コード例 #1
0
ファイル: smf_rebinsparse.c プロジェクト: bbrond/starlink
void smf_rebinsparse( smfData *data, int first, int *ptime, AstFrame *ospecfrm,
                      AstMapping *ospecmap, AstSkyFrame *oskyframe,
                      Grp *detgrp, int lbnd_out[ 3 ], int ubnd_out[ 3 ],
                      int genvar, float *data_array, float *var_array,
                      int *ispec, float *texp_array, float *teff_array,
                      double *fcon, int *status ){

/* Local Variables */
   AstCmpMap *fmap = NULL;      /* Mapping from spectral grid to topo freq Hz */
   AstCmpMap *ssmap = NULL;     /* I/p GRID-> o/p PIXEL Mapping for spectral axis */
   AstFitsChan *fc = NULL;      /* Storage for FITS headers */
   AstFrame *specframe = NULL;  /* Spectral Frame in input FrameSet */
   AstFrame *specframe2 = NULL; /* Temporary copy of SpecFrame in input WCS */
   AstFrameSet *fs = NULL;      /* A general purpose FrameSet pointer */
   AstFrameSet *swcsin = NULL;  /* FrameSet describing spatial input WCS */
   AstMapping *fsmap = NULL;    /* Base->Current Mapping extracted from a FrameSet */
   AstMapping *specmap = NULL;  /* PIXEL -> Spec mapping in input FrameSet */
   char *fftwin = NULL;  /* Name of FFT windowing function */
   const char *name = NULL; /* Pointer to current detector name */
   const double *tsys=NULL; /* Pointer to Tsys value for first detector */
   dim_t timeslice_size; /* No of detector values in one time slice */
   double *spectab = NULL;/* Workspace for spectral output grid positions */
   double *xin = NULL;   /* Workspace for detector input grid positions */
   double *xout = NULL;  /* Workspace for detector output pixel positions */
   double *yin = NULL;   /* Workspace for detector input grid positions */
   double *yout = NULL;  /* Workspace for detector output pixel positions */
   double at;            /* Frequency at which to take the gradient */
   double dnew;          /* Channel width in Hz */
   double fcon2;         /* Variance factor for whole file */
   double k;             /* Back-end degradation factor */
   double tcon;          /* Variance factor for whole time slice */
   float *pdata = NULL;  /* Pointer to next data sample */
   float *qdata = NULL;  /* Pointer to next data sample */
   float rtsys;          /* Tsys value */
   float teff;           /* Effective integration time, times 4 */
   float texp;           /* Total time ( = ton + toff ) */
   float toff;           /* Off time */
   float ton;            /* On time */
   int *nexttime = NULL; /* Pointer to next time slice index to use */
   int dim[ 3 ];         /* Output array dimensions */
   int found;            /* Was current detector name found in detgrp? */
   int good;             /* Are there any good detector samples? */
   int ibasein;          /* Index of base Frame in input FrameSet */
   int ichan;            /* Index of current channel */
   int iv;               /* Offset to next element */
   int iz;               /* Output grid index on axis 3 */
   int nchan;            /* Number of input spectral channels */
   int pixax[ 3 ];       /* The output fed by each selected mapping input */
   int specax;           /* Index of spectral axis in input FrameSet */
   size_t irec;          /* Index of current input detector */
   size_t itime;         /* Index of current time slice */
   smfHead *hdr = NULL;  /* Pointer to data header for this time slice */

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context.*/
   astBegin;

/* Store a pointer to the input NDFs smfHead structure. */
   hdr = data->hdr;

/* Store the dimensions of the output array. */
   dim[ 0 ] = ubnd_out[ 0 ] - lbnd_out[ 0 ] + 1;
   dim[ 1 ] = ubnd_out[ 1 ] - lbnd_out[ 1 ] + 1;
   dim[ 2 ] = ubnd_out[ 2 ] - lbnd_out[ 2 ] + 1;

/* Store the number of pixels in one time slice */
   timeslice_size = (data->dims)[ 0 ]*(data->dims)[ 1 ];

/* We want a description of the spectral WCS axis in the input file. If
   the input file has a WCS FrameSet containing a SpecFrame, use it,
   otherwise we will obtain it from the FITS header later. NOTE, if we knew
   that all the input NDFs would have the same spectral axis calibration,
   then the spectral WCS need only be obtained from the first NDF. However,
   in the general case, I presume that data files may be combined that use
   different spectral axis calibrations, and so these differences need to
   be taken into account. */
   if( hdr->tswcs ) {
      fs = astClone( hdr->tswcs );

/* The first axis should be a SpecFrame. See if this is so. If not annul
   the specframe pointer. */
      specax = 1;
      specframe = astPickAxes( fs, 1, &specax, NULL );
      if( !astIsASpecFrame( specframe ) ) specframe = astAnnul( specframe );
   }

/* If the above did not yield a SpecFrame, use the FITS-WCS headers in the
   FITS extension of the input NDF. Take a copy of the FITS header (so that
   the contents of the header are not changed), and then read a FrameSet
   out of it. */
   if( !specframe ) {
      fc = astCopy( hdr->fitshdr );
      astClear( fc, "Card" );
      fs = astRead( fc );

/* Extract the SpecFrame that describes the spectral axis from the current
   Frame of this FrameSet. This is assumed to be the third WCS axis (NB
   the different axis number). */
      specax = 3;
      specframe = astPickAxes( fs, 1, &specax, NULL );
   }

/* Split off the 1D Mapping for this single axis from the 3D Mapping for
   the whole WCS. This results in "specmap" holding the Mapping from
   SpecFrame value to GRID value. */
   fsmap = astGetMapping( fs, AST__CURRENT, AST__BASE );
   astMapSplit( fsmap, 1, &specax, pixax, &specmap );

/* Invert the Mapping for the spectral axis so that it goes from input GRID
   coord to spectral coord. */
   astInvert( specmap );

/* Get a Mapping that converts values in the input spectral system to the
   corresponding values in the output spectral system. */
   fs = astConvert( specframe, ospecfrm, "" );

/* Concatenate these Mappings with the supplied spectral Mapping to get
   a Mapping from the input spectral grid axis (pixel axis 1) to the
   output spectral grid axis (pixel axis 3). Simplify the Mapping. */
   ssmap = astCmpMap( astCmpMap( specmap, astGetMapping( fs, AST__BASE,
                                                         AST__CURRENT ),
                                 1, " " ),
                      ospecmap, 1, " " );
   ssmap = astSimplify( ssmap );

/* Create a table with one element for each channel in the input array,
   holding the index of the nearest corresponding output channel. */
   nchan = (data->dims)[ 0 ];
   spectab = astMalloc( sizeof( *spectab )*nchan );
   if( spectab ) {
      for( ichan = 0; ichan < nchan; ichan++ ) spectab[ ichan ] = ichan + 1;
      astTran1( ssmap, nchan, spectab, 1, spectab );
      for( ichan = 0; ichan < nchan; ichan++ ) {
         if( spectab[ ichan ] != AST__BAD ) {
            iz = floor( spectab[ ichan ] + 0.5 );
            if( iz >= 1 && iz <= dim[ 2 ] ) {
               spectab[ ichan ] = iz;
            } else {
               spectab[ ichan ] = 0;
            }
         } else {
            spectab[ ichan ] = 0;
         }
      }
   }

/* Allocate work arrays big enough to hold the coords of all the
   detectors in the current input file.*/
   xin = astMalloc( (data->dims)[ 1 ] * sizeof( *xin ) );
   yin = astMalloc( (data->dims)[ 1 ] * sizeof( *yin ) );
   xout = astMalloc( (data->dims)[ 1 ] * sizeof( *xout ) );
   yout = astMalloc( (data->dims)[ 1 ] * sizeof( *yout ) );

/* Initialise a string to point to the name of the first detector for which
   data is available */
   name = hdr->detname;

/* Store input coords for the detectors. Axis 1 is the detector index, and
   axis 2 is a dummy axis that always has the value 1. */
   for( irec = 0; irec < (data->dims)[ 1 ]; irec++ ) {
      xin[ irec ] = irec + 1.0;
      yin[ irec ] = 1.0;

/* If a group of detectors to be used was supplied, search the group for
   the name of the current detector. If not found, set the GRID coords bad. */
      if( detgrp ) {
         found = grpIndex( name, detgrp, 1, status );
         if( !found ) {
            xin[ irec ] = AST__BAD;
            yin[ irec ] = AST__BAD;
         }
      }

