コード例 #1
0
ファイル: ar9285_attach.c プロジェクト: coyizumi/cs111
static void
ar9285WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	freqIndex = 2;
	if (IEEE80211_IS_CHAN_HT40(chan))
		modesIndex = 3;
	else if (IEEE80211_IS_CHAN_108G(chan))
		modesIndex = 5;
	else
		modesIndex = 4;

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
	    modesIndex, regWrites);
	if (AR_SREV_KITE_12_OR_LATER(ah)) {
		regWrites = ath_hal_ini_write(ah, &AH9285(ah)->ah_ini_txgain,
		    modesIndex, regWrites);
	}
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
	    1, regWrites);
}
コード例 #2
0
static void
ar9280WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
    u_int modesIndex, freqIndex;
    int regWrites = 0;

    /* Setup the indices for the next set of register array writes */
    /* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
        freqIndex = 2;
        if (IEEE80211_IS_CHAN_HT40(chan))
            modesIndex = 3;
        else if (IEEE80211_IS_CHAN_108G(chan))
            modesIndex = 5;
        else
            modesIndex = 4;
    } else {
        freqIndex = 1;
        if (IEEE80211_IS_CHAN_HT40(chan) ||
                IEEE80211_IS_CHAN_TURBO(chan))
            modesIndex = 2;
        else
            modesIndex = 1;
    }

    /* Set correct Baseband to analog shift setting to access analog chips. */
    OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
    OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

    /* XXX Merlin ini fixups */
    /* XXX Merlin 100us delay for shift registers */
    regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
                                  modesIndex, regWrites);
    if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
        regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
                                      modesIndex, regWrites);
        regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
                                      modesIndex, regWrites);
    }
    /* XXX Merlin 100us delay for shift registers */
    regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
                                  1, regWrites);

    if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
        /* 5GHz channels w/ Fast Clock use different modal values */
        regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
                                      modesIndex, regWrites);
    }
}
コード例 #3
0
ファイル: ar9287.c プロジェクト: 2asoft/freebsd
static void
ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
	int writes)
{
	(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
		freqIndex, writes);
}
コード例 #4
0
ファイル: ar9285_attach.c プロジェクト: AhmadTux/DragonFlyBSD
static void
ar9285ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore)
{
	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
		OS_REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
	}
}
コード例 #5
0
static void
ar9285WriteIni(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	freqIndex = 2;
	if (IS_CHAN_HT40(chan))
		modesIndex = 3;
	else if (IS_CHAN_108G(chan))
		modesIndex = 5;
	else
		modesIndex = 4;

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
	    modesIndex, regWrites);
	if (AR_SREV_KITE_12_OR_LATER(ah)) {
		regWrites = ath_hal_ini_write(ah, &AH9285(ah)->ah_ini_txgain,
		    modesIndex, regWrites);
	}
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
	    1, regWrites);

      	OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));

	if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
		uint32_t val;
		val = OS_REG_READ(ah, AR_PCU_MISC_MODE2) &
			(~AR_PCU_MISC_MODE2_HWWAR1);
		OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
		OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
	}

}
コード例 #6
0
ファイル: ar9285_attach.c プロジェクト: coyizumi/cs111
static void
ar9285AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9285.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 7,
                .cycPwrThr1             = { 2, 4, 6, 8, 10, 12, 14, 16 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL);

        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

static const char * ar9285_lna_conf[] = {
	"LNA1-LNA2",
	"LNA2",
	"LNA1",
	"LNA1+LNA2",
};

static void
ar9285_eeprom_print_diversity_settings(struct ath_hal *ah)
{
	const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
	const MODAL_EEP4K_HEADER *pModal = &ee->ee_base.modalHeader;

	ath_hal_printf(ah, "[ath] AR9285 Main LNA config: %s\n",
	    ar9285_lna_conf[(pModal->antdiv_ctl2 >> 2) & 0x3]);
	ath_hal_printf(ah, "[ath] AR9285 Alt LNA config: %s\n",
	    ar9285_lna_conf[pModal->antdiv_ctl2 & 0x3]);
	ath_hal_printf(ah, "[ath] LNA diversity %s, Diversity %s\n",
	    ((pModal->antdiv_ctl1 & 0x1) ? "enabled" : "disabled"),
	    ((pModal->antdiv_ctl1 & 0x8) ? "enabled" : "disabled"));
}

/*
 * Attach for an AR9285 part.
 */
static struct ath_hal *
ar9285Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_9285 *ahp9285;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp9285 = ath_hal_malloc(sizeof (struct ath_hal_9285));
	if (ahp9285 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ahp = AH5212(ahp9285);
	ah = &ahp->ah_priv.h;

	ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

	/*
	 * Use the "local" EEPROM data given to us by the higher layers.
	 * This is a private copy out of system flash. The Linux ath9k
	 * commit for the initial AR9130 support mentions MMIO flash
	 * access is "unreliable." -adrian
	 */
	if (eepromdata != AH_NULL) {
		AH_PRIVATE(ah)->ah_eepromRead = ath_hal_EepromDataRead;
		AH_PRIVATE(ah)->ah_eepromWrite = NULL;
		ah->ah_eepromdata = eepromdata;
	}

	/* override with 9285 specific state */
	AH5416(ah)->ah_initPLL = ar9280InitPLL;
	AH5416(ah)->ah_btCoexSetDiversity = ar9285BTCoexAntennaDiversity;

	ah->ah_setAntennaSwitch		= ar9285SetAntennaSwitch;
	ah->ah_configPCIE		= ar9285ConfigPCIE;
	ah->ah_disablePCIE		= ar9285DisablePCIE;
	ah->ah_setTxPower		= ar9285SetTransmitPower;
	ah->ah_setBoardValues		= ar9285SetBoardValues;
	ah->ah_btCoexSetParameter	= ar9285BTCoexSetParameter;
	ah->ah_divLnaConfGet		= ar9285_antdiv_comb_conf_get;
	ah->ah_divLnaConfSet		= ar9285_antdiv_comb_conf_set;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9280_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9280_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9280_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9280_adc_init_dc_cal;
	AH5416(ah)->ah_cal.suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;

	AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
	AH5416(ah)->ah_writeIni		= ar9285WriteIni;
	AH5416(ah)->ah_rx_chainmask	= AR9285_DEFAULT_RXCHAINMASK;
	AH5416(ah)->ah_tx_chainmask	= AR9285_DEFAULT_TXCHAINMASK;
	
	ahp->ah_maxTxTrigLev		= MAX_TX_FIFO_THRESHOLD >> 1;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* setup common ini data; rf backends handle remainder */
	if (AR_SREV_KITE_12_OR_LATER(ah)) {
		HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes_v2, 6);
		HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common_v2, 2);
		HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
		    ar9285PciePhy_clkreq_always_on_L1_v2, 2);
	} else {
		HAL_INI_INIT(&ahp->ah_ini_modes, ar9285Modes, 6);
		HAL_INI_INIT(&ahp->ah_ini_common, ar9285Common, 2);
		HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
		    ar9285PciePhy_clkreq_always_on_L1, 2);
	}
	ar5416AttachPCIE(ah);

	/* Attach methods that require MAC version/revision info */
	if (AR_SREV_KITE_12_OR_LATER(ah))
		AH5416(ah)->ah_cal_initcal      = ar9285InitCalHardware;
	if (AR_SREV_KITE_11_OR_LATER(ah))
		AH5416(ah)->ah_cal_pacal        = ar9002_hw_pa_cal;

	ecode = ath_hal_v4kEepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9285RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	HAL_INI_INIT(&ahp9285->ah_ini_rxgain, ar9280Modes_original_rxgain_v2,
	    6);

	if (AR_SREV_9285E_20(ah))
		ath_hal_printf(ah, "[ath] AR9285E_20 detected; using XE TX gain tables\n");

	/* setup txgain table */
	switch (ath_hal_eepromGet(ah, AR_EEP_TXGAIN_TYPE, AH_NULL)) {
	case AR5416_EEP_TXGAIN_HIGH_POWER:
		if (AR_SREV_9285E_20(ah))
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_XE2_0_high_power, 6);
		else
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_high_power_tx_gain_v2, 6);
		break;
	case AR5416_EEP_TXGAIN_ORIG:
		if (AR_SREV_9285E_20(ah))
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_XE2_0_normal_power, 6);
		else
			HAL_INI_INIT(&ahp9285->ah_ini_txgain,
			    ar9285Modes_original_tx_gain_v2, 6);
		break;
	default:
		HALASSERT(AH_FALSE);
		goto bad;		/* XXX ? try to continue */
	}

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9285FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	/*
	 * Print out the EEPROM antenna configuration mapping.
	 * Some devices have a hard-coded LNA configuration profile;
	 * others enable diversity.
	 */
	ar9285_eeprom_print_diversity_settings(ah);

	/* Print out whether the EEPROM settings enable AR9285 diversity */
	if (ar9285_check_div_comb(ah)) {
		ath_hal_printf(ah, "[ath] Enabling diversity for Kite\n");
	}

	/* Disable 11n for the AR2427 */
	if (devid == AR2427_DEVID_PCIE)
		AH_PRIVATE(ah)->ah_caps.halHTSupport = AH_FALSE;

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	/*
         * For Kite and later chipsets, the following bits are not
	 * programmed in EEPROM and so are set as enabled always.
	 */
	AH_PRIVATE(ah)->ah_currentRDext = AR9285_RDEXT_DEFAULT;

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9285AniSetup(ah);			/* Anti Noise Immunity */

	/* Setup noise floor min/max/nominal values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ;
	/* XXX no 5ghz values? */

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ah != AH_NULL)
		ah->ah_detach(ah);
	if (status)
		*status = ecode;
	return AH_NULL;
}

static void
ar9285ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off)
{
	uint32_t val;

	/*
	 * This workaround needs some integration work with the HAL
	 * config parameters and the if_ath_pci.c glue.
	 * Specifically, read the value of the PCI register 0x70c
	 * (4 byte PCI config space register) and store it in ath_hal_war70c.
	 * Then if it's non-zero, the below WAR would override register
	 * 0x570c upon suspend/resume.
	 */
#if 0
	if (AR_SREV_9285E_20(ah)) {
		val = AH_PRIVATE(ah)->ah_config.ath_hal_war70c;
		if (val) {
			val &= 0xffff00ff;
			val |= 0x6f00;
			OS_REG_WRITE(ah, 0x570c, val);
		}
	}
#endif

	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
	}

	/*
	 * Set PCIe workaround bits
	 *
	 * NOTE:
	 *
	 * In Merlin and Kite, bit 14 in WA register (disable L1) should only
	 * be set when device enters D3 and be cleared when device comes back
	 * to D0.
	 */
	if (power_off) {                /* Power-off */
		OS_REG_CLR_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);

		val = OS_REG_READ(ah, AR_WA);

		/*
		 * Disable bit 6 and 7 before entering D3 to prevent
		 * system hang.
		 */
		val &= ~(AR_WA_BIT6 | AR_WA_BIT7);

		/*
		 * See above: set AR_WA_D3_L1_DISABLE when entering D3 state.
		 *
		 * XXX The reference HAL does it this way - it only sets
		 * AR_WA_D3_L1_DISABLE if it's set in AR9280_WA_DEFAULT,
		 * which it (currently) isn't.  So the following statement
		 * is currently a NOP.
		 */
		if (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)
			val |= AR_WA_D3_L1_DISABLE;

		if (AR_SREV_9285E_20(ah))
			val |= AR_WA_BIT23;

