     nbolo = dim_t (Given)
*        The number of bolometers.
*     ntslice = dim_t (Given)
*        The number of time slices.
*     oskyfrm = AstFrame * (Given)
*        Pointer to the SkyFrame describing the output spatial cords.
*     indf = int * (Returned)
*        Address ayt which to return the identifier for the new NDF.
*     axis = int (Given)
*        Axis of the SkyFrame to use (1 or 2).
*     status = int* (Given and Returned)
*        Pointer to global status.

*  Returned Value:
*     Pointer to the mapped DATA array.

*  Description:
*     This function creates a new NDF with a named formed by appending
*     the axis symbol from oskyframe to the end of the file name associated
*     with the supplied smfData. The firts pixel axis spans bolometer
*     index and the second spans time slice index. The NDF character
*     components are set to describe the requested ais values.

*/

/* Local Variables: */
   char name[SMF_PATH_MAX+1];
   char sym[ 100 ];
   const char *label = NULL;
   const char *ttl = NULL;
   double *result = NULL;
   int el;
   int place;
   int pos_lbnd[2];
   int pos_ubnd[2];

/* Check inherited status */
   if( *status != SAI__OK ) return result;

/* Check the input file path is known. */
   if( data->file ) {

/* Remove any DIMM suffix, and any leading directory from the file path. */
      smf_stripsuffix( data->file->name, SMF__DIMM_SUFFIX, name, status );

/* Get the Frame title, and axis label. */
      ttl = astGetC( oskyfrm, "Title" );
      label = astGetC( oskyfrm, ( axis == 1 ) ? "Label(1)" : "Label(2)" );

/* Get a lower case copy of the axis symbol. */
      astChrCase( astGetC( oskyfrm,
                           ( axis == 1 ) ? "Symbol(1)" : "Symbol(2)" ), sym,
                           0, sizeof(sym) );

/* Append the lower case axis symbol to the file base name. */
       one_strlcat( name, "_", SMF_PATH_MAX + 1, status );
       one_strlcat( name, sym, SMF_PATH_MAX + 1, status );

/* Store the pixel bounds for the NDF. */
       pos_lbnd[ 0 ] = pos_lbnd[ 1 ] = 0;
       pos_ubnd[ 0 ] = nbolo - 1;
       pos_ubnd[ 1 ] = ntslice - 1;

/* Create the NDF and map its Data array. */
       ndfPlace( NULL, name, &place, status );
       ndfNew( "_DOUBLE", 2, pos_lbnd, pos_ubnd, &place, indf, status );
       ndfMap( *indf, "DATA", "_DOUBLE", "WRITE", (void **) &result, &el,
               status );

/* Set the NDF character components. */
       ndfCput( ttl, *indf, "TITLE", status );
       ndfCput( label, *indf, "LABEL", status );
       ndfCput( "deg", *indf, "UNITS", status );
       ndfAcput( "Bolometer index", *indf, "LABEL", 1, status );
       ndfAcput( "Time slice index", *indf, "LABEL", 2, status );
    }

/* Return the pointer to the mapped data array. */
   return result;
}
コード例 #4
0
void smf_clean_smfArray( ThrWorkForce *wf, smfArray *array,
                         smfArray **noisemaps, smfArray **com, smfArray **gai,
                         AstKeyMap *keymap, int *status ) {

  /* Local Variables */
  double badfrac;           /* Fraction of bad samples to flag bad bolo */
  smfData *data=NULL;       /* Pointer to individual smfData */
  int compreprocess;        /* COMmon-mode cleaning as pre-processing step */
  dim_t dcfitbox;           /* width of box for measuring DC steps */
  int dclimcorr;            /* Min number of correlated steps */
  int dcmaxsteps;           /* number of DC steps/min. to flag bolo bad */
  dim_t dcsmooth;           /* median filter width before finding DC steps */
  double dcthresh;          /* n-sigma threshold for primary DC steps */
  int dofft;                /* are we doing a freq.-domain filter? */
  int dkclean;              /* Flag for dark squid cleaning */
  smfFilter *filt=NULL;     /* Frequency domain filter */
  double flagfast;          /* Threshold for flagging slow slews */
  double flagslow;          /* Threshold for flagging slow slews */
  dim_t idx;                /* Index within subgroup */
  size_t nflag;             /* Number of elements flagged */
  double noisecliphigh = 0; /* Sigma clip high-noise outlier bolos */
  double noisecliplow = 0;  /* Sigma clip low-noise outlier bolos */
  int noiseclipprecom = 0;  /* Noise clipping before common-mode cleaning? */
  const char *opteff=NULL;  /* Pointer to optical efficiency NDF file name*/
  int opteffdiv;            /* Divide data by the optical efficiencies? */
  int order;                /* Order of polynomial for baseline fitting */
  char param[ 20 ];         /* Buffer for config parameter name */
  dim_t pcalen;             /* Chunk length for PCA cleaning */
  double pcathresh;         /* n-sigma threshold for PCA cleaning */
  double spikethresh;       /* Threshold for finding spikes */
  dim_t spikebox=0;         /* Box size for spike finder */
  struct timeval tv1, tv2;  /* Timers */
  int whiten;               /* Apply whitening filter? */
  int zeropad;              /* Pad with zeros? */

  /* Main routine */
  if (*status != SAI__OK) return;

  /*** TIMER ***/
  smf_timerinit( &tv1, &tv2, status );

  /* Check for valid inputs */

  if( !array || (array->ndat < 1) ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": No data supplied", status );
  }

  if( array->sdata[0]->ndims != 3 ) {
    *status = SMF__WDIM;
    errRepf( "", FUNC_NAME ": Supplied smfData has %zu dims, needs 3", status,
             data->ndims );
    return;
  }

  if( !keymap ) {
    *status = SAI__ERROR;
    errRep( "", FUNC_NAME ": NULL AstKeyMap supplied", status );
    return;
  }