/* Move on to the next available detector name. */
      name += strlen( name ) + 1;
   }

/* Find the constant factor associated with the current input file. This
   is the squared backend degradation factor, divided by the noise bandwidth.
   Get the required FITS headers, checking they were found. */
   if( astGetFitsF( hdr->fitshdr, "BEDEGFAC", &k ) &&
       astGetFitsS( hdr->fitshdr, "FFT_WIN", &fftwin ) ){

/* Get a Mapping that converts values in the input spectral system to
   topocentric frequency in Hz, and concatenate this Mapping with the
   Mapping from input GRID coord to the input spectral system. The result
   is a Mapping from input GRID coord to topocentric frequency in Hz. */
      specframe2 = astCopy( specframe );
      astSet( specframe2, "system=freq,stdofrest=topo,unit=Hz" );
      fmap = astCmpMap( specmap, astGetMapping( astConvert( specframe,
                                                            specframe2,
                                                            "" ),
                                                AST__BASE, AST__CURRENT ),
                        1, " " );

/* Differentiate this Mapping at the mid channel position to get the width
   of an input channel in Hz. */
      at = 0.5*nchan;
      dnew = astRate( fmap, &at, 1, 1 );

/* Modify the channel width to take account of the effect of the FFT windowing
   function. Allow undef value because FFT_WIN for old data had a broken value
   in hybrid subband modes. */
      if( dnew != AST__BAD ) {
         dnew = fabs( dnew );

         if( !strcmp( fftwin, "truncate" ) ) {
            dnew *= 1.0;

         } else if( !strcmp( fftwin, "hanning" ) ) {
            dnew *= 1.5;

	    } else if( !strcmp( fftwin, "<undefined>" ) ) {
	      /* Deal with broken data - make an assumption */
	       dnew *= 1.0;

         } else if( *status == SAI__OK ) {
            *status = SAI__ERROR;
            msgSetc( "W", fftwin );
            errRep( FUNC_NAME, "FITS header FFT_WIN has unknown value "
                    "'^W' (programming error).", status );
         }

/* Form the required constant. */
         fcon2 = k*k/dnew;

      } else {
         fcon2 = VAL__BADD;
      }

   } else {
      fcon2 = VAL__BADD;
   }

/* Return the factor needed for calculating Tsys from the variance. */
   if( first ) {
      *fcon = fcon2;
   } else if( fcon2 != *fcon ) {
      *fcon = VAL__BADD;
   }

/* Initialise a pointer to the next time slice index to be used. */
   nexttime = ptime;

/* Loop round all the time slices in the input file. */
   for( itime = 0; itime < (data->dims)[ 2 ] && *status == SAI__OK; itime++ ) {

/* If this time slice is not being pasted into the output cube, pass on. */
      if( nexttime ){
         if( *nexttime != itime ) continue;
         nexttime++;
      }

/* Store a pointer to the first input data value in this time slice. */
      pdata = ( (float *) (data->pntr)[ 0 ] ) + itime*timeslice_size;

/* Get a FrameSet describing the spatial coordinate systems associated with
   the current time slice of the current input data file. The base frame in
   the FrameSet will be a 2D Frame in which axis 1 is detector number and
   axis 2 is unused. The current Frame will be a SkyFrame (the SkyFrame
   System may be any of the JCMT supported systems). The Epoch will be
   set to the epoch of the time slice. */
      smf_tslice_ast( data, itime, 1, NO_FTS, status );
      swcsin = hdr->wcs;

/* Note the total exposure time (texp) for all the input spectra produced by
   this time slice. */
      ton = hdr->state->acs_exposure;
      if( ton == 0.0 ) ton = VAL__BADR;

      toff = hdr->state->acs_offexposure;
      if( toff == 0.0 ) toff = VAL__BADR;

      if( ton != VAL__BADR && toff != VAL__BADR ) {
         texp = ton + toff;
         teff = 4*ton*toff/( ton + toff );
      } else {
         texp = VAL__BADR;
         teff = VAL__BADR;
      }

/* If output variances are being calculated on the basis of Tsys values
   in the input, find the constant factor associated with the current
   time slice. */
      tcon = AST__BAD;
      if( genvar == 2 && fcon2 != AST__BAD && texp != VAL__BADR ) {
         tcon = fcon2*( 1.0/ton + 1.0/toff );

/* Get a pointer to the start of the Tsys values for this time slice. */
         tsys = hdr->tsys + hdr->ndet*itime;
      }

/* We now create a Mapping from detector index to position in oskyframe. */
      astInvert( swcsin );
      ibasein = astGetI( swcsin, "Base" );
      fs = astConvert( swcsin, oskyframe, "SKY" );
      astSetI( swcsin, "Base", ibasein );
      astInvert( swcsin );

      if( fs == NULL ) {
         if( *status == SAI__OK ) {
            if (data->file) {
               smf_smfFile_msg(data->file, "FILE", 1, "<unknown>");
            } else {
               msgSetc( "FILE", "<unknown>" );
            }
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "The spatial coordinate system in ^FILE "
                    "is not compatible with the spatial coordinate "
                    "system in the first input file.", status );
         }
         break;
      }

/* Transform the positions of the detectors from input GRID to oskyframe
   coords. */
      astTran2( fs, (data->dims)[ 1 ], xin, yin, 1, xout, yout );

/* Loop round all detectors. */
      for( irec = 0; irec < (data->dims)[ 1 ]; irec++ ) {

/* If the detector has a valid position, see if it produced any good
   data values. */
         if( xout[ irec ] != AST__BAD && yout[ irec ] != AST__BAD ) {
            qdata = pdata;
            good = 0;
            for( ichan = 0; ichan < nchan; ichan++ ){
               if( *(qdata++) != VAL__BADR ) {
                  good = 1;
                  break;
               }
            }

/* If it did, calculate the variance associated with each detector
   sample (if required), based on the input Tsys values, and copy the
   spectrum to the output NDF. */
            if( good ) {
               if( *ispec < dim[ 0 ] ){
                  rtsys = tsys ? (float) tsys[ irec ] : VAL__BADR;
                  if( rtsys <= 0.0 ) rtsys = VAL__BADR;
                  if( tcon != AST__BAD && genvar == 2 && rtsys != VAL__BADR ) {
                     var_array[ *ispec ] = tcon*rtsys*rtsys;
                  } else if( var_array ) {
                     var_array[ *ispec ] = VAL__BADR;
                  }

                  if( texp != VAL__BADR ) {
                     texp_array[ *ispec ] = texp;
                     teff_array[ *ispec ] = teff;
                  }

                  for( ichan = 0; ichan < nchan; ichan++, pdata++ ) {
                     iz = spectab[ ichan ] - 1;
                     if( iz >= 0 && iz < dim[ 2 ] ) {
                        iv = *ispec + dim[ 0 ]*iz;
                        data_array[ iv ] = *pdata;
                     }
                  }

                  (*ispec)++;

               } else if( *status == SAI__OK ){
                  *status = SAI__ERROR;
                  msgSeti( "DIM", dim[ 0 ] );
                  errRep( " ", "Too many spectra (more than ^DIM) for "
                          "the output NDF (programming error).", status );
                  break;
               }

/* If this detector does not have any valid data values, increment the data
   pointer to point at the first sample for the next detector. */
            } else {
               pdata += nchan;
            }

/* If this detector does not have a valid position, increment the data
   pointer to point at the first sample for the next detector. */
         } else {
            pdata += nchan;
         }
      }

/* For efficiency, explicitly annul the AST Objects created in this tight
   loop. */
      fs = astAnnul( fs );
   }

/* Free resources */
   spectab = astFree( spectab );
   xin = astFree( xin );
   yin = astFree( yin );
   xout = astFree( xout );
   yout = astFree( yout );

/* End the AST context. This will annul all AST objects created within the
   context (except for those that have been exported from the context). */
   astEnd;
}
コード例 #2
0
ファイル: smf_jsadicer.c プロジェクト: gmarsden/starlink
static void smf1_jsadicer( int indfo, int *olbnd, int *oubnd,
                           AstMapping *tile_map, AstFrame *tile_frm,
                           AstMapping *p2pmap, void *ipd, void *ipv,
                           unsigned char *ipq, int *status ){
/*
*  Name:
*     smf1_jsadicer

*  Purpose:
*     Copy one tile from the input NDF into a specified output NDF.