		OS_REG_WRITE(ah, AR_WA, val);
	} else {			/* Power-on */
		val = AR9285_WA_DEFAULT;
		/*
		 * See note above: make sure L1_DISABLE is not set.
		 */
		val &= (~AR_WA_D3_L1_DISABLE);

		/* Software workaroud for ASPM system hang. */
		val |= (AR_WA_BIT6 | AR_WA_BIT7);

		if (AR_SREV_9285E_20(ah))
			val |= AR_WA_BIT23;

		OS_REG_WRITE(ah, AR_WA, val);

		/* set bit 19 to allow forcing of pcie core into L1 state */
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
	}
}
コード例 #7
0
ファイル: ar9287.c プロジェクト: 2asoft/freebsd
/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 *
 * Actual Expression,
 *
 * For 2GHz channel, 
 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) 
 * (freq_ref = 40MHz)
 *
 * For 5GHz channel,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
 * (freq_ref = 40MHz/(24>>amodeRefSel))
 *
 * For 5GHz channels which are 5MHz spaced,
 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
 * (freq_ref = 40MHz)
 */
static HAL_BOOL
ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint16_t bMode, fracMode, aModeRefSel = 0;
	uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
	CHAN_CENTERS centers;
	uint32_t refDivA = 24;

	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);

	ar5416GetChannelCenters(ah, chan, &centers);
	freq = centers.synth_center;

	reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
	reg32 &= 0xc0000000;

	if (freq < 4800) {     /* 2 GHz, fractional mode */
		uint32_t txctl;
		int regWrites = 0;

		bMode = 1;
		fracMode = 1;
		aModeRefSel = 0;       
		channelSel = (freq * 0x10000)/15;

		if (AR_SREV_KIWI_11_OR_LATER(ah)) {
			if (freq == 2484) {
				ath_hal_ini_write(ah,
				    &AH9287(ah)->ah_ini_cckFirJapan2484, 1,
				    regWrites);
			} else {
				ath_hal_ini_write(ah,
				    &AH9287(ah)->ah_ini_cckFirNormal, 1,
				    regWrites);
			}
		}

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
			    txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}     
	} else {
		bMode = 0;
		fracMode = 0;

		if ((freq % 20) == 0) {
			aModeRefSel = 3;
		} else if ((freq % 10) == 0) {
			aModeRefSel = 2;
		} else {
			aModeRefSel = 0;
			/*
			 * Enable 2G (fractional) mode for channels which
			 * are 5MHz spaced
			 */
			fracMode = 1;
			refDivA = 1;
			channelSel = (freq * 0x8000)/15;

			/* RefDivA setting */
			OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
			    AR_AN_SYNTH9_REFDIVA, refDivA);
		}
		if (!fracMode) {
			ndiv = (freq * (refDivA >> aModeRefSel))/60;
			channelSel =  ndiv & 0x1ff;         
			channelFrac = (ndiv & 0xfffffe00) * 2;
			channelSel = (channelSel << 17) | channelFrac;
		}
	}
コード例 #8
0
static void
ar9280WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;
	int i;
	const HAL_INI_ARRAY *ia;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex = 2;
		if (IEEE80211_IS_CHAN_HT40(chan))
			modesIndex = 3;
		else if (IEEE80211_IS_CHAN_108G(chan))
			modesIndex = 5;
		else
			modesIndex = 4;
	} else {
		freqIndex = 1;
		if (IEEE80211_IS_CHAN_HT40(chan) ||
		    IEEE80211_IS_CHAN_TURBO(chan))
			modesIndex = 2;
		else
			modesIndex = 1;
	}

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

	/*
	 * This is unwound because at the moment, there's a requirement
	 * for Merlin (and later, perhaps) to have a specific bit fixed
	 * in the AR_AN_TOP2 register before writing it.
	 */
	ia = &AH5212(ah)->ah_ini_modes;
#if 0
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes,
	    modesIndex, regWrites);
#endif
	HALASSERT(modesIndex < ia->cols);
	for (i = 0; i < ia->rows; i++) {
		uint32_t reg = HAL_INI_VAL(ia, i, 0);
		uint32_t val = HAL_INI_VAL(ia, i, modesIndex);

		if (reg == AR_AN_TOP2 && AH5416(ah)->ah_need_an_top2_fixup)
			val &= ~AR_AN_TOP2_PWDCLKIND;

		OS_REG_WRITE(ah, reg, val);

		/* Analog shift register delay seems needed for Merlin - PR kern/154220 */
		if (reg >= 0x7800 && reg < 0x7900)
			OS_DELAY(100);

		DMA_YIELD(regWrites);
	}

	if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_rxgain,
		    modesIndex, regWrites);
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_txgain,
		    modesIndex, regWrites);
	}
	/* XXX Merlin 100us delay for shift registers */
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common,
	    1, regWrites);

	if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
		/* 5GHz channels w/ Fast Clock use different modal values */
		regWrites = ath_hal_ini_write(ah, &AH9280(ah)->ah_ini_xmodes,
		    modesIndex, regWrites);
	}
}
コード例 #9
0
static void
ar9287AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9280.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 2,
                .cycPwrThr1             = { 2, 4, 6 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~ HAL_ANI_NOISE_IMMUNITY_LEVEL;

        /* NB: ANI is not enabled yet */
        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

/*
 * Attach for an AR9287 part.
 */
static struct ath_hal *
ar9287Attach(uint16_t devid, HAL_SOFTC sc,
	HAL_BUS_TAG st, HAL_BUS_HANDLE sh, uint16_t *eepromdata,
	HAL_STATUS *status)
{
	struct ath_hal_9287 *ahp9287;
	struct ath_hal_5212 *ahp;
	struct ath_hal *ah;
	uint32_t val;
	HAL_STATUS ecode;
	HAL_BOOL rfStatus;
	int8_t pwr_table_offset;