  /* Get cleaning parameters */
  smf_get_cleanpar( keymap, array->sdata[0], &badfrac, &dcfitbox, &dcmaxsteps,
                    &dcthresh, &dcsmooth, &dclimcorr, &dkclean,
                    NULL, &zeropad, NULL, NULL, NULL, NULL, NULL,
                    NULL, NULL, NULL, &flagslow, &flagfast, &order,
                    &spikethresh, &spikebox, &noisecliphigh, &noisecliplow,
                    NULL, &compreprocess, &pcalen, &pcathresh, NULL, NULL, NULL,
                    &noiseclipprecom, status );

  /* Loop over subarray */
  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Update quality by synchronizing to the data array VAL__BADD values */
    msgOutif(MSG__VERB,"", FUNC_NAME ": update quality", status);
    smf_update_quality( data, 1, NULL, 0, badfrac, status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s updating quality",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Fix DC steps */
    if( dcthresh && dcfitbox ) {
      msgOutiff(MSG__VERB, "", FUNC_NAME
                ": Flagging bolos with %lf-sigma DC steps in %" DIM_T_FMT " "
                "samples as bad, using %" DIM_T_FMT
                "-sample median filter and max %d "
                "DC steps per min before flagging entire bolo bad...", status,
                dcthresh, dcfitbox, dcsmooth, dcmaxsteps);

      smf_fix_steps( wf, data, dcthresh, dcsmooth, dcfitbox, dcmaxsteps,
                     dclimcorr, 0, &nflag, NULL, NULL, status );

      msgOutiff(MSG__VERB, "", FUNC_NAME": ...%zd flagged\n", status, nflag);

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s fixing DC steps",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Flag Spikes */
    if( spikethresh ) {
      msgOutif(MSG__VERB," ", FUNC_NAME ": flag spikes...", status);
      smf_flag_spikes( wf, data, SMF__Q_FIT, spikethresh, spikebox,
                       &nflag, status );
      msgOutiff(MSG__VERB,"", FUNC_NAME ": ...found %zd", status, nflag );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s flagging spikes",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /*  Flag periods of stationary pointing, and update scanspeed to more
        accurate value */
    if( flagslow || flagfast ) {
      if( data->hdr && data->hdr->allState ) {
        double scanvel=0;

        if( flagslow ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds < %.2lf arcsec/sec",
                     status, flagslow );
        }

        if( flagfast ) {
          msgOutiff( MSG__VERB, "", FUNC_NAME
                     ": Flagging regions with slew speeds > %.2lf arcsec/sec",
                     status, flagfast );


          /* Check to see if this was a sequence type that involved
             motion.  If not, skip this section */
          if( data && data->hdr && (
                                    (data->hdr->seqtype==SMF__TYP_SCIENCE) ||
                                    (data->hdr->seqtype==SMF__TYP_POINTING) ||
                                    (data->hdr->seqtype==SMF__TYP_FOCUS) ||
                                    (data->hdr->seqtype==SMF__TYP_SKYDIP))
                                 && (data->hdr->obsmode!=SMF__OBS_STARE) ) {

            smf_flag_slewspeed( data, flagslow, flagfast, &nflag, &scanvel,
                              status );
            msgOutiff( MSG__VERB,"", "%zu new time slices flagged", status,
                       nflag);

            if( msgIflev( NULL, status ) >= MSG__VERB ) {
              msgOutf( "", FUNC_NAME ": mean SCANVEL=%.2lf arcsec/sec"
                       " (was %.2lf)", status, scanvel, data->hdr->scanvel );
            }

            data->hdr->scanvel = scanvel;

            /*** TIMER ***/
            msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                       ":   ** %f s flagging outlier slew speeds",
                       status, smf_timerupdate(&tv1,&tv2,status) );
          } else {
            msgOutif( MSG__VERB, "", FUNC_NAME
                      ": not a moving sequence or missing header, "
                      "skipping slew speed flagging", status );
          }
        }
      } else {
        msgOutif( MSG__DEBUG, "", FUNC_NAME
                  ": Skipping flagslow/flagfast because no header present",
                  status );
      }
    }

    /* Clean out the dark squid signal */
    if( dkclean ) {
      msgOutif(MSG__VERB, "", FUNC_NAME
               ": Cleaning dark squid signals from data.", status);
      smf_clean_dksquid( data, 0, 100, NULL, 0, 0, 0, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s DKSquid cleaning",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }

    /* Apply optical efficiency corrections. */
    one_strlcpy( param, "OPTEFF", sizeof(param), status );
    smf_find_subarray( data->hdr, param + strlen(param),
                       sizeof(param) - strlen(param), NULL, status );
    astChrCase( NULL, param, 1, 0 );
    if( astMapHasKey( keymap, param ) ) {
      astMapGet0I( keymap, "OPTEFFDIV", &opteffdiv );
      if ( astMapGet0C( keymap, param, &opteff ) ) {
        msgOutiff( MSG__VERB,"", FUNC_NAME ": %s bolometer values "
                   "by factors read from NDF %s", status,
                   opteffdiv ? "Dividing" : "Multiplying", opteff );
        smf_scale_bols( wf, data, NULL, opteff, param, opteffdiv, status );
      }
    }

    /* Remove baselines */
    if( order >= 0 ) {
      msgOutiff( MSG__VERB,"", FUNC_NAME
                 ": Fitting and removing %i-order polynomial baselines",
                 status, order );

      smf_fit_poly( wf, data, order, 1, NULL, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
                 ":   ** %f s removing poly baseline",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
  }