*  Language:
*     Starlink ANSI C

*  Type of Module:
*     C function

*  Invocation:
*     void smf1_jsadicer( int indfo, int *olbnd, int *oubnd,
*                         AstMapping *tile_map, AstFrame *tile_frm,
*                         AstMapping *p2pmap, void *ipd, void *ipv,
*                         unsigned char *ipq, int *status )

*  Arguments:
*     indfo = int (Given)
*        An identifier for the NDF in which the copied data is to be
*        stored. It's original pixel bounds are used as the bounds of the
*        ipd, ipv and ipq arrays.
*     olbnd = int * (Given)
*        The new lower pixel bounds required for the output NDF. The bounds
*        of the supplied NDF are changed to match these values.
*     oubnd = int * (Given)
*        The new upper pixel bounds required for the output NDF. The bounds
*        of the supplied NDF are changed to match these values.
*     tile_map = AstMapping * (Given)
*        The mapping from pixel coords in the output NDF to WCS coords.
*     tile_frm = AstMapping * (Given)
*        The WCS Frame for the output NDF.
*     p2pmap = AstMapping * (Given)
*        The mapping from pixel coords in the input NDF to pixel coords in
*        the output NDF.
*     ipd = void * (Given)
*        Pointer to the start of the input data array. If this is NULL,
*        the existing contents of the NDF are used as input.
*     ipv = void * (Given)
*        Pointer to the start of the input variance array. Should be NULL
*        if no variances are available.
*     ipq = unsigned char * (Given)
*        Pointer to the start of the input quality array. Should be NULL
*        if no quality is available.
*     status = int * (Given)
*        Pointer to the inherited status variable.
*/

/* Local Variables: */
   AstFrame *use_frm = NULL;
   AstFrameSet *owcs;
   AstMapping *use_map = NULL;
   AstMapping *use_p2pmap = NULL;
   AstShiftMap *sm;
   char type[ NDF__SZTYP + 1 ];
   double shifts[ 3 ];
   int axes[ 2 ];
   int axout[ NDF__MXDIM ];
   int free_arrays;
   int isreal;
   int lbnd_tile[ 3 ];
   int ndim;
   int nel;
   int nin;
   int there;
   int ubnd_tile[ 3 ];
   unsigned char *ipq_out = NULL;
   void *ipd_out = NULL;
   void *ipv_out = NULL;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Begin an AST context. */
   astBegin;

/* Get the NDF data type - _REAL or _DOUBLE. */
   ndfType( indfo, "Data", type, sizeof(type), status );
   isreal = !strcmp( type, "_REAL" );

/* Get the existing bounds of the NDF. */
   ndfBound( indfo, 3, lbnd_tile, ubnd_tile, &ndim, status );

/* If no data array has been supplied, take a copy of the original Data,
   Quality and Variance arrays and use these as the input arrays. */
   if( !ipd ) {
      free_arrays = 1;

      ndfMap( indfo, "Data", type, "Read", &ipd_out, &nel, status );
      ipd = astStore( NULL, ipd_out,
                      nel*(isreal?sizeof(float):sizeof(double)) );
      ndfUnmap( indfo, "Data", status );

      ndfState( indfo, "Variance", &there, status );
      if( there ) {
         ndfMap( indfo, "Variance", type, "Read", &ipv_out, &nel, status );
         ipv = astStore( NULL, ipv_out,
                         nel*(isreal?sizeof(float):sizeof(double)) );
         ndfUnmap( indfo, "Variance", status );
      } else {
         ipv = NULL;
      }

      ndfState( indfo, "Quality", &there, status );
      if( there ) {
         ndfMap( indfo, "Quality", "_UBYTE", "Read", (void **) &ipq_out,
                 &nel, status );
         ipq = astStore( NULL, ipq_out, nel*sizeof(*ipq) );
         ndfUnmap( indfo, "Quality", status );
      } else {
         ipq = NULL;
      }

   } else {
      free_arrays = 0;
   }

/* Set the bounds of the NDF to the required values. */
   ndfSbnd( ndim, olbnd, oubnd, indfo, status );

/* Erase the existing WCS FrameSet and then get the default WCS FrameSet. */
   ndfReset( indfo, "WCS", status );
   ndfGtwcs( indfo, &owcs, status );

/* If the supplied mapping and Frame have two many axes, strip some off.
   The orering of pixel axes in the output JSA tile is hardwired by SMURF
   as (ra,dec,spec). */
   nin = astGetI( tile_map, "Nin" );
   if( nin == 3 && ndim == 2 ) {
      axes[ 0 ] = 1;
      axes[ 1 ] = 2;
      astMapSplit( tile_map, 2, axes, axout, &use_map );
      if( use_map ) {
         use_frm = astPickAxes( tile_frm, 2, axout, NULL );
      } else if( *status == SAI__OK ) {
         *status = SAI__ERROR;
         errRepf( " ", "smf1_jsadicer: cannot split mapping (programming "
                  "error).", status );
      }

      astMapSplit( p2pmap, 2, axes, axout, &use_p2pmap );
      if( !use_p2pmap && *status == SAI__OK ) {
         *status = SAI__ERROR;
         errRepf( " ", "smf1_jsadicer: cannot split mapping (programming "
                  "error).", status );
      }

   } else if( nin == ndim ) {
      use_p2pmap = astClone( p2pmap );
      use_map = astClone( tile_map );
      use_frm = astClone( tile_frm );

   } else if( *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRepf( " ", "smf1_jsadicer: unexpected combination of nin (%d) and "
               "ndim (%d) (programming error).", status, nin, ndim );
   }

/* Add the tile WCS Frame into the output NDF's WCS FrameSet, using "tilemap"
   to connect it to the PIXEL Frame (NDF ensure Frame 2 is the PIXEL
   Frame). */
   astAddFrame( owcs, 2, use_map, use_frm );

/* The astResample function is odd in that it assumes that pixel coords
   are defined such that the centre of pixel "I" has integral pixel
   coord "I" (rather than "I-0.5" as is usual in Starlink). So we need to
   use a half-pixel ShiftMap at start and end of the p2pmap Mapping to
   account for this. */
   shifts[ 0 ] = -0.5;
   shifts[ 1 ] = -0.5;
   shifts[ 2 ] = -0.5;
   sm = astShiftMap( ndim, shifts, " " );
   use_p2pmap = (AstMapping *) astCmpMap( sm, use_p2pmap, 1, " " );
   astInvert( sm );
   use_p2pmap = (AstMapping *) astCmpMap( use_p2pmap, sm, 1, " " );

/* Store this modified WCS FrameSet in the output NDF. */
   ndfPtwcs( owcs, indfo, status );

/* Map the required arrays of the output NDF. */
   ndfMap( indfo, "Data", type, "Write", &ipd_out, &nel, status );
   if( ipv ) ndfMap( indfo, "Variance", type, "Write", &ipv_out, &nel,
                     status );
   if( ipq ) ndfMap( indfo, "Quality", "_UBYTE", "Write",
                      (void **) &ipq_out, &nel, status );

/* Copy the input data values to the output, using nearest neighbour
   interpolation (the mapping should always map input pixel centres onto
   output pixel centres). We can set the "tol" argument non-zero (e.g. 0.1)
   without introducing any error because the the p2pmap mapping will be
   piecewise linear. This gives a factor of about 5 decrease in the time
   spent within astResample. */
   if( !strcmp( type, "_REAL" ) ) {
      (void) astResampleF( use_p2pmap, ndim, lbnd_tile, ubnd_tile, (float *) ipd,
                           (float *) ipv, AST__NEAREST, NULL, NULL,
                           AST__USEBAD, 0.1, 1000, VAL__BADR, ndim,
                           olbnd, oubnd, olbnd, oubnd,
                           (float *) ipd_out, (float *) ipv_out );
   } else {
      (void) astResampleD( use_p2pmap, ndim, lbnd_tile, ubnd_tile, (double *) ipd,
                           (double *) ipv, AST__NEAREST, NULL, NULL,
                           AST__USEBAD, 0.1, 1000, VAL__BADD, ndim,
                           olbnd, oubnd, olbnd, oubnd,
                           (double *) ipd_out, (double *) ipv_out );
   }

   if( ipq ) {
      (void) astResampleUB( use_p2pmap, ndim, lbnd_tile, ubnd_tile, ipq, NULL,
                            AST__NEAREST, NULL, NULL, 0, 0.1, 1000, 0,
                            ndim, olbnd, oubnd, olbnd, oubnd, ipq_out,
                            NULL );
   }