	HALDEBUG(AH_NULL, HAL_DEBUG_ATTACH, "%s: sc %p st %p sh %p\n",
	    __func__, sc, (void*) st, (void*) sh);

	/* NB: memory is returned zero'd */
	ahp9287 = ath_hal_malloc(sizeof (struct ath_hal_9287));
	if (ahp9287 == AH_NULL) {
		HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
		    "%s: cannot allocate memory for state block\n", __func__);
		*status = HAL_ENOMEM;
		return AH_NULL;
	}
	ahp = AH5212(ahp9287);
	ah = &ahp->ah_priv.h;

	ar5416InitState(AH5416(ah), devid, sc, st, sh, status);

	/* XXX override with 9280 specific state */
	/* override 5416 methods for our needs */
	AH5416(ah)->ah_initPLL = ar9280InitPLL;

	ah->ah_setAntennaSwitch		= ar9287SetAntennaSwitch;
	ah->ah_configPCIE		= ar9287ConfigPCIE;

	AH5416(ah)->ah_cal.iqCalData.calData = &ar9287_iq_cal;
	AH5416(ah)->ah_cal.adcGainCalData.calData = &ar9287_adc_gain_cal;
	AH5416(ah)->ah_cal.adcDcCalData.calData = &ar9287_adc_dc_cal;
	AH5416(ah)->ah_cal.adcDcCalInitData.calData = &ar9287_adc_init_dc_cal;
	/* Better performance without ADC Gain Calibration */
	AH5416(ah)->ah_cal.suppCals = ADC_DC_CAL | IQ_MISMATCH_CAL;

	AH5416(ah)->ah_spurMitigate	= ar9280SpurMitigate;
	AH5416(ah)->ah_writeIni		= ar9287WriteIni;

	ah->ah_setTxPower		= ar9287SetTransmitPower;
	ah->ah_setBoardValues		= ar9287SetBoardValues;

	AH5416(ah)->ah_olcInit		= ar9287olcInit;
	AH5416(ah)->ah_olcTempCompensation = ar9287olcTemperatureCompensation;
	//AH5416(ah)->ah_setPowerCalTable	= ar9287SetPowerCalTable;
	AH5416(ah)->ah_cal_initcal	= ar9287InitCalHardware;
	AH5416(ah)->ah_cal_pacal	= ar9287PACal;

	/* XXX NF calibration */
	/* XXX Ini override? (IFS vars - since the kiwi mac clock is faster?) */
	/* XXX what else is kiwi-specific in the radio/calibration pathway? */

	AH5416(ah)->ah_rx_chainmask	= AR9287_DEFAULT_RXCHAINMASK;
	AH5416(ah)->ah_tx_chainmask	= AR9287_DEFAULT_TXCHAINMASK;

	if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON)) {
		/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't reset chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: couldn't wakeup chip\n",
		    __func__);
		ecode = HAL_EIO;
		goto bad;
	}
	/* Read Revisions from Chips before taking out of reset */
	val = OS_REG_READ(ah, AR_SREV);
	HALDEBUG(ah, HAL_DEBUG_ATTACH,
	    "%s: ID 0x%x VERSION 0x%x TYPE 0x%x REVISION 0x%x\n",
	    __func__, MS(val, AR_XSREV_ID), MS(val, AR_XSREV_VERSION),
	    MS(val, AR_XSREV_TYPE), MS(val, AR_XSREV_REVISION));
	/* NB: include chip type to differentiate from pre-Sowl versions */
	AH_PRIVATE(ah)->ah_macVersion =
	    (val & AR_XSREV_VERSION) >> AR_XSREV_TYPE_S;
	AH_PRIVATE(ah)->ah_macRev = MS(val, AR_XSREV_REVISION);
	AH_PRIVATE(ah)->ah_ispcie = (val & AR_XSREV_TYPE_HOST_MODE) == 0;

	/* Don't support Kiwi < 1.2; those are pre-release chips */
	if (! AR_SREV_KIWI_12_OR_LATER(ah)) {
		ath_hal_printf(ah, "[ath]: Kiwi < 1.2 is not supported\n");
		ecode = HAL_EIO;
		goto bad;
	}

	/* setup common ini data; rf backends handle remainder */
	HAL_INI_INIT(&ahp->ah_ini_modes, ar9287Modes_9287_1_1, 6);
	HAL_INI_INIT(&ahp->ah_ini_common, ar9287Common_9287_1_1, 2);

	/* If pcie_clock_req */
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_always_on_L1_9287_1_1, 2);

	/* XXX WoW ini values */

	/* Else */
#if 0
	HAL_INI_INIT(&AH5416(ah)->ah_ini_pcieserdes,
	    ar9287PciePhy_clkreq_off_L1_9287_1_1, 2);
#endif

	/* Initialise Japan arrays */
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirNormal,
	    ar9287Common_normal_cck_fir_coeff_9287_1_1, 2);
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirJapan2484,
	    ar9287Common_japan_2484_cck_fir_coeff_9287_1_1, 2);

	ar5416AttachPCIE(ah);

	ecode = ath_hal_9287EepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9287RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	/*
	 * We only implement open-loop TX power control
	 * for the AR9287 in this codebase.
	 */
	if (! ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
		ath_hal_printf(ah, "[ath] AR9287 w/ closed-loop TX power control"
		    " isn't supported.\n");
		ecode = HAL_ENOTSUPP;
		goto bad;
	}

        /*
         * Check whether the power table offset isn't the default.
         * This can occur with eeprom minor V21 or greater on Merlin.
         */
	(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET, &pwr_table_offset);
	if (pwr_table_offset != AR5416_PWR_TABLE_OFFSET_DB)
		ath_hal_printf(ah, "[ath]: default pwr offset: %d dBm != EEPROM pwr offset: %d dBm; curves will be adjusted.\n",
		    AR5416_PWR_TABLE_OFFSET_DB, (int) pwr_table_offset);