  /* Mask noisy bolos here if happening before common-mode cleaning */
  if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
      noiseclipprecom ) {

    smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                    zeropad, &tv1, &tv2, status );
  }


  /* Optionally call smf_calcmodel_com to perform a subset of the following
     tasks as a pre-processing step:

       - remove the common-mode
       - flag outlier data using common-mode rejection
       - determine relative flatfields using amplitude of common-mode

     In order to do this we need to set up some temporary model container
     files so that the routine can be called properly. All of the same
     COMmon-mode and GAIn model parameters (e.g. com.* and gai.*) will be
     used here. However, in addition the "compreprocess" flag must be set
     for this operation to be performed. */

  if( compreprocess ) {
    smfArray *comdata = NULL;
    smfGroup *comgroup = NULL;
    smfDIMMData dat;
    smfArray *gaidata = NULL;
    smfGroup *gaigroup = NULL;
    smfArray *quadata = NULL;
    smfData *thisqua=NULL;

    msgOutif(MSG__VERB," ", FUNC_NAME ": Remove common-mode", status);

    /* Create model containers for COM, GAI */
    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__COM,
                      0, NULL, 0, NULL, NULL, &comgroup, &comdata, keymap,
                      status );

    smf_model_create( wf, NULL, &array, NULL, NULL, NULL, NULL, NULL, 1, SMF__GAI,
                      0, NULL, 0, NULL, NULL, &gaigroup, &gaidata, keymap,
                      status );

    /* Manually create quadata to share memory with the quality already
       stored in array */

    quadata = smf_create_smfArray( status );
    for( idx=0; (*status==SAI__OK) && (idx<array->ndat); idx++ ) {
      /* Create several new smfDatas, but they will all be freed
         properly when we close quadata */
      thisqua = smf_create_smfData( SMF__NOCREATE_DA | SMF__NOCREATE_HEAD |
                                    SMF__NOCREATE_FILE, status );

      /* Probably only need pntr->[0], but fill in the dimensionality
         information to be on the safe side */
      thisqua->dtype = SMF__QUALTYPE;
      thisqua->ndims = array->sdata[idx]->ndims;
      thisqua->isTordered = array->sdata[idx]->isTordered;
      memcpy( thisqua->dims, array->sdata[idx]->dims, sizeof(thisqua->dims) );
      memcpy( thisqua->lbnd, array->sdata[idx]->lbnd, sizeof(thisqua->lbnd) );
      thisqua->pntr[0] = smf_select_qualpntr( array->sdata[idx], NULL, status );

      smf_addto_smfArray( quadata, thisqua, status );
    }

    /* Set up the smfDIMMData and call smf_calcmodel_com */
    memset( &dat, 0, sizeof(dat) );
    dat.res = &array;
    dat.gai = &gaidata;
    dat.qua = &quadata;
    dat.noi = NULL;

    smf_calcmodel_com( wf, &dat, 0, keymap, &comdata, SMF__DIMM_FIRSTITER,
                       status );

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME
               ":   ** %f s removing common-mode",
               status, smf_timerupdate(&tv1,&tv2,status) );

    /* Clean up and/or return values */
    if( com ) {
      *com = comdata;
    } else {
      if( comdata ) smf_close_related( &comdata, status );
    }

    if( gai ) {
      *gai = gaidata;
    } else {
      if( gaidata ) smf_close_related( &gaidata, status );
    }

    if( comgroup ) smf_close_smfGroup( &comgroup, status );
    if( gaigroup ) smf_close_smfGroup( &gaigroup, status );

    /* Before closing quadata unset all the pntr[0] since this is shared
       memory with the quality associated with array */
    if( quadata ) {
      for( idx=0; idx<quadata->ndat; idx++ ) {
        quadata->sdata[idx]->pntr[0] = NULL;
      }
      if( quadata ) smf_close_related( &quadata, status );
    }
  }

  /* PCA cleaning */
  if( pcathresh ) {
    /* Loop over subarray */
    for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
      data = array->sdata[idx];

      smf_clean_pca_chunks( wf, data, pcalen, pcathresh, keymap, status );
    }

    /*** TIMER ***/
    msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s PCA cleaning",
               status, smf_timerupdate(&tv1,&tv2,status) );
  }

  /* Allocate space for noisemaps if required */

  if( noisemaps ) {
    *noisemaps = smf_create_smfArray( status );
  }

  /* Loop over subarray */

  for( idx=0; (idx<array->ndat)&&(*status==SAI__OK); idx++ ) {
    data = array->sdata[idx];

    /* Filter the data. Note that we call smf_filter_execute to apply
       a per-bolometer whitening filter even if there is no
       explicitly requested smfFilter (in which case the
       smf_filter_fromkeymap call will leave the real/imaginary parts
       of the filter as NULL pointers and they will get ignored inside
       smf_filter_execute). */

    filt = smf_create_smfFilter( data, status );
    smf_filter_fromkeymap( filt, keymap, data->hdr, &dofft, &whiten, status );

    if( (*status == SAI__OK) && dofft ) {
      msgOutif( MSG__VERB, "", FUNC_NAME ": frequency domain filter", status );
      smf_filter_execute( wf, data, filt, 0, whiten, status );

      /*** TIMER ***/
      msgOutiff( SMF__TIMER_MSG, "", FUNC_NAME ":   ** %f s filtering data",
                 status, smf_timerupdate(&tv1,&tv2,status) );
    }
    filt = smf_free_smfFilter( filt, status );

    /* Mask noisy bolos here if happening after common-mode cleaning */
    if( (*status == SAI__OK) && ((noisecliphigh>0.0) || (noisecliplow>0.0)) &&
        !noiseclipprecom ) {

      smf__noisymask( wf, data, noisemaps, noisecliphigh, noisecliplow,
                      zeropad, &tv1, &tv2, status );
    }