/* Unmap everything the output NDF. */
   ndfUnmap( indfo, "*", status );

/* Free the input arrays if they were allocated in this function. */
   if( free_arrays ) {
      ipd = astFree( ipd );
      ipv = astFree( ipv );
      ipq = astFree( ipq );
   }

/* End the AST context. */
   astEnd;
}
コード例 #3
0
int *smf_jsatiles_region( AstRegion *region, smfJSATiling *skytiling,
                          int *ntile, int *status ){

/* Local Variables */
   AstFrameSet *fs;
   AstKeyMap *km;
   AstRegion *region2;
   AstRegion *space_region;
   AstRegion *tregion;
   AstSkyFrame *skyframe;
   char text[ 200 ];
   const char *key;
   double *mesh = NULL;
   double *xmesh;
   double *ymesh;
   int *tiles = NULL;
   int axes[ 2 ];
   int i;
   int ineb;
   int itile2;
   int itile;
   int ix;
   int iy;
   int key_index;
   int lbnd[ 2 ];
   int mapsize;
   int npoint;
   int old_sv;
   int overlap;
   int ubnd[ 2 ];
   int value;
   int xoff[ 4 ] = { -1, 0, 1, 0 };
   int xt;
   int yoff[ 4 ] = { 0, 1, 0, -1 };
   int yt;

/* Initialise */
   *ntile = 0;

/* Check inherited status */
   if( *status != SAI__OK ) return tiles;

/* Start an AST context so that all AST objects created in this function
   are annulled automatically. */
   astBegin;

/* Identify the celestial axes in the Region. */
   atlFindSky( (AstFrame *) region, &skyframe, axes + 1, axes, status );

/* Report an error if no celestial axes were found. */
   if( !skyframe && *status == SAI__OK ) {
      space_region = NULL;
      *status = SAI__ERROR;
      errRep( "", "The current WCS Frame in the supplied Region or "
              "NDF does not include celestial longitude and latitude axes.",
              status );

/* Otherwise, if the Region itself is 2-dimensional, it does not contain
   any other axes, so just use it as is. */
   } else if( astGetI( region, "Naxes" ) == 2 ) {
      space_region = astClone( region );

/* Otherwise, create a new Region by picking the celestial axes from the
   supplied Region. Report an error if a Region cannot be created in this
   way. */
   } else {
      space_region = astPickAxes( region, 2, axes, NULL );
      if( !astIsARegion( space_region ) && *status == SAI__OK ) {
         *status = SAI__ERROR;
         errRep( "", "The  celestial longitude and latitude axes in the "
                 "supplied Region or NDF are not independent of the other "
                 "axes.", status );
      }
   }

/* Create a FrameSet describing the whole sky in which each pixel
   corresponds to a single tile in SMF__JSA_HPX projection. The current
   Frame is ICRS (RA,Dec) and the base Frame is grid coords in which each
   grid pixel corresponds to a single tile. */
   smf_jsatile( -1, skytiling, 0, SMF__JSA_HPX, NULL, &fs, NULL, lbnd, ubnd,
                status );

/* Map the Region using the FrameSet obtained above so that the new Region
   describes offsets in tiles from the lower left tile. If "space_region"
   is a Polygon, ensure that the SimpVertices attribute is set so that the
   simplify method will take non-linearities into account (such as the
   region being split by the RA=12h meridian). */
   astInvert( fs );
   fs = astConvert( space_region, fs, "SKY" );
   if( !fs && *status == SAI__OK ) {
      *status = SAI__ERROR;
      errRep( "", "Cannot convert the supplied Region to ICRS.", status );
      goto L999;
   }

   old_sv = -999;
   if( astIsAPolygon( space_region ) ){
      if( astTest( space_region, "SimpVertices" ) ) {
         old_sv = astGetI( space_region, "SimpVertices" );
      }
      astSetI( space_region, "SimpVertices", 0 );
   }

   region2 = astMapRegion( space_region, fs, fs );

   if( astIsAPolygon( space_region ) ){
      if( old_sv == -999 ) {
         astClear( space_region, "SimpVertices" );
      } else {
         astSetI( space_region, "SimpVertices", old_sv );
      }
   }

/* Get a mesh of all-sky "grid" positions (actually tile X and Y indices)
   covering the region. Since the mesh positions are limited in number
   and placed arbitrarily within the Region, the mesh will identify some,
   but potentially not all, of the tiles that overlap the Region. */
   astGetRegionMesh( region2, 0, 0, 2, &npoint, NULL );
   mesh = astMalloc( 2*npoint*sizeof( *mesh ) );
   astGetRegionMesh( region2, 0, npoint, 2, &npoint, mesh );

/* Find the index of the tile containing each mesh position, and store
   them in a KeyMap using the tile index as the key and "1" (indicating
   the tile overlaps the region) as the value. The KeyMap is sorted by
   age of entry. Neighbouring tiles will be added to this KeyMap later.
   If an entry has a value of zero, it means the tile does not overlap
   the supplied Region. If the value is positive, it means the tile
   does overlap the supplied Region. If the value is negative, it means
   the tile has not yet been tested to see if it overlaps the supplied
   Region. */
   km = astKeyMap( "SortBy=KeyAgeDown" );
   xmesh = mesh;
   ymesh = mesh + npoint;
   for( i = 0; i < npoint && *status == SAI__OK; i++ ) {
      ix = (int)( *(xmesh++) + 0.5 ) - 1;
      iy = (int)( *(ymesh++) + 0.5 ) - 1;
      itile = smf_jsatilexy2i( ix, iy, skytiling, status );
      if (itile != VAL__BADI) {
         sprintf( text, "%d", itile );
         astMapPut0I( km, text, 1, NULL );
      }
   }

/* Starting with the oldest entry in the KeyMap, loop round checking all
   entries, in the order they were added, until all have been checked.
   Checking an entry may cause further entries to be added to the end of
   the KeyMap. */
   key_index = 0;
   mapsize = astMapSize( km );
   while( key_index < mapsize && *status == SAI__OK ) {
      key = astMapKey( km, key_index++ );

/* Convert the key string to an integer tile index. */
      itile = atoi( key );

/* Get the integer value associated with the tile. */
      astMapGet0I( km, key, &value );

/* If the tile associated with the current KeyMap entry has not yet been
   tested for overlap with the requested Region (as shown by the entry
   value being -1), test it now. */
      if( value == -1 ) {

/* Get a Region covering the tile. */
         smf_jsatile( itile, skytiling, 0, SMF__JSA_HPX, NULL, NULL, &tregion,
                      lbnd, ubnd, status );

/* See if this Region overlaps the user supplied region. Set the value of
   the KeyMap entry to +1 or 0 accordingly. */
         overlap = astOverlap( tregion, space_region );
         if( overlap == 0 ) {
            if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               errRep( "", "Cannot align supplied Region with the sky "
                       "tile coordinate system (programming error).",
                       status );
            }
         } else if( overlap == 1 || overlap == 6 ) {
            value = 0;
         } else {
            value = 1;
         }
         astMapPut0I( km, key, value, NULL );
      }

/* Skip the current KeyMap entry if the corresponding tile does not
   overlap the requested Region (as shown by the entry value being zero). */
      if( value == 1 ) {

/* The current tile overlaps the supplied Region, so add the tile index to
   the returned list of tile indices. */
         tiles = astGrow( tiles, ++(*ntile), sizeof( *tiles ) );
         if( *status == SAI__OK ) {
            tiles[ *ntile - 1 ] = itile;

/* Add the adjoining tiles to the end of the KeyMap so that they will be
   tested in their turn, giving them a value of -1 to indicate that they
   have not yet been tested to see if they overlap the supplied Region.
   Ignore adjoining tiles that are already in the keyMap. */
            smf_jsatilei2xy( itile, skytiling, &xt, &yt, NULL, status );
            for( ineb = 0; ineb < 4; ineb++ ) {
               itile2 = smf_jsatilexy2i( xt + xoff[ ineb ], yt + yoff[ ineb ],
                                         skytiling, status );
               if( itile2 != VAL__BADI ) {
                  sprintf( text, "%d", itile2 );
                  if( !astMapHasKey( km, text ) ) {
                     astMapPut0I( km, text, -1, NULL );
                     mapsize++;
                  }
               }
            }
         }
      }
   }