	/* setup rxgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_rxgain, ar9287Modes_rx_gain_9287_1_1, 6);

	/* setup txgain table */
	HAL_INI_INIT(&ahp9287->ah_ini_txgain, ar9287Modes_tx_gain_9287_1_1, 6);

	/*
	 * Got everything we need now to setup the capabilities.
	 */
	if (!ar9287FillCapabilityInfo(ah)) {
		ecode = HAL_EEREAD;
		goto bad;
	}

	ecode = ath_hal_eepromGet(ah, AR_EEP_MACADDR, ahp->ah_macaddr);
	if (ecode != HAL_OK) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error getting mac address from EEPROM\n", __func__);
		goto bad;
        }
	/* XXX How about the serial number ? */
	/* Read Reg Domain */
	AH_PRIVATE(ah)->ah_currentRD =
	    ath_hal_eepromGet(ah, AR_EEP_REGDMN_0, AH_NULL);
	AH_PRIVATE(ah)->ah_currentRDext = AR9287_RDEXT_DEFAULT;

	/*
	 * ah_miscMode is populated by ar5416FillCapabilityInfo()
	 * starting from griffin. Set here to make sure that
	 * AR_MISC_MODE_MIC_NEW_LOC_ENABLE is set before a GTK is
	 * placed into hardware.
	 */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);

	ar9287AniSetup(ah);			/* Anti Noise Immunity */

	/* Setup noise floor min/max/nominal values */
	AH5416(ah)->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ;
	AH5416(ah)->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ;
	AH5416(ah)->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_5GHZ;
	AH5416(ah)->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9287_5GHZ;

	ar5416InitNfHistBuff(AH5416(ah)->ah_cal.nfCalHist);

	HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: return\n", __func__);

	return ah;
bad:
	if (ah != AH_NULL)
		ah->ah_detach(ah);
	if (status)
		*status = ecode;
	return AH_NULL;
}

static void
ar9287ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore)
{
	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
		OS_REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);	/* Yes, Kiwi uses the Kite PCIe PHY WA */
	}
}

static void
ar9287WriteIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	u_int modesIndex, freqIndex;
	int regWrites = 0;

	/* Setup the indices for the next set of register array writes */
	/* XXX Ignore 11n dynamic mode on the AR5416 for the moment */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex = 2;
		if (IEEE80211_IS_CHAN_HT40(chan))
			modesIndex = 3;
		else if (IEEE80211_IS_CHAN_108G(chan))
			modesIndex = 5;
		else
			modesIndex = 4;
	} else {
		freqIndex = 1;
		if (IEEE80211_IS_CHAN_HT40(chan) ||
		    IEEE80211_IS_CHAN_TURBO(chan))
			modesIndex = 2;
		else
			modesIndex = 1;
	}

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);
	OS_REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);

	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_modes, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_rxgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH9287(ah)->ah_ini_txgain, modesIndex, regWrites);
	regWrites = ath_hal_ini_write(ah, &AH5212(ah)->ah_ini_common, 1, regWrites);
}
コード例 #10
0
ファイル: ar5312_reset.c プロジェクト: 2asoft/freebsd
/*
 * Places the device in and out of reset and then places sane
 * values in the registers based on EEPROM config, initialization
 * vectors (as determined by the mode), and station configuration
 *
 * bChannelChange is used to preserve DMA/PCU registers across
 * a HW Reset during channel change.
 */
HAL_BOOL
ar5312Reset(struct ath_hal *ah, HAL_OPMODE opmode,
	struct ieee80211_channel *chan,
	HAL_BOOL bChannelChange,
	HAL_RESET_TYPE resetType,
	HAL_STATUS *status)
{
#define	N(a)	(sizeof (a) / sizeof (a[0]))
#define	FAIL(_code)	do { ecode = _code; goto bad; } while (0)
	struct ath_hal_5212 *ahp = AH5212(ah);
	HAL_CHANNEL_INTERNAL *ichan;
	const HAL_EEPROM *ee;
	uint32_t saveFrameSeqCount, saveDefAntenna;
	uint32_t macStaId1, synthDelay, txFrm2TxDStart;
	uint16_t rfXpdGain[MAX_NUM_PDGAINS_PER_CHANNEL];
	int16_t cckOfdmPwrDelta = 0;
	u_int modesIndex, freqIndex;
	HAL_STATUS ecode;
	int i, regWrites = 0;
	uint32_t testReg;
	uint32_t saveLedState = 0;

	HALASSERT(ah->ah_magic == AR5212_MAGIC);
	ee = AH_PRIVATE(ah)->ah_eeprom;

	OS_MARK(ah, AH_MARK_RESET, bChannelChange);
	/*
	 * Map public channel to private.
	 */
	ichan = ath_hal_checkchannel(ah, chan);
	if (ichan == AH_NULL) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: invalid channel %u/0x%x; no mapping\n",
		    __func__, chan->ic_freq, chan->ic_flags);
		FAIL(HAL_EINVAL);
	}
	switch (opmode) {
	case HAL_M_STA:
	case HAL_M_IBSS:
	case HAL_M_HOSTAP:
	case HAL_M_MONITOR:
		break;
	default:
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
		    __func__, opmode);
		FAIL(HAL_EINVAL);
		break;
	}
	HALASSERT(ahp->ah_eeversion >= AR_EEPROM_VER3);