  }
}
コード例 #5
0
ファイル: smf_initial_sky.c プロジェクト: astrobuff/starlink
int smf_initial_sky( ThrWorkForce *wf, AstKeyMap *keymap, smfDIMMData *dat,
                     int *iters, int *status ) {

/* Local Variables: */
   char refparam[ DAT__SZNAM ];/* Name for reference NDF parameter */
   const char *cval;          /* The IMPORTSKY string value */
   double *ptr;               /* Pointer to NDF Data array */
   double *vptr;              /* Pointer to NDF Variance array */
   int indf1;                 /* Id. for supplied reference NDF */
   int indf2;                 /* Id. for used section of reference NDF */
   int nel;                   /* Number of mapped NDF pixels */
   int result;                /* Returned flag */
   int there;                 /* Is there a smurf extension in the NDF? */
   int update;                /* Was NDF opened for UPDATE access? */
   size_t i;                  /* Loop count */
   size_t junk;               /* Unused value */

/* Initialise the returned value to indicate no sky has been subtractred. */
   result = 0;

/* Assume the sky map was not created by an interupted previous run of
   makemap. */
   *iters = -1;

/* Check inherited status. */
   if( *status != SAI__OK ) return result;

/* Begin an AST context. */
   astBegin;

/* The IMPORTSKY config parameter should have the name of the ADAM
   parameter to use for acquiring the NDF that contains the initial sky
   estimate. If IMPORTSKY is "1", use REF. */
   cval = NULL;
   astMapGet0C( keymap, "IMPORTSKY", &cval );
   if( cval ) {
      if( !astChrMatch( cval, "REF" ) &&
          !astChrMatch( cval, "MASK2" ) &&
          !astChrMatch( cval, "MASK3" ) ) {
         astMapGet0I( keymap, "IMPORTSKY", &result );
         cval = ( result > 0 ) ? "REF" : NULL;
      }
      if( cval ) {
         result = 1;
         strcpy( refparam, cval );
         astChrCase( NULL, refparam, 1, 0 );
      }
   }

/* Do nothing more if we are not subtracting an initial sky from the data. */
   if( result && *status == SAI__OK ) {

/* Begin an NDF context. */
      ndfBegin();

/* Get an identifier for the NDF using the associated ADAM parameter.
   First try UPDATE access. If this fails try READ access. */
      ndfAssoc( refparam, "UPDATE", &indf1, status );
      if( *status != SAI__OK ) {
         errAnnul( status );
         ndfAssoc( refparam, "READ", &indf1, status );
         update = 0;
      } else {
         update = 1;
      }

/* Tell the user what we are doing. */
      ndfMsg( "N", indf1 );
      msgOut( "", "Using ^N as the initial guess at the sky", status );

/* Get a section from this NDF that matches the bounds of the map. */
      ndfSect( indf1, 2, dat->lbnd_out, dat->ubnd_out, &indf2, status );

/* Ensure masked values are not set bad in the mapped data array. */
      ndfSbb( 0, indf2, status );

/* Map the data array section, and copy it into the map buffer. */
      ndfMap( indf2, "DATA", "_DOUBLE", "READ", (void **) &ptr, &nel, status );
      if( *status == SAI__OK ) {
         memcpy( dat->map, ptr, dat->msize*sizeof(*ptr));
      }

/* Map the variance array section, and copy it into the map buffer. */
      ndfState( indf2, "VARIANCE", &there, status );
      if( there ) {
         ndfMap( indf2, "VARIANCE", "_DOUBLE", "READ", (void **) &vptr, &nel, status );
         if( *status == SAI__OK ) {
            memcpy( dat->mapvar, vptr, dat->msize*sizeof(*vptr));
         }
      }

/* If the NDF was created by a previous run of makemap that was interupted
   using control-C, it will contain a NUMITER item in the smurf extension,
   which gives the number of iterations that were completed before the
   map was created. Obtain and return this value, if it exists. */
      ndfXstat( indf1, SMURF__EXTNAME, &there, status );
      if( there ) ndfXgt0i( indf1, SMURF__EXTNAME, "NUMITER", iters,
                            status );

/* If the NDF has a Quality component, import it and create initial AST,
   FLT, PCA, SSN and COM masks from it. These will often be over-ridden by
   new masks calculated with smf_calcmodel_ast below, but will not be
   over-written if the masks have been frozen by xxx.zero_freeze. */
      ndfState( indf2, "Quality", &there, status );
      if( there && dat->mapqual ) {
         smf_qual_t *qarray = smf_qual_map( wf, indf2, "Read", NULL, &junk,
                                            status );
         if( *status == SAI__OK ) {
            smf_qual_t *pq = qarray;
            for( i = 0; i < dat->msize; i++,pq++ ) {
               if( *pq & SMF__MAPQ_AST ) {
                  if( !dat->ast_mask ) dat->ast_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->ast_mask) ) );
                  (dat->ast_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_FLT ) {
                  if( !dat->flt_mask ) dat->flt_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->flt_mask) ) );
                  (dat->flt_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_COM ) {
                  if( !dat->com_mask ) dat->com_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->com_mask) ) );
                  (dat->com_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_SSN ) {
                  if( !dat->ssn_mask ) dat->ssn_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->ssn_mask) ) );
                  (dat->ssn_mask)[ i ] = 1;
               }
               if( *pq & SMF__MAPQ_PCA ) {
                  if( !dat->pca_mask ) dat->pca_mask = astCalloc( dat->msize,
                                                  sizeof( *(dat->pca_mask) ) );
                  (dat->pca_mask)[ i ] = 1;
               }
            }
         }
         qarray = astFree( qarray );
      }