/* Arrive here if an error occurs. */
   L999:;

/* Free resources. */
   mesh = astFree( mesh );

   if( *status != SAI__OK ) {
      tiles = astFree( tiles );
      *ntile = 0;
   }

   astEnd;

   return tiles;
}
コード例 #4
0
ファイル: smurf_unmakecube.c プロジェクト: andrecut/starlink
void smurf_unmakecube( int *status ) {

/* Local Variables */
   AstFrame *tfrm = NULL;       /* Current Frame from input WCS */
   AstFrameSet *wcsin = NULL;   /* WCS Frameset for input cube */
   AstMapping *tmap = NULL;     /* Base->current Mapping from input WCS */
   AstSkyFrame *iskyfrm = NULL; /* SkyFrame from the input WCS Frameset */
   Grp *detgrp = NULL;        /* Group of detector names */
   Grp *igrp1 = NULL;         /* Group of input sky cube files */
   Grp *igrp2 = NULL;         /* Group of input template files */
   Grp *ogrp = NULL;          /* Group containing output file */
   NdgProvenance *oprov = NULL;/* Provenance for the output NDF */
   SkyCube *sky_cubes = NULL; /* Pointer to array of sky cube descriptions */
   SkyCube *skycube = NULL;   /* Pointer to next sky cube description */
   char pabuf[ 10 ];          /* Text buffer for parameter value */
   double params[ 4 ];        /* astResample parameters */
   int axes[ 2 ];             /* Indices of selected axes */
   int blank;                 /* Was a blank line just output? */
   int flag;                  /* Was the group expression flagged? */
   int ifile;                 /* Input file index */
   int interp = 0;            /* Pixel interpolation method */
   int iskycube;              /* Index of current sky cube */
   int nel;                   /* Number of elements in 3D array */
   int nparam = 0;            /* No. of parameters required for interpolation scheme */
   int ondf;                  /* Output time series NDF identifier */
   int outax[ 2 ];            /* Indices of corresponding output axes */
   int overlap;               /* Does time series overlap sky cube? */
   int sdim[3];               /* Array of significant pixel axes */
   int usedetpos;             /* Should the detpos array be used? */
   size_t ndet;               /* Number of detectors supplied for "DETECTORS" */
   size_t nskycube;           /* Number of supplied sky cubes */
   size_t outsize;            /* Number of files in output group */
   size_t size;               /* Number of files in input group */
   smfData *data = NULL;      /* Pointer to data struct */
   void *in_data = NULL;      /* Pointer to the input cube data array */
   void *out_data = NULL;     /* Pointer to the output cube data array */

#if defined(FPTRAP)
   feenableexcept(FE_DIVBYZERO|FE_INVALID|FE_OVERFLOW);
#endif

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* We have not yet displayed a blank line on stdout. */
   blank = 0;

/* Begin an AST context */
   astBegin;

/* Begin an NDF context. */
   ndfBegin();

/* Get a group holding the input sky cubes. */
   kpg1Rgndf( "IN", 0, 1, "", &igrp1, &nskycube, status );

/* Create an array of structures to hold information about each input sky
   cube. */
   sky_cubes = astMalloc( sizeof( SkyCube )*(size_t) nskycube );

/* Store a description of each sky cube. */
   if( sky_cubes ) {
      for( iskycube = 0; iskycube < nskycube; iskycube++ ) {
         skycube = sky_cubes + iskycube;

/* Get an NDF identifier for the next sky cube. */
         ndgNdfas( igrp1, iskycube + 1, "READ", &(skycube->indf), status );

/* Get the WCS FrameSet from the sky cube, together with its pixel index
   bounds. */
         kpg1Asget( skycube->indf, 3, 0, 1, 1, sdim, skycube->slbnd,
                    skycube->subnd, &wcsin, status );

/* Get the base->current Mapping from the input WCS FrameSet, and split it
   into two Mappings; one (iskymap) that maps the first 2 GRID axes into
   celestial sky coordinates, and one (ispecmap) that maps the third GRID
   axis into a spectral coordinate. Also extract the SpecFrame and
   SkyFrame from the current Frame. */
         tmap = astGetMapping( wcsin, AST__BASE, AST__CURRENT );
         tfrm = astGetFrame( wcsin, AST__CURRENT );

         axes[ 0 ] = 1;
         axes[ 1 ] = 2;
         astMapSplit( tmap, 2, axes, outax, &(skycube->iskymap) );
         iskyfrm = astPickAxes( tfrm, 2, outax, NULL );

         axes[ 0 ] = 3;
         astMapSplit( tmap, 1, axes, outax, &(skycube->ispecmap) );
         skycube->ispecfrm = astPickAxes( tfrm, 1, outax, NULL );

/* Create a copy of "iskyfrm" representing absolute coords rather than
   offsets. We assume the target is moving if the cube represents offsets. */
         skycube->abskyfrm = astCopy( iskyfrm );
         astClear( skycube->abskyfrm, "SkyRefIs" );
         skycube->moving = ( *status == SAI__OK &&
                             !strcmp( astGetC( iskyfrm, "SkyRefIs" ),
                                      "Origin" ) ) ? 1 : 0;

/* Invert the Mappings (for the convenience of smf_resamplecube), so
   that they go from current Frame to grid axis. */
         astInvert( skycube->ispecmap );
         astInvert( skycube->iskymap );

/* For efficiency, annul manually the unneeded AST objects created in
   this loop. */
         wcsin = astAnnul( wcsin );
         tmap = astAnnul( tmap );
         tfrm = astAnnul( tfrm );
         iskyfrm = astAnnul( iskyfrm );
      }
   }

/* See if the detector positions are to be read from the RECEPPOS array
   in the template NDFs. Otherwise, they are calculated on the basis of
   the FPLANEX/Y arrays. */
   parGet0l( "USEDETPOS", &usedetpos, status );

/* Get the detectors to use. If a null value is supplied, annull the
   error. Otherwise, make the group case insensitive. */
   detgrp = NULL;
   if( *status == SAI__OK ) {
      kpg1Gtgrp( "DETECTORS", &detgrp, &ndet, status );
      if( *status == PAR__NULL ) {
         errAnnul( status );
	 if (detgrp) {
	   grpDelet( &detgrp, status );
	 }
      } else {
         grpSetcs( detgrp, 0, status );
      }
   }

/* Get the pixel interpolation scheme to use. */
   parChoic( "INTERP", "NEAREST", "NEAREST,LINEAR,SINC,"
             "SINCSINC,SINCCOS,SINCGAUSS,SOMB,SOMBCOS",
             1, pabuf, 10, status );

   if( !strcmp( pabuf, "NEAREST" ) ) {
      interp = AST__NEAREST;
      nparam = 0;

   } else if( !strcmp( pabuf, "LINEAR" ) ) {
      interp = AST__LINEAR;
      nparam = 0;

   } else if( !strcmp( pabuf, "SINC" ) ) {
      interp = AST__SINC;
      nparam = 1;

   } else if( !strcmp( pabuf, "SINCSINC" ) ) {
      interp = AST__SINCSINC;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCCOS" ) ) {
      interp = AST__SINCCOS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SINCGAUSS" ) ) {
      interp = AST__SINCGAUSS;
      nparam = 2;

   } else if( !strcmp( pabuf, "SOMB" ) ) {
      interp = AST__SOMB;
      nparam = 1;

   } else if( !strcmp( pabuf, "SOMBCOS" ) ) {
      interp = AST__SOMBCOS;
      nparam = 2;

   } else if( *status == SAI__OK ) {
      nparam = 0;
      *status = SAI__ERROR;
      msgSetc( "V", pabuf );
      errRep( "", "Support not available for INTERP = ^V (programming "
              "error)", status );
   }

/* Get an additional parameter vector if required. */
   if( nparam > 0 ) parExacd( "PARAMS", nparam, params, status );

/* Get a group of reference time series files to use as templates for
   the output time series files.*/
   ndgAssoc( "REF", 1, &igrp2, &size, &flag, status );

/* Create a group holding the names of the corresponding output NDFs. */
   ndgCreat ( "OUT", igrp2, &ogrp, &outsize, &flag, status );
   if( outsize != size && *status == SAI__OK ) {
      *status = SAI__ERROR;
      msgSeti( "O", outsize );
      msgSeti( "I", size );
      errRep( "", "Numbers of input reference cubes (^I) and output "
              "cubes (^O) differ.", status );
   }