	/* Preserve certain DMA hardware registers on a channel change */
	if (bChannelChange) {
		/*
		 * On Venice, the TSF is almost preserved across a reset;
		 * it requires the doubling writes to the RESET_TSF
		 * bit in the AR_BEACON register; it also has the quirk
		 * of the TSF going back in time on the station (station
		 * latches onto the last beacon's tsf during a reset 50%
		 * of the times); the latter is not a problem for adhoc
		 * stations since as long as the TSF is behind, it will
		 * get resynchronized on receiving the next beacon; the
		 * TSF going backwards in time could be a problem for the
		 * sleep operation (supported on infrastructure stations
		 * only) - the best and most general fix for this situation
		 * is to resynchronize the various sleep/beacon timers on
		 * the receipt of the next beacon i.e. when the TSF itself
		 * gets resynchronized to the AP's TSF - power save is
		 * needed to be temporarily disabled until that time
		 *
		 * Need to save the sequence number to restore it after
		 * the reset!
		 */
		saveFrameSeqCount = OS_REG_READ(ah, AR_D_SEQNUM);
	} else
		saveFrameSeqCount = 0;		/* NB: silence compiler */

	/* If the channel change is across the same mode - perform a fast channel change */
	if ((IS_2413(ah) || IS_5413(ah))) {
		/*
		 * Channel change can only be used when:
		 *  -channel change requested - so it's not the initial reset.
		 *  -it's not a change to the current channel - often called when switching modes
		 *   on a channel
		 *  -the modes of the previous and requested channel are the same - some ugly code for XR
		 */
		if (bChannelChange &&
		    AH_PRIVATE(ah)->ah_curchan != AH_NULL &&
		    (chan->ic_freq != AH_PRIVATE(ah)->ah_curchan->ic_freq) &&
		    ((chan->ic_flags & IEEE80211_CHAN_ALLTURBO) ==
		     (AH_PRIVATE(ah)->ah_curchan->ic_flags & IEEE80211_CHAN_ALLTURBO))) {
			if (ar5212ChannelChange(ah, chan))
				/* If ChannelChange completed - skip the rest of reset */
				return AH_TRUE;
		}
	}

	/*
	 * Preserve the antenna on a channel change
	 */
	saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
	if (saveDefAntenna == 0)		/* XXX magic constants */
		saveDefAntenna = 1;

	/* Save hardware flag before chip reset clears the register */
	macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & 
		(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);

	/* Save led state from pci config register */
	if (!IS_5315(ah))
		saveLedState = OS_REG_READ(ah, AR5312_PCICFG) &
			(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
			 AR_PCICFG_LEDSLOW);

	ar5312RestoreClock(ah, opmode);		/* move to refclk operation */

	/*
	 * Adjust gain parameters before reset if
	 * there's an outstanding gain updated.
	 */
	(void) ar5212GetRfgain(ah);

	if (!ar5312ChipReset(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Setup the indices for the next set of register array writes */
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		freqIndex  = 2;
		modesIndex = IEEE80211_IS_CHAN_108G(chan) ? 5 :
			     IEEE80211_IS_CHAN_G(chan) ? 4 : 3;
	} else {
		freqIndex  = 1;
		modesIndex = IEEE80211_IS_CHAN_ST(chan) ? 2 : 1;
	}

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	/* Set correct Baseband to analog shift setting to access analog chips. */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	regWrites = ath_hal_ini_write(ah, &ahp->ah_ini_modes, modesIndex, 0);
	regWrites = write_common(ah, &ahp->ah_ini_common, bChannelChange,
		regWrites);
	ahp->ah_rfHal->writeRegs(ah, modesIndex, freqIndex, regWrites);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))
		ar5212SetIFSTiming(ah, chan);

	/* Overwrite INI values for revised chipsets */
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
		/* ADC_CTL */
		OS_REG_WRITE(ah, AR_PHY_ADC_CTL,
			     SM(2, AR_PHY_ADC_CTL_OFF_INBUFGAIN) |
			     SM(2, AR_PHY_ADC_CTL_ON_INBUFGAIN) |
			     AR_PHY_ADC_CTL_OFF_PWDDAC |
			     AR_PHY_ADC_CTL_OFF_PWDADC);
		
		/* TX_PWR_ADJ */
		if (chan->channel == 2484) {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta - ee->ee_scaledCh14FilterCckDelta);
		} else {
			cckOfdmPwrDelta = SCALE_OC_DELTA(ee->ee_cckOfdmPwrDelta);
		}
		
		if (IEEE80211_IS_CHAN_G(chan)) {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ,
				     SM((ee->ee_cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_GAIN_DELTA) |
				     SM((cckOfdmPwrDelta*-1), AR_PHY_TXPWRADJ_CCK_PCDAC_INDEX));
		} else {
			OS_REG_WRITE(ah, AR_PHY_TXPWRADJ, 0);
		}
		
		/* Add barker RSSI thresh enable as disabled */
		OS_REG_CLR_BIT(ah, AR_PHY_DAG_CTRLCCK,
			       AR_PHY_DAG_CTRLCCK_EN_RSSI_THR);
		OS_REG_RMW_FIELD(ah, AR_PHY_DAG_CTRLCCK,
				 AR_PHY_DAG_CTRLCCK_RSSI_THR, 2);
		
		/* Set the mute mask to the correct default */
		OS_REG_WRITE(ah, AR_SEQ_MASK, 0x0000000F);
	}
	
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_3) {
		/* Clear reg to alllow RX_CLEAR line debug */
		OS_REG_WRITE(ah, AR_PHY_BLUETOOTH,  0);
	}
	if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_4) {
#ifdef notyet
		/* Enable burst prefetch for the data queues */
		OS_REG_RMW_FIELD(ah, AR_D_FPCTL, ... );
		/* Enable double-buffering */
		OS_REG_CLR_BIT(ah, AR_TXCFG, AR_TXCFG_DBL_BUF_DIS);
#endif
	}

	if (IS_5312_2_X(ah)) {
		/* ADC_CTRL */
		OS_REG_WRITE(ah, AR_PHY_SIGMA_DELTA,
			     SM(2, AR_PHY_SIGMA_DELTA_ADC_SEL) |
			     SM(4, AR_PHY_SIGMA_DELTA_FILT2) |
			     SM(0x16, AR_PHY_SIGMA_DELTA_FILT1) |
			     SM(0, AR_PHY_SIGMA_DELTA_ADC_CLIP));

		if (IEEE80211_IS_CHAN_2GHZ(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN, AR_PHY_RXGAIN_TXRX_RF_MAX, 0x0F);