/* Indicate the map arrays within the supplied smfDIMMData structure now
   contain usable values. We need to do this before calling
   smf_calcmodel_ast below so that the right mask gets used in
   smf_calcmodel_ast. */
      dat->mapok = 1;

/* Apply any existinction correction to the cleaned bolometer data. */
      if( dat->ext ) smf_calcmodel_ext( wf, dat, 0, keymap, dat->ext, 0,
                                        status);

/* Sample the above map at the position of each bolometer sample and
   subtract the sampled value from the cleaned bolometer value. */
      smf_calcmodel_ast( wf, dat, 0, keymap, NULL, SMF__DIMM_PREITER, status);

/* Remove any existinction correction to the modifed bolometer data. */
      if( dat->ext ) smf_calcmodel_ext( wf, dat, 0, keymap, dat->ext,
                                        SMF__DIMM_INVERT, status);

/* If the NDF was opened with UPDATE access, update the quality array in
   the NDF to reflect the AST mask created by smf_calcmodel_ast above. */
      if( update ) {
         smf_qual_t *qarray = astStore( NULL, dat->mapqual, dat->msize*sizeof(*qarray) );
         qarray = smf_qual_unmap( wf, indf2, SMF__QFAM_MAP, qarray, status );
      }

/* End the NDF context. */
      ndfEnd( status );
   }

/* End the AST context. */
   astEnd;

/* Return the pointer to the boolean mask. */
   return result;
}
コード例 #6
0
void gsdac_getDateVars ( const gsdVars *gsdVars, const char *backend,
                         const int obsNum, dateVars *dateVars,
                         int *status )

{

  /* Local variables */
  char dateString[SZFITSTR];  /* temporary string for date conversions. */
  int day;                    /* days */
  double dLST;                /* difference in LST */
  double dut1;                /* UT1-UTC correction */
  int hour;                   /* hours */
  int min;                    /* minutes */
  int month;                  /* months */
  float sec;                  /* seconds */
  int tableDims;              /* dimensionality of data table */
  int tableSize;              /* number of elements of data table */
  int tableElement;           /* index of element in data table */
  AstTimeFrame *tempFrame = NULL; /* AstTimeFrame for UT1-UTC conversion */
  const char *tempString;     /* temporary string */
  AstTimeFrame *tFrame = NULL;  /* AstTimeFrame for UT1-UTC conversion */
  double utcEnd;              /* end UTC time */
  double HSTend;              /* end HST time */
  double HSTstart;            /* start HST time */
  double utcStart;            /* start UTC time */
  int year;                   /* years */

  /* Check inherited status */
  if ( *status != SAI__OK ) return;

  /* Get the DATE-OBS. */

  /* Parse date to get year/month/day. */
  sprintf ( dateString, "%8.4f", gsdVars->obsUT1d );
  sscanf ( dateString, "%04d.%02d%02d", &year, &month, &day );

  /* Parse time to get hour/min/sec: can not use usual (int) scoping
     because of danger to get hh:05:60.00 instead of hh:06:00.00 */
  hour = (int) gsdVars->obsUT1h;
  min =  60.0 * fmodf( gsdVars->obsUT1h, 1.0 );
  sec =  60.0 * fmodf( 60.0*gsdVars->obsUT1h, 1.0 );

  /* Set up the timeframe. */
  tFrame = astTimeFrame ( "timescale=UT1" );

  astSet ( tFrame, "TimeOrigin=%04d-%02d-%02dT%02d:%02d:%f",
           year, month, day, hour, min, sec );

  /* Apply the UT1-UTC correction. */
  dut1 = gsdVars->obsUT1C * 86400.0;

  astSet ( tFrame, "DUT1=%f", dut1 );
  astSet ( tFrame, "timescale=UTC" );

  utcStart = astGetD ( tFrame, "timeOrigin" );

  tempFrame = astCopy ( tFrame );
  astClear ( tempFrame, "timeOrigin" );
  astSet ( tempFrame, "format(1)=iso.2" );

  tempString = astFormat ( tempFrame, 1, utcStart );

  /* Copy the UTC date string. */
  strncpy ( dateVars->dateObs, tempString, 10 );
  dateVars->dateObs[10] =  'T';
  strcpy ( &(dateVars->dateObs[11]), &(tempString[11]) );

  /* Get the OBSID. */

  /* Check to see that the backend is DAS. */
  if ( strncmp ( backend, "DAS", 3 ) != 0 &&
       strncmp ( backend, "AOSC", 4 ) != 0 ) {
    *status = SAI__ERROR;
    msgSetc ( "BACKEND", backend );
    errRep ( "gsdac_getDateVars", "Backend ^BACKEND not supported", status );
    return;
  }

  sprintf ( dateVars->obsID, "%s_%05d_%04d%02d%02dT%02d%02d%02d",
            backend, obsNum, year, month, day, hour, min, (int)sec );

  /* Convert to lowercase to give a consistent format for the JSA. */
  astChrCase( NULL, dateVars->obsID, 0, 0 );


  /* Get the DATE-END. This will be DATE-OBS + ( last LST - first LST ). */
  tableSize = gsdVars->nScanVars1 * gsdVars->nScan;
  tableDims = gsdVars->nScanVars1;
  tableElement = 0;          /* In case unfilled table */
  if ( (tableSize-tableDims) >= 0 ) {
    tableElement = tableSize-tableDims;
  }

  dLST = ( gsdVars->scanTable1[tableElement] -
	     gsdVars->scanTable1[0] ) / 24.0;

  /* Correct for difference between solar and sidereal time. */
  utcEnd = utcStart + ( dLST / SOLSID );

  tempString = astFormat ( tempFrame, 1, utcEnd );