/* Loop round all the template time series files. */
   for( ifile = 1; ifile <= size && *status == SAI__OK; ifile++ ) {

/* Start a new NDF context. */
      ndfBegin();

/* Obtain information about the current template NDF, but do not map the
   arrays. */
      smf_open_file( igrp2, ifile, "READ", SMF__NOCREATE_DATA, &data, status );

/* Issue a suitable message and abort if anything went wrong. */
      if( *status != SAI__OK ) {
         errRep( FUNC_NAME, "Could not open input template file.", status );
         break;

      } else {
         if( data->file == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfFile associated with smfData.",
                    status );
            break;

         } else if( data->hdr == NULL ) {
            *status = SAI__ERROR;
            errRep( FUNC_NAME, "No smfHead associated with smfData.",
                    status );
            break;

         }
      }

/* Report the name of the input template. */
      smf_smfFile_msg( data->file, "FILE", 1, "<unknown>" );
      msgSeti( "THISFILE", ifile );
      msgSeti( "NUMFILES", size );
      msgOutif( MSG__NORM, " ", "Simulating ^THISFILE/^NUMFILES ^FILE",
                status );

/* Create the output NDF by propagation from the input template NDF.
   Everything is copied except for the array components and any PROVENANCE
   extension. */
      ndgNdfpr( data->file->ndfid, "TITLE,LABEL,UNITS,AXIS,WCS,HISTORY,"
                "NOEXTENSION(PROVENANCE)", ogrp, ifile, &ondf, status );

/* Ensure the output NDF has a history component. */
      ndfHcre( ondf, status );

/* Get a pointer to the mapped output data array. Set all values bad. */
      ndfMap( ondf, "DATA", "_REAL", "WRITE/BAD", &out_data, &nel, status );

/* If the detector positions are to calculated on the basis of FPLANEX/Y
   rather than detpos, then free the detpos array in the templates smfHead
   structure. This will cause smf_tslice_ast to use the fplanex/y values. */
      if( !usedetpos && data->hdr->detpos ) {
         astFree( (double *) data->hdr->detpos );
         data->hdr->detpos = NULL;
      }

/* Get a pointer to a structure holding provenance information for the
   output time series. */
      oprov = ndgReadProv( ondf, "SMURF:UNMAKECUBE", status );

/* Record details of the template in the provenance structure for the
   output time series. */
      ndgPutProv( oprov, data->file->ndfid, NULL, 0, status );

/* Loop round all input sky cubes. */
      for( iskycube = 0; iskycube < nskycube; iskycube++ ) {
         skycube = sky_cubes + iskycube;

/* Record details of the input cube in the provenance extension of the
   output time series. */
         ndgPutProv( oprov, skycube->indf, NULL, 0, status );

/* See if the current time series overlaps the current sky cube. */
         smf_resampcube( data, skycube->abskyfrm,
                         skycube->iskymap, skycube->ispecfrm,
                         skycube->ispecmap, detgrp, skycube->moving,
                         skycube->slbnd, skycube->subnd, interp,
                         params, NULL, NULL, &overlap, status );

/* If not, pass on to the next sky cube. */
         if( overlap ) {

/* Report the name of the sky cube. */
            ndfMsg( "NDF", skycube->indf );
            msgOutif( MSG__NORM, " ", "   Re-sampling ^NDF", status );

/* Map the data array in the current sky cube. */
            ndfMap( skycube->indf, "DATA", "_REAL", "READ", &in_data, &nel,
                    status );

/* Resample the cube data into the output time series. */
            smf_resampcube( data, skycube->abskyfrm,
                            skycube->iskymap, skycube->ispecfrm,
                            skycube->ispecmap, detgrp, skycube->moving,
                            skycube->slbnd, skycube->subnd, interp,
                            params, in_data, out_data, &overlap, status );

/* Unmap the data array. */
            ndfUnmap( skycube->indf, "DATA", status );
         }
      }

/* Write the provenance structure to the output NDF, and then free it. */
      ndgWriteProv( oprov, ondf, 1, status );
      oprov =ndgFreeProv( oprov, status );

/* Close the input time series file. */
      if( data != NULL ) {
         smf_close_file( &data, status );
         data = NULL;
      }

/* End the NDF context. */
      ndfEnd( status );
   }

/* Close any input data file that is still open due to an early exit from
   the above loop. */
   if( data != NULL ) {
      smf_close_file( &data, status );
      data = NULL;
   }

/* Free remaining resources. */
   if( detgrp != NULL) grpDelet( &detgrp, status);
   if( igrp1 != NULL) grpDelet( &igrp1, status);
   if( igrp2 != NULL) grpDelet( &igrp2, status);
   if( ogrp != NULL) grpDelet( &ogrp, status);
   sky_cubes = astFree( sky_cubes );

/* End the NDF context. */
   ndfEnd( status );

/* End the tile's AST context. */
   astEnd;

/* Issue a status indication.*/
   if( *status == SAI__OK ) {
      msgOutif(MSG__VERB," ",TASK_NAME " succeeded, time series written.", status);
   } else {
      msgOutif(MSG__VERB," ",TASK_NAME " failed.", status);
   }
}
コード例 #5
0
void smurf_jsatileinfo( int *status ) {

/* Local Variables */
   AstCmpRegion *overlap;
   AstFitsChan *fc;
   AstFrameSet *fs;
   AstObject *obj;
   AstRegion *region;
   AstRegion *target;
   HDSLoc *cloc = NULL;
   HDSLoc *xloc = NULL;
   char *jcmt_tiles;
   char *tilendf = NULL;
   char text[ 200 ];
   double dec[ 8 ];
   double dist;
   double dlbnd[ 2 ];
   double dubnd[ 2 ];
   double gx[ 8 ];
   double gy[ 8 ];
   double maxdist;
   double norm_radec[2];
   double point1[ 2 ];
   double point2[ 2 ];
   double ra[ 8 ];
   double ra0;
   double dec0;
   int *ipntr;
   int axes[ 2 ];
   int create;
   int dirlen;
   int el;
   int exists;
   int flag;
   int i;
   int indf1;
   int indf2;
   int indf3;
   int itile;
   int iv;
   int jtile;
   int lbnd[ 2 ];
   int local_origin;
   int nc;
   int place;
   int tlbnd[ 2 ];
   int tubnd[ 2 ];
   int ubnd[ 2 ];
   smf_jsaproj_t proj;
   int xt;
   int yt;
   smfJSATiling skytiling;
   void *pntr;

/* Check inherited status */
   if( *status != SAI__OK ) return;

/* Start a new AST context. */
   astBegin;

/* Get the instrument to use abnd get the parameters describing the
   layout of its JSA tiles. */
   smf_jsainstrument( "INSTRUMENT", NULL, SMF__INST_NONE, &skytiling,
                      status );

/* Return the maximum tile index. */
   parPut0i( "MAXTILE", skytiling.ntiles - 1, status );

/* Abort if an error has occurred. */
   if( *status != SAI__OK ) goto L999;

/* Decide what sort of projection to use. */
   parChoic( "PROJ", "HPX", "HPX,HPX12,XPHN,XPHS", 1, text, sizeof(text),
             status );
   proj = smf_jsaproj_fromstr( text, 1, status );

/* If required, create an all-sky NDF in which each pixel covers the area
   of a single tile, and holds the integer tile index. The NDF has an
   initial size of 1x1 pixels, but is expanded later to the required size. */
   lbnd[ 0 ] = ubnd[ 0 ] = lbnd[ 1 ] = ubnd[ 1 ] = 1;
   ndfCreat( "ALLSKY", "_INTEGER", 2, lbnd, ubnd, &indf3, status );

/* If a null (!) value was supplied for parameter ALLSKY, annull the
   error and pass on. */
   if( *status == PAR__NULL ) {
      errAnnul( status );

/* Otherwise, create a FrameSet describing the whole sky in which each
   pixel corresponds to a single tile. */
   } else {
      smf_jsatile( -1, &skytiling, 0, proj, NULL, &fs, NULL, lbnd, ubnd,
                   status );

/* Change the bounds of the output NDF. */
      ndfSbnd( 2, lbnd, ubnd, indf3, status );

/* Store the FrameSet in the NDF. */
      ndfPtwcs( fs, indf3, status );

/* Map the data array. */
      ndfMap( indf3, "Data", "_INTEGER", "WRITE/BAD", (void **) &ipntr, &el,
              status );