		/* CCK Short parameter adjustment in 11B mode */
		if (IEEE80211_IS_CHAN_B(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_CCK_RXCTRL4, AR_PHY_CCK_RXCTRL4_FREQ_EST_SHORT, 12);

		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x04);

		/* Increase 11A AGC Settling */
		if (IEEE80211_IS_CHAN_A(chan))
			OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_AGC, 32);
	} else {
		/* Set ADC/DAC select values */
		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
	}

	/* Setup the transmit power values. */
	if (!ar5212SetTransmitPower(ah, chan, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error init'ing transmit power\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Write the analog registers */
	if (!ahp->ah_rfHal->setRfRegs(ah, chan, modesIndex, rfXpdGain)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: ar5212SetRfRegs failed\n",
		    __func__);
		FAIL(HAL_EIO);
	}

	/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
	if (IEEE80211_IS_CHAN_OFDM(chan)) {
		if (IS_5413(ah) ||
		   AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3)
			ar5212SetSpurMitigation(ah, chan);
		ar5212SetDeltaSlope(ah, chan);
	}

	/* Setup board specific options for EEPROM version 3 */
	if (!ar5212SetBoardValues(ah, chan)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: error setting board options\n", __func__);
		FAIL(HAL_EIO);
	}

	/* Restore certain DMA hardware registers on a channel change */
	if (bChannelChange)
		OS_REG_WRITE(ah, AR_D_SEQNUM, saveFrameSeqCount);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
	OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
		| macStaId1
		| AR_STA_ID1_RTS_USE_DEF
		| ahp->ah_staId1Defaults
	);
	ar5212SetOperatingMode(ah, opmode);

	/* Set Venice BSSID mask according to current state */
	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));

	/* Restore previous led state */
	if (!IS_5315(ah))
		OS_REG_WRITE(ah, AR5312_PCICFG, OS_REG_READ(ah, AR_PCICFG) | saveLedState);

	/* Restore previous antenna */
	OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);

	/* then our BSSID */
	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));

	/* Restore bmiss rssi & count thresholds */
	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);

	OS_REG_WRITE(ah, AR_ISR, ~0);		/* cleared on write */

	if (!ar5212SetChannel(ah, chan))
		FAIL(HAL_EIO);

	OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);

	ar5212SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);

	ar5212SetRateDurationTable(ah, chan);

	/* Set Tx frame start to tx data start delay */
	if (IS_RAD5112_ANY(ah) &&
	    (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) {
		txFrm2TxDStart = 
			IEEE80211_IS_CHAN_HALF(chan) ?
					TX_FRAME_D_START_HALF_RATE:
					TX_FRAME_D_START_QUARTER_RATE;
		OS_REG_RMW_FIELD(ah, AR_PHY_TX_CTL, 
			AR_PHY_TX_FRAME_TO_TX_DATA_START, txFrm2TxDStart);
	}

	/*
	 * Setup fast diversity.
	 * Fast diversity can be enabled or disabled via regadd.txt.
	 * Default is enabled.
	 * For reference,
	 *    Disable: reg        val
	 *             0x00009860 0x00009d18 (if 11a / 11g, else no change)
	 *             0x00009970 0x192bb514
	 *             0x0000a208 0xd03e4648
	 *
	 *    Enable:  0x00009860 0x00009d10 (if 11a / 11g, else no change)
	 *             0x00009970 0x192fb514
	 *             0x0000a208 0xd03e6788
	 */

	/* XXX Setup pre PHY ENABLE EAR additions */

	/* flush SCAL reg */
	if (IS_5312_2_X(ah)) {
		(void) OS_REG_READ(ah, AR_PHY_SLEEP_SCAL);
	}

	/*
	 * Wait for the frequency synth to settle (synth goes on
	 * via AR_PHY_ACTIVE_EN).  Read the phy active delay register.
	 * Value is in 100ns increments.
	 */
	synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
	if (IEEE80211_IS_CHAN_B(chan)) {
		synthDelay = (4 * synthDelay) / 22;
	} else {
		synthDelay /= 10;
	}

	/* Activate the PHY (includes baseband activate and synthesizer on) */
	OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);

	/* 
	 * There is an issue if the AP starts the calibration before
	 * the base band timeout completes.  This could result in the
	 * rx_clear false triggering.  As a workaround we add delay an
	 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
	 * does not happen.
	 */
	if (IEEE80211_IS_CHAN_HALF(chan)) {
		OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
	} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
		OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
	} else {
		OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
	}

	/*
	 * The udelay method is not reliable with notebooks.
	 * Need to check to see if the baseband is ready
	 */
	testReg = OS_REG_READ(ah, AR_PHY_TESTCTRL);
	/* Selects the Tx hold */
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, AR_PHY_TESTCTRL_TXHOLD);
	i = 0;
	while ((i++ < 20) &&
	       (OS_REG_READ(ah, 0x9c24) & 0x10)) /* test if baseband not ready */		OS_DELAY(200);
	OS_REG_WRITE(ah, AR_PHY_TESTCTRL, testReg);

	/* Calibrate the AGC and start a NF calculation */
	OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
		  OS_REG_READ(ah, AR_PHY_AGC_CONTROL)
		| AR_PHY_AGC_CONTROL_CAL
		| AR_PHY_AGC_CONTROL_NF);

	if (!IEEE80211_IS_CHAN_B(chan) && ahp->ah_bIQCalibration != IQ_CAL_DONE) {
		/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
		OS_REG_RMW_FIELD(ah, AR_PHY_TIMING_CTRL4, 
			AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX,
			INIT_IQCAL_LOG_COUNT_MAX);
		OS_REG_SET_BIT(ah, AR_PHY_TIMING_CTRL4,
			AR_PHY_TIMING_CTRL4_DO_IQCAL);
		ahp->ah_bIQCalibration = IQ_CAL_RUNNING;
	} else
		ahp->ah_bIQCalibration = IQ_CAL_INACTIVE;