  /* Copy the UTC date string. */
  strncpy ( dateVars->dateEnd, tempString, 10 );
  dateVars->dateEnd[10] =  'T';
  strcpy ( &(dateVars->dateEnd[11]), &(tempString[11]) );

  /* Get the LSTstart. */
  hour = (int) gsdVars->scanTable1[0];
  min =  60.0 * fmodf( gsdVars->scanTable1[0], 1.0 );
  sec =  60.0 * fmodf( 60.0*gsdVars->scanTable1[0], 1.0 );

  sprintf ( dateVars->LSTstart, "%02d:%02d:%07.4f", hour, min, sec );

  /* Get the LSTend. */
  hour = (int) gsdVars->scanTable1[tableElement];
  min =  60.0 * fmodf( gsdVars->scanTable1[tableElement], 1.0 );
  sec =  60.0 * fmodf( 60.0*gsdVars->scanTable1[tableElement], 1.0 );

  sprintf ( dateVars->LSTend, "%02d:%02d:%07.4f", hour, min, sec );

  /* Get the HSTstart and HSTend. */
  HSTstart = utcStart - 10.0 / 24.0;
  HSTend = utcEnd - 10.0 / 24.0;

  tempString = astFormat ( tempFrame, 1, HSTstart );

  /* Copy the HST date string. */
  strncpy ( dateVars->HSTstart, tempString, 10 );
  dateVars->HSTstart[10] =  'T';
  strcpy ( &(dateVars->HSTstart[11]), &(tempString[11]) );

  tempString = astFormat ( tempFrame, 1, HSTend );

  /* Copy the HST date string. */
  strncpy ( dateVars->HSTend, tempString, 10 );
  dateVars->HSTend[10] =  'T';
  strcpy ( &(dateVars->HSTend[11]), &(tempString[11]) );

}
コード例 #7
0
ファイル: configecho.c プロジェクト: bbrond/starlink
F77_SUBROUTINE(configecho)( INTEGER(STATUS) ){
/*
*+
*  Name:
*     CONFIGECHO

*  Purpose:
*     Displays one or more configuration parameters.

*  Language:
*     C (designed to be called from Fortran)

*  Type of Module:
*     ADAM A-task

*  Invocation:
*     CALL CONFIGECHO( STATUS )

*  Arguments:
*     STATUS = INTEGER (Given and Returned)
*        The global status.

*  Description:
*     This application displays the name and value of one or all
*     configuration parameters, specified using Parameters CONFIG or
*     NDF. If a single parameter is displayed, its value is also
*     written to an output parameter. If the parameter value is not
*     specified by the CONFIG, NDF or DEFAULTS parameter, then the
*     value supplied for DEFVAL is displayed.
*
*     If an input NDF is supplied then configuration parameters
*     are read from its history (see Parameters NDF and APPLICATION).
*
*     If values are supplied for both CONFIG and NDF, then the
*     differences between the two sets of configuration parameters
*     are displayed (see Parameter NDF).

*  Usage:
*     configecho name config [defaults] [select] [defval]

*  ADAM Parameters:
*     APPLICATION = LITERAL (Read)
*        When reading configuration parameters from the history
*        of an NDF, this parameter specifies the name of the application
*        to find in the history. There must be a history component
*        corresponding to the value of this parameter, and it must
*        include a CONFIG group. [current value]
*     CONFIG = GROUP (Read)
*        Specifies values for the configuration parameters. If the string
*        "def" (case-insensitive) or a null (!) value is supplied, the
*        configuration parameters are obtained using Parameter NDF. If
*        a null value is also supplied for NDF, a set of default
*        configuration parameter values will be used, as specified by
*        Parameter DEFAULTS.
*
*        The supplied value should be either a comma-separated list of
*        strings or the name of a text file preceded by an up-arrow
*        character "^", containing one or more comma-separated lists of
*        strings. Each string is either a "keyword=value" setting, or the
*        name of a text file preceded by an up-arrow character "^". Such
*        text files should contain further comma-separated lists which
*        will be read and interpreted in the same manner (any blank lines
*        or lines beginning with "#" are ignored). Within a text file,
*        newlines can be used as delimiters, as well as commas. Settings
*        are applied in the order in which they occur within the list,
*        with later settings overriding any earlier settings given for
*        the same keyword.
*
*        Each individual setting should be of the form "<keyword>=<value>".
*        If a non-null value is supplied for Parameter DEFAULTS, an error
*        will be reported if CONFIG includes values for any parameters
*        that are not included in DEFAULTS.
*     DEFAULTS = LITERAL (Read)
*        The path to a file containing the default value for every
*        allowed configuration parameter. If null (!) is supplied, no
*        defaults will be supplied for parameters that are not specified
*        by CONFIG, and no tests will be performed on the validity of
*        paramter names supplied by CONFIG. [!]
*     DEFVAL = LITERAL (Read)
*        The value to return if no value can be obtained for the named
*        parameter, or if the value is "<undef>".  [<***>]
*     NAME = LITERAL (Read)
*        The name of the configuration parameter to display.  If set to
*        null (!), then all parameters defined in the configuration are
*        displayed.
*     NDF = NDF (Read)
*        An NDF file containing history entries which include
*        configuration parameters. If not null (!) the history
*        of the NDF will be searched for a component corresponding
*        to the Parameter APPLICATION.  The Parameter CONFIG
*        is then optional, but if it too is not null (!) then
*        the output will show the differences between the configuration
*        stored in the NDF history and the given configuration:
*        new parameters and those different from the reference
*        configuration (given by Parameter CONFIG) are prefixed
*        with "+" and those which are the same as the reference
*        configuration are prefixed with "-". [!]
*     SELECT = GROUP (Read)
*        A group that specifies any alternative prefixes that can be
*        included at the start of any parameter name. For instance, if
*        this group contains the two entries "450=1" and "850=0", then
*        either CONFIG or DEFAULTS can specify two values for any single
*        parameter -- one for the parameter prefixed by "450." and another
*        for the parameter prefixed by "850.". Thus, for instance, if
*        DEFAULTS defines a parameter called "filter", it could include
*        "450.filter=300" and "850.filter=600". The CONFIG parameter could
*        then either set the filter parameter for a specific prefix (as
*        in "450.filter=234"); or it could leave the prefix unspecified,
*        in which case the prefix used is the first one with a
*        non-zero value in SELECT (450 in the case of this example - 850
*        has a value zero in SELECT). Thus the names of the items in
*        SELECT define the set of allowed alternative prefixes, and the
*        values indicate which one of these alternatives is to be used
*        (the first one with non-zero value). [!]
*     SORT = _LOGICAL (Read)
*        If TRUE then sort the listed parameters in to alphabetical order.
*        Otherwise, retain the order they have in the supplied
*        configuration. Only used if a null (!) value is supplied for
*        Parameter NAME. [FALSE]
*     VALUE = LITERAL (Write)
*        The value of the configuration parameter, or "<***>" if the
*        parameter has no value in CONFIG and DEFAULTS.