/* Create all-sky map using XPH projection. */
      if( *status == SAI__OK ) {

/* Loop round every tile index. */
         for( jtile = 0; jtile < skytiling.ntiles; jtile++ ) {

/* Get the zero-based (x,y) indices of the tile within an HPX projection.
   This flips the bottom left half-facet up to the top right. */
            smf_jsatilei2xy( jtile, &skytiling, &xt, &yt, NULL, status );

/* Convert these HPX indices to the corresponding indices within the
   required projection. Note, the lower left facet is split by the above
   call to smf_jsatilei2xy tile (i.e. (xt,yt) indices are *not* in the
   "raw" mode). For instance, (0,0) is not a valid tile. */
            smf_jsatilexyconv( &skytiling, proj, xt, yt, 0, &xt, &yt, status );

/* Get the vector index of the corresponding element of the all-sky NDF. */
            if( proj == SMF__JSA_HPX || proj == SMF__JSA_HPX12 ) {
               iv = xt + 5*skytiling.ntpf*yt;
            } else {
               iv = xt + 4*skytiling.ntpf*yt;
            }

/* Report an error if this element has already been assigned a tile
   index. Otherwise, store the tile index. */
            if( ipntr[ iv ] == VAL__BADI ) {
               ipntr[ iv ] = jtile;
            } else if( *status == SAI__OK ) {
               *status = SAI__ERROR;
               errRepf( "", "%s projection assigns multiple tiles to "
                        "pixel (%d,%d).", status, text, xt, yt );
               break;
            }
         }
      }

/* Store NDF title. */
      sprintf( text, "JSA tile indices for %s data", skytiling.name );
      ndfCput( text, indf3, "TITLE", status );

/* Store the instrument as a component in the SMURF extension. */
      ndfXnew( indf3, "SMURF", "INSTRUMENT", 0, 0, &xloc, status );
      ndfXpt0c( skytiling.name, indf3, "SMURF", "INSTRUMENT", status );
      datAnnul( &xloc, status );

/* Close the NDF. */
      ndfAnnul( &indf3, status );
   }

/* Abort if an error has occurred. */
   if( *status != SAI__OK ) goto L999;

/* Get the zero-based index of the required tile. If a null value is
   supplied, annull the error and skip to the end. */
   parGdr0i( "ITILE", 0, 0, skytiling.ntiles - 1, 0, &itile, status );
   if( *status == PAR__NULL ) {
       errAnnul( status );
       goto L999;
   }

/* See if the pixel origin is to be at the centre of the tile. */
   parGet0l( "LOCAL", &local_origin, status );

/* Display the tile number. */
   msgBlank( status );
   msgSeti( "ITILE", itile );
   msgSeti( "MAXTILE", skytiling.ntiles - 1);
   msgOut( " ", "   Tile ^ITILE (from 0 to ^MAXTILE):", status );

/* Get the FITS header, FrameSet and Region defining the tile, and the tile
   bounds in pixel indices. */
   smf_jsatile( itile, &skytiling, local_origin,  proj, &fc, &fs, &region,
                lbnd, ubnd, status );

/* Write the FITS headers out to a file, annulling the error if the
   header is not required. */
   if( *status == SAI__OK ) {
      atlDumpFits( "HEADER", fc, status );
      if( *status == PAR__NULL ) errAnnul( status );
   }

/* If required, write the Region out to a text file. */
   if( *status == SAI__OK ) {
      atlCreat( "REGION", (AstObject *) region, status );
      if( *status == PAR__NULL ) errAnnul( status );
   }

/* Store the lower and upper pixel bounds of the tile. */
   parPut1i( "LBND", 2, lbnd, status );
   parPut1i( "UBND", 2, ubnd, status );

/* Display pixel bounds on the screen. */
   msgSeti( "XL", lbnd[ 0 ] );
   msgSeti( "XU", ubnd[ 0 ] );
   msgSeti( "YL", lbnd[ 1 ] );
   msgSeti( "YU", ubnd[ 1 ] );
   msgOut( " ", "      Pixel bounds: (^XL:^XU,^YL:^YU)", status );

/* Get the RA,Dec at the tile centre. */
   if( astTest( fs, "SkyRef" ) ) {
      ra0 = astGetD( fs, "SkyRef(1)" );
      dec0 = astGetD( fs, "SkyRef(2)" );

/* Format the central RA and Dec. and display. Call astNorm on the
   coordinates provided that the frame set has the correct number of
   axes (which it should as it comes from smf_jsatile). */
      norm_radec[0] = ra0;
      norm_radec[1] = dec0;
      if (astGetI(fs, "Naxes") == 2) astNorm(fs, norm_radec);
      msgSetc( "RACEN",  astFormat( fs, 1, norm_radec[ 0 ] ));
      msgSetc( "DECCEN",  astFormat( fs, 2, norm_radec[ 1 ] ));
      msgOut( " ", "      Centre (ICRS): RA=^RACEN DEC=^DECCEN", status );

/* Transform a collection of points on the edge of the region (corners and
   side mid-points) from GRID coords to RA,Dec. */
      point1[ 0 ] = 0.5;
      point1[ 1 ] = 0.5;
      point2[ 0 ] = ubnd[ 0 ] - lbnd[ 0 ] + 1;
      point2[ 1 ] = ubnd[ 1 ] - lbnd[ 1 ] + 1;

      gx[ 0 ] = point1[ 0 ];         /* Bottom left */
      gy[ 0 ] = point1[ 1 ];

      gx[ 1 ] = point1[ 0 ];         /* Centre left */
      gy[ 1 ] = gy[ 0 ];

      gx[ 2 ] = point1[ 0 ];         /* Top left */
      gy[ 2 ] = point2[ 1 ];

      gx[ 3 ] = gx[ 0 ];             /* Top centre */
      gy[ 3 ] = point2[ 1 ];

      gx[ 4 ] = point2[ 0 ];         /* Top right */
      gy[ 4 ] = point2[ 1 ];

      gx[ 5 ] = point2[ 0 ];         /* Centre right */
      gy[ 5 ] = gy[ 0 ];

      gx[ 6 ] = point2[ 0 ];         /* Bottom right */
      gy[ 6 ] = point1[ 1 ];

      gx[ 7 ] = gx[ 0 ];             /* Bottom centre */
      gy[ 7 ] = point1[ 1 ];

      astTran2( fs, 8, gx, gy, 1, ra, dec );

/* Find the arc-distance from the centre to the furthest point from the
   centre. */
      point1[ 0 ] = ra0;
      point1[ 1 ] = dec0;
      maxdist = -1.0;

      for( i = 1; i < 8; i++ ) {
         if( ra[ i ] != AST__BAD && dec[ i ] != AST__BAD ) {
            point2[ 0 ] = ra[ i ];
            point2[ 1 ] = dec[ i ];
            dist = astDistance( fs, point1, point2 );
            if( dist > maxdist ) maxdist = dist;
         }
      }

/* Convert from radius to diameter. */
      maxdist *= 2.0;

/* Format this size as a dec value (i.e. arc-distance) and display it. */
      if( maxdist > 0.0 ) {
         msgSetc( "SIZE",  astFormat( fs, 2, maxdist ) );
         msgOut( " ", "      Size: ^SIZE", status );
      } else {
         maxdist = AST__BAD;
         msgOut( " ", "      Size: <unknown>", status );
      }

/* If a discontinuity passes through the tile, the centre and size may be
   unknown. */
   } else {
      ra0 = AST__BAD;
      dec0 = AST__BAD;
      maxdist = AST__BAD;
      msgOut( " ", "      Centre (ICRS): RA=<unknown> DEC=<unknown>", status );
      msgOut( " ", "      Size: <unknown>", status );
   }

/* Write the tile centre ra and dec in radians to the output parameters. */
   parPut0d( "RACEN", norm_radec[ 0 ], status );
   parPut0d( "DECCEN", norm_radec[ 1 ], status );

/* Write the size to the output parameter as radians. */
   parPut0d( "SIZE", maxdist, status );

/* Get the translation of the environment variable JSA_TILE_DIR. */
   jcmt_tiles = getenv( "JSA_TILE_DIR" );

/* Initialise the path to the tile's NDF to hold the root directory.
   Use the current working directory if JSA_TILE_DIR is undefined. */
   if( jcmt_tiles ) {
      nc = 0;
      tilendf = astAppendString( tilendf, &nc, jcmt_tiles );