	/* Setup compression registers */
	ar5212SetCompRegs(ah);

	/* Set 1:1 QCU to DCU mapping for all queues */
	for (i = 0; i < AR_NUM_DCU; i++)
		OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);

	ahp->ah_intrTxqs = 0;
	for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
		ar5212ResetTxQueue(ah, i);

	/*
	 * Setup interrupt handling.  Note that ar5212ResetTxQueue
	 * manipulates the secondary IMR's as queues are enabled
	 * and disabled.  This is done with RMW ops to insure the
	 * settings we make here are preserved.
	 */
	ahp->ah_maskReg = AR_IMR_TXOK | AR_IMR_TXERR | AR_IMR_TXURN
			| AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXORN
			| AR_IMR_HIUERR
			;
	if (opmode == HAL_M_HOSTAP)
		ahp->ah_maskReg |= AR_IMR_MIB;
	OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
	/* Enable bus errors that are OR'd to set the HIUERR bit */
	OS_REG_WRITE(ah, AR_IMR_S2,
		OS_REG_READ(ah, AR_IMR_S2)
		| AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);

	if (AH_PRIVATE(ah)->ah_rfkillEnabled)
		ar5212EnableRfKill(ah);

	if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0)) {
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: offset calibration failed to complete in 1ms;"
		    " noisy environment?\n", __func__);
	}

	/*
	 * Set clocks back to 32kHz if they had been using refClk, then
	 * use an external 32kHz crystal when sleeping, if one exists.
	 */
	ar5312SetupClock(ah, opmode);

	/*
	 * Writing to AR_BEACON will start timers. Hence it should
	 * be the last register to be written. Do not reset tsf, do
	 * not enable beacons at this point, but preserve other values
	 * like beaconInterval.
	 */
	OS_REG_WRITE(ah, AR_BEACON,
		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));

	/* XXX Setup post reset EAR additions */

	/*  QoS support */
	if (AH_PRIVATE(ah)->ah_macVersion > AR_SREV_VERSION_VENICE ||
	    (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_VENICE &&
	     AH_PRIVATE(ah)->ah_macRev >= AR_SREV_GRIFFIN_LITE)) {
		OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa);	/* XXX magic */
		OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210);	/* XXX magic */
	}

	/* Turn on NOACK Support for QoS packets */
	OS_REG_WRITE(ah, AR_NOACK,
		     SM(2, AR_NOACK_2BIT_VALUE) |
		     SM(5, AR_NOACK_BIT_OFFSET) |
		     SM(0, AR_NOACK_BYTE_OFFSET));

	/* Restore user-specified settings */
	if (ahp->ah_miscMode != 0)
		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
	if (ahp->ah_slottime != (u_int) -1)
		ar5212SetSlotTime(ah, ahp->ah_slottime);
	if (ahp->ah_acktimeout != (u_int) -1)
		ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
	if (ahp->ah_ctstimeout != (u_int) -1)
		ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
	if (ahp->ah_sifstime != (u_int) -1)
		ar5212SetSifsTime(ah, ahp->ah_sifstime);
	if (AH_PRIVATE(ah)->ah_diagreg != 0)
		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);

	AH_PRIVATE(ah)->ah_opmode = opmode;	/* record operating mode */

	if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan)) 
		chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;

	HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);

	OS_MARK(ah, AH_MARK_RESET_DONE, 0);

	return AH_TRUE;
bad:
	OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
	if (status != AH_NULL)
		*status = ecode;
	return AH_FALSE;
#undef FAIL
#undef N
}
コード例 #11
0
ファイル: ar9280_attach.c プロジェクト: vkhromov/freebsd
static void
ar9280ConfigPCIE(struct ath_hal *ah, HAL_BOOL restore, HAL_BOOL power_off)
{
	uint32_t val;

	if (AH_PRIVATE(ah)->ah_ispcie && !restore) {
		ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_pcieserdes, 1, 0);
		OS_DELAY(1000);
	}


	/*
	 * Set PCIe workaround bits
	 *
	 * NOTE:
	 *
	 * In Merlin and Kite, bit 14 in WA register (disable L1) should only
	 * be set when device enters D3 and be cleared when device comes back
	 * to D0.
	 */
	if (power_off) {		/* Power-off */
		OS_REG_CLR_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);

		val = OS_REG_READ(ah, AR_WA);

		/*
		 * Disable bit 6 and 7 before entering D3 to prevent
		 * system hang.
		 */
		val &= ~(AR_WA_BIT6 | AR_WA_BIT7);

		/*
		 * XXX Not sure, is specified in the reference HAL.
		 */
		val |= AR_WA_BIT22;

		/*
		 * See above: set AR_WA_D3_L1_DISABLE when entering D3 state.
		 *
		 * XXX The reference HAL does it this way - it only sets
		 * AR_WA_D3_L1_DISABLE if it's set in AR9280_WA_DEFAULT,
		 * which it (currently) isn't.  So the following statement
		 * is currently a NOP.
		 */
		if (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE)
			val |= AR_WA_D3_L1_DISABLE;

		OS_REG_WRITE(ah, AR_WA, val);
	} else {			/* Power-on */
		val = AR9280_WA_DEFAULT;

		/*
		 * See note above: make sure L1_DISABLE is not set.
		 */
		val &= (~AR_WA_D3_L1_DISABLE);
		OS_REG_WRITE(ah, AR_WA, val);

		/* set bit 19 to allow forcing of pcie core into L1 state */
		OS_REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
	}
}