*  Examples:
*     configecho m81 ^myconf
*        Report the value of configuration parameter "m81" defined within
*        the file "myconf". If the file does not contain a value for
*        "m81", then "<***>" is displayed.
*     configecho type ^myconf select="m57=0,m31=1,m103=0"
*        Report the value of configuration parameter "type" defined within
*        the file "myconf". If the file does not contain a value for
*        "type", then the value of "m31.type" will be reported instead. If
*        neither is present, then "<***>" is displayed.
*     configecho flt.filt_edge_largescale \
*                config=^/star/share/smurf/dimmconfig.lis \
*                defaults=/star/bin/smurf/smurf_makemap.def \
*                select="450=1,850=0"
*        Report the value of configuration parameter "flt.filt_edge_largescale"
*        defined within the file "/star/share/smurf/dimmconfig.lis", using
*        defaults from the file "/star/bin/smurf/smurf_makemap.def". If
*        dimmconfig.lis does not contain a value for "flt.filt_edge_largescale"
*        then it is searched for "450.flt.filt_edge_largescale" instead. An
*        error is reported if dimmconfig.lis contains values for any
*        items that are not defined in smurf_makemap.def.
*     configecho ndf=omc1 config=^/star/share/smurf/dimmconfig.lis \
*                defaults=/star/bin/smurf/smurf_makemap.def \
*                application=makemap name=! sort select="450=0,850=1"
*        Show how the configuration used to generate the 850um map
*        of OMC1 differs from the basic dimmconfig.lis file.

*  Copyright:
*     Copyright (C) 2012-3 Science & Technology Facilities Council.
*     All Rights Reserved.

*  Licence:
*     This program is free software; you can redistribute it and/or
*     modify it under the terms of the GNU General Public License as
*     published by the Free Software Foundation; either Version 2 of
*     the License, or (at your option) any later version.
*
*     This program is distributed in the hope that it will be
*     useful, but WITHOUT ANY WARRANTY; without even the implied
*     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
*     PURPOSE. See the GNU General Public License for more details.
*
*     You should have received a copy of the GNU General Public License
*     along with this program; if not, write to the Free Software
*     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
*     02110-1301, USA.

*  Authors:
*     DSB: David S. Berry
*     GSB: Graham S. Bell
*     {enter_new_authors_here}

*  History:
*     10-DEC-2012 (DSB):
*        Original version.
*     6-FEB-2013 (DSB):
*        Added parameter DEFVAL.
*     11-FEB-2013 (DSB):
*        Added parameter SORT and allow all parameters to be listed by
*        providing a null value for NAME.
*     11-FEB-2013 (GSB):
*        Added ability to read configuration from history entries.
*     13-FEB-2013 (DSB):
*        Nullify AST object pointers when the objects are annulled,
*        to avoid re-use of dead pointers.
*     14-FEB-2013 (DSB):
*        Allow the SELECT feature to be used even if no DEFAULTS file is
*        supplied (see the new entry in the "Examples:" section).
*     15-FEB-2013 (DSB):
*        Expand the prologue docs, and use NULL in place of zero for pointers.
*     22-FEB-2013 (DSB):
*        Guard against seg fault in HistoryKeymap when the NDF does 
*        not contain the required CONFIG entry in the History 
*        component.
*     {enter_further_changes_here}

*-
*/

   GENPTR_INTEGER(STATUS)

/* Local Variables: */
   AstKeyMap *keymap2;
   AstKeyMap *keymap;
   Grp *grp = NULL;
   char *dot;
   char *pname;
   char defs[250];
   char defval[250];
   char name[250];
   const char *value;
   const char *historyValue = NULL;
   int showall;
   int sort;
   size_t size;
   int indf = 0;
   int nrec;
   int i;
   char application[NDF__SZAPP];
   char applicationi[NDF__SZAPP];

/* Abort if an error has already occurred. */
   if( *STATUS != SAI__OK ) return;

/* Begin an AST context */
   astBegin;

/* Get the value to return if no value can be obtained for the named
   parameter, of it it has a value of <undef>. */
   parGet0c( "DEFVAL", defval, sizeof(defval), STATUS );

/* Get any defaults file, annuling the error if null (!) is supplied. */
   if( *STATUS == SAI__OK ) {
      parGet0c( "DEFAULTS", defs, sizeof(defs), STATUS );
      if( *STATUS == PAR__NULL ) {
         errAnnul( STATUS );
         defs[0] = 0;
      }
   }