   } else {

      nc = 512;
      jcmt_tiles = astMalloc( nc );

      while( !getcwd( jcmt_tiles, nc ) ) {
         nc *= 2;
         jcmt_tiles = astRealloc( jcmt_tiles, nc );
      }

      nc = 0;
      tilendf = astAppendString( tilendf, &nc, jcmt_tiles );
      jcmt_tiles = astFree( jcmt_tiles );
   }

/* Complete the path to the tile's NDF. */
   tilendf = astAppendString( tilendf, &nc, "/" );
   tilendf = astAppendString( tilendf, &nc, skytiling.subdir );
   dirlen = nc;
   sprintf( text, "/tile_%d.sdf", itile );
   tilendf = astAppendString( tilendf, &nc, text );

/* Write it to the output parameter. */
   parPut0c( "TILENDF", tilendf, status );

/* See if the NDF exists, and store the flag in the output parameter. */
   exists = access( tilendf, F_OK ) ? 0 : 1;
   parPut0l( "EXISTS", exists, status );

/* If the NDF does not exist, create it if required. */
   parGet0l( "CREATE", &create, status );
   if( !exists && create && *status == SAI__OK ) {

/* Write the NDF info to the screen. */
      msgSetc( "NDF",  tilendf );
      msgOutif( MSG__NORM, " ", "      NDF: ^NDF (created)", status );

/* Temporarily terminate the NDF path at the end of the subdirectory. */
      tilendf[ dirlen ] = 0;

/* Create the required directory (does nothing if the directory
   already exists).  It is given read/write/search permissions for owner
   and group, and read/search permissions for others. */
      (void) mkdir( tilendf, S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );

/* Replace the character temporarily overwritten above. */
      tilendf[ dirlen ] = '/';

/* Now create the tile's NDF. */
      ndfPlace( NULL, tilendf, &place, status );
      ndfNew( skytiling.type, 2, lbnd, ubnd, &place, &indf1, status );

/* Fill its data array with zeros. */
      ndfMap( indf1, "Data", skytiling.type, "WRITE/ZERO", &pntr, &el,
              status );

/* Store the WCS FrameSet. */
      ndfPtwcs( fs, indf1, status );

/* If the instrument jsatiles.have variance, fill the variance array with zeros. */
      if( skytiling.var ) {
         ndfMap( indf1, "Variance", skytiling.type, "WRITE/ZERO", &pntr,
                 &el, status );
      }

/* Create a SMURF extension. */
      ndfXnew( indf1, SMURF__EXTNAME, SMURF__EXTTYPE, 0, NULL, &xloc, status );

/* Store the tile number and instrument name in the extension. */
      datNew0I( xloc, "TILE", status );
      datFind( xloc, "TILE", &cloc, status );
      datPut0I( cloc, itile, status );
      datAnnul( &cloc, status );

      datNew0C( xloc, "INSTRUMENT", strlen( skytiling.name ), status );
      datFind( xloc, "INSTRUMENT", &cloc, status );
      datPut0C( cloc, skytiling.name, status );
      datAnnul( &cloc, status );

/* Create a weights NDF within the SMURF extension, and fill its data
   array with zeros. */
      ndfPlace( xloc, "WEIGHTS", &place, status );
      ndfNew( skytiling.type, 2, lbnd, ubnd, &place, &indf2, status );
      ndfMap( indf2, "Data", skytiling.type, "WRITE/ZERO", &pntr, &el,
              status );
      ndfPtwcs( fs, indf2, status );
      ndfAnnul( &indf2, status );

/* Annul the extension locator and the main NDF identifier. */
      datAnnul( &xloc, status );
      ndfAnnul( &indf1, status );

/* Write the NDF info to the screen. */
   } else {
      msgSetc( "NDF",  tilendf );
      msgSetc( "E",  exists ? "exists" : "does not exist" );
      msgOut( " ", "      NDF: ^NDF (^E)", status );
   }

/* Initialise TBND and TLBND to indicate no overlap. */
   tlbnd[ 0 ] = 1;
   tlbnd[ 1 ] = 1;
   tubnd[ 0 ] = 0;
   tubnd[ 1 ] = 0;

/* Attempt to to get an AST Region (assumed to be in some 2D sky coordinate
   system) using parameter "TARGET". */
   if( *status == SAI__OK ) {
      kpg1Gtobj( "TARGET", "Region",
                 (void (*)( void )) F77_EXTERNAL_NAME(ast_isaregion),
                 &obj, status );

/* Annul the error if none was obtained. */
      if( *status == PAR__NULL ) {
         errAnnul( status );

/* Otherwise, use the supplied object. */
      } else {
         target = (AstRegion *) obj;

/* If the target Region is 3-dimensional, remove the third axis, which
   is assumed to be a spectral axis. */
         if( astGetI( target, "Naxes" ) == 3 ) {
            axes[ 0 ] = 1;
            axes[ 1 ] = 2;
            target = astPickAxes( target, 2, axes, NULL );
         }

/* See if there is any overlap between the target and the tile. */
         overlap = NULL;
         flag = astOverlap( region, target );

         if( flag == 0 ) {
            msgOut( "", "      Cannot convert between the coordinate system of the "
                    "supplied target and the tile.", status );

         } else if( flag == 1 || flag == 6 ) {
            msgOut( "", "      There is no overlap between the target and the tile.",
                    status );

         } else if( flag == 2 ) {
            msgOut( "", "      The tile is contained within the target.",
                    status );
            tlbnd[ 0 ] = lbnd[ 0 ];
            tlbnd[ 1 ] = lbnd[ 1 ];
            tubnd[ 0 ] = ubnd[ 0 ];
            tubnd[ 1 ] = ubnd[ 1 ];

         } else if( flag == 3 ) {
            overlap = astCmpRegion( region, target, AST__AND, " " );

         } else if( flag == 4 ) {
            overlap = astCmpRegion( region, target, AST__AND, " " );

         } else if( flag == 5 ) {
            msgOut( "", "      The target and tile are identical.",
                    status );
            tlbnd[ 0 ] = lbnd[ 0 ];
            tlbnd[ 1 ] = lbnd[ 1 ];
            tubnd[ 0 ] = ubnd[ 0 ];
            tubnd[ 1 ] = ubnd[ 1 ];

         } else if( *status == SAI__OK ) {
            *status = SAI__OK;
            errRepf( "", "Unexpected value %d returned by astOverlap "
                     "(programming error).", status, flag );
         }

/* If a region containing the intersection of the tile and target was
   created above, map it into the grid coordinate system of the tile. */
         if( overlap ) {
            overlap = astMapRegion( overlap, astGetMapping( fs, AST__CURRENT,
                                                            AST__BASE ),
                                    astGetFrame( fs, AST__BASE ) );

/* Get its GRID bounds. */
            astGetRegionBounds( overlap, dlbnd, dubnd );

/* Convert to integer. */
            tlbnd[ 0 ] = ceil( dlbnd[ 0 ] - 0.5 );
            tlbnd[ 1 ] = ceil( dlbnd[ 1 ] - 0.5 );
            tubnd[ 0 ] = ceil( dubnd[ 0 ] - 0.5 );
            tubnd[ 1 ] = ceil( dubnd[ 1 ] - 0.5 );

/* Convert to PIXEL indices within the tile. */
            tlbnd[ 0 ] += lbnd[ 0 ] - 1;
            tlbnd[ 1 ] += lbnd[ 1 ] - 1;
            tubnd[ 0 ] += lbnd[ 0 ] - 1;
            tubnd[ 1 ] += lbnd[ 1 ] - 1;

            msgOutf( "", "      The target overlaps section (%d:%d,%d:%d).",
                     status, tlbnd[ 0 ], tubnd[ 0 ], tlbnd[ 1 ], tubnd[ 1 ] );
         }
      }
   }

/* Store the pixel index bounds of the tiles overlap with the target. */
   parPut1i( "TLBND", 2, tlbnd, status );
   parPut1i( "TUBND", 2, tubnd, status );

/* Arrive here if an error occurs. */
   L999:;

/* Free resources. */
   tilendf = astFree( tilendf );

/* End the AST context. */
   astEnd;

/* Issue a status indication.*/
   msgBlank( status );
   if( *status == SAI__OK ) {
      msgOutif( MSG__VERB, "", "JSATILEINFO succeeded.", status);
   } else {
      msgOutif( MSG__VERB, "", "JSATILEINFO failed.", status);
   }
}