/* Get the NDF identifier if requested. */
   ndfBegin();
   if (*STATUS == SAI__OK) {
      ndfAssoc("NDF", "READ", &indf, STATUS);
      if (*STATUS == PAR__NULL) {
         errAnnul(STATUS);
         indf = 0;
      }
      else {
         parGet0c("APPLICATION", application, sizeof(application), STATUS);
         /* Check now for error because the block below allowing an undefined
          * CONFIG clears this status otherwise. */
         if (*STATUS != SAI__OK) goto L999;
      }
   }

/* See if any alternate keyword prefixes are allowed, and if so determine
   which of the alternatices is to be displayed. */
   kpg1Gtgrp( "SELECT", &grp, &size, STATUS );
   if( *STATUS == PAR__NULL ) {
      grpDelet( &grp, STATUS );
      errAnnul( STATUS );
      keymap2 = NULL;
   } else {
      kpg1Kymap( grp, &keymap2, STATUS );
      grpDelet( &grp, STATUS );
   }

/* Create a KeyMap holding the selected alternative for each keyword, and
   also supply defaults for any missing values (if a defaults file was
   supplied by the user). */
   keymap = kpg1Config( "CONFIG", defs[0]?defs:NULL, keymap2, 0, STATUS );

/* Allow it to be NULL if we're reading an NDF because we'll replace
   keymap with historyConfig later if necessary. */
   if( indf && *STATUS == PAR__NULL ) {
      errAnnul(STATUS);
      keymap = NULL;
   }

/* Abort if an error has occurred. */
   if( *STATUS != SAI__OK ) goto L999;

/* Get the name of the required parameter, and convert to upper case (if
   supplied). If not supplied, set a flag indicating that all parameters
   should be displayed. */
   parGet0c( "NAME", name, sizeof(name), STATUS );
   if( *STATUS == PAR__NULL ) {
      errAnnul( STATUS );
      showall = 1;
   } else {
      showall = 0;
      astChrCase( NULL, name, 1, 0 );
   }

/* Attempt to find the NDF's corresponding history record. */
   if (indf && *STATUS == SAI__OK) {
      ndfHnrec(indf, &nrec, STATUS);
      for (i = 0; i < nrec; i ++) {
         ndfHinfo(indf, "APPLICATION", i + 1, applicationi,
                  sizeof(applicationi), STATUS);
         if (! strncasecmp(application, applicationi, strlen(application))) {
            ndfHout(indf, i + 1, HistoryKeyMap, STATUS);
            break;
         }
      }

      if (*STATUS == SAI__OK && ! historyConfig) {
         *STATUS = SAI__ERROR;

         errRepf("CONFIGECHO_ERR", "CONFIGECHO: Failed to find %s "
                 "configuration in NDF history.", STATUS, application);
      }
      else if (! keymap) {
         keymap = historyConfig;
         historyConfig = NULL;
      }
   }

   if( *STATUS == SAI__OK ) {

/* First deal with cases where we are displaying a single parameter
   value. */
      if( !showall ) {

/* Loop round each section of the name that ends with a dot. */
         value = defval;
         pname = name;

         dot = strchr( pname, '.' );
         while( dot && keymap ) {

/* Get a nested keymap with the name that occurs prior to the dot. If
   found, use it in place of the parent keymap. */
            pname[ dot - pname ] = 0;
            if( astMapGet0A( keymap, pname, &keymap2 ) ) {
               astAnnul( keymap );
               keymap = keymap2;
            } else {
               keymap = astAnnul( keymap );
            }

/* If historyConfig exists, do the same there. */
            if (historyConfig) {
               if (astMapGet0A(historyConfig, pname, &keymap2)) {
                  astAnnul(historyConfig);
                  historyConfig = keymap2;
               }
               else {
                  historyConfig = astAnnul(historyConfig);
               }
            }

/* Re-instate the original dot, and move on to find the next dot. */
            pname[ dot - pname ] = '.';
            pname = dot + 1;
            dot = strchr( pname, '.' );
         }

/* Ensure no error is reported if the parameter is not found in the
   KeyMap. */
         if( keymap ) {
            astClear( keymap, "KeyError" );

/* Get the parameter value as a string. */
            astMapGet0C( keymap, pname, &value );
         }

         if (historyConfig) {
            astClear(historyConfig, "KeyError");
            astMapGet0C(historyConfig, pname, &historyValue);

/* In NDF history mode we only want to return a value if it
   was found in the configuration from the history. */

            if (historyValue) {
               if (strcmp(value, historyValue)) {
                  msgOutf("", "+ %s", STATUS, historyValue);
               }
               else {
                  msgOutf("", "- %s", STATUS, historyValue);
               }
               parPut0c("VALUE", historyValue, STATUS);
            }
         }
         else {
/* Display it. */
            msgOut( "", value, STATUS );

/* Write it to the output parameter. */
            parPut0c( "VALUE", value, STATUS );
         }

/* Now deal with cases were we are displaying all parameter values. */
      } else {

/* See if the values should be sorted. */
         parGet0l( "SORT", &sort, STATUS );

/* Display them. */
         if (historyConfig) {
            DisplayKeyMap( historyConfig , sort, "", keymap, STATUS );
         }
         else {
            DisplayKeyMap( keymap, sort, "", NULL, STATUS );
         }
      }
   }

/* Tidy up. */
L999:;

/* End the AST context */
   astEnd;

/* Close the NDF if open. */
   ndfEnd(STATUS);

/* If an error has occurred, issue another error report identifying the
   program which has failed (i.e. this one). */
   if( *STATUS != SAI__OK ) {
      errRep( "CONFIGECHO_ERR", "CONFIGECHO: Failed to echo configuration "
              "parameters.", STATUS );
   }